Interior/Exterior Repairs at BEQ HP145

AT THE

MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

DESIGN BY:

CEMS Engineering | Architecture
Summerville, SC
Wilmington, NC

A/E Contract: N40085-15-D-0858

SPECIFICATION PREPARED BY:

Chris A. Mooring, PE
Bradley W. Minor, PE
Paul C. Mahaffey, PE
Robert S. Perkins, PE
Mark J. Smith, AIA
Date: July 21, 2017

SPECIFICATION APPROVED BY:

T. H. Burton, P.E., Director
Design Branch, Public Works Division

J. W. Carson, Captain, CEC, U.S. Navy
for Commander, Naval Facilities Engineering Command

05170015
This Page is Intentionally Left Blank
PROJECT TABLE OF CONTENTS

DIVISION 01 - GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 11 00</td>
<td>SUMMARY OF WORK</td>
</tr>
<tr>
<td>01 12 00</td>
<td>CUTTING AND PATCHING</td>
</tr>
<tr>
<td>01 14 00</td>
<td>WORK RESTRICTIONS</td>
</tr>
<tr>
<td>01 20 00</td>
<td>PRICE AND PAYMENT PROCEDURES</td>
</tr>
<tr>
<td>01 30 00</td>
<td>ADMINISTRATIVE REQUIREMENTS</td>
</tr>
<tr>
<td>01 31 50</td>
<td>TRANSFER AND ACCEPTANCE OF MILITARY REAL PROPERTY</td>
</tr>
<tr>
<td>01 32 16</td>
<td>CONSTRUCTION PROGRESS DOCUMENTATION</td>
</tr>
<tr>
<td>01 33 00</td>
<td>SUBMITTAL PROCEDURES</td>
</tr>
<tr>
<td>01 35 29</td>
<td>SAFETY AND OCCUPATIONAL HEALTH REQUIREMENTS</td>
</tr>
<tr>
<td>01 40 00</td>
<td>SOURCES FOR REFERENCE PUBLICATIONS</td>
</tr>
<tr>
<td>01 45 10</td>
<td>QUALITY CONTROL</td>
</tr>
<tr>
<td>01 50 00</td>
<td>TEMPORARY FACILITIES AND CONTROLS</td>
</tr>
<tr>
<td>01 57 19</td>
<td>TEMPORARY ENVIRONMENTAL CONTROLS</td>
</tr>
<tr>
<td>01 58 00</td>
<td>PROJECT IDENTIFICATION</td>
</tr>
<tr>
<td>01 60 00</td>
<td>REQUIREMENTS FOR PESTICIDE AND HERBICIDE COORDINATION</td>
</tr>
<tr>
<td>01 70 00</td>
<td>CLOSEOUT PROCEDURES</td>
</tr>
<tr>
<td>01 78 23</td>
<td>OPERATION AND MAINTENANCE DATA</td>
</tr>
<tr>
<td>01 80 30</td>
<td>GIS DATA DELIVERABLES</td>
</tr>
<tr>
<td>01 91 13</td>
<td>GENERAL COMMISSIONING REQUIREMENTS</td>
</tr>
</tbody>
</table>

DIVISION 02 - EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 41 00</td>
<td>DEMOLITION</td>
</tr>
<tr>
<td>02 82 16</td>
<td>REMOVAL AND DISPOSAL OF ASBESTOS MATERIALS</td>
</tr>
<tr>
<td>02 83 13.00 20</td>
<td>LEAD IN CONSTRUCTION</td>
</tr>
<tr>
<td>02 84 16</td>
<td>HANDLING OF LIGHTING BALLASTS AND LAMPS CONTAINING PCBs AND MERCURY</td>
</tr>
</tbody>
</table>

DIVISION 03 - CONCRETE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 01 30.71</td>
<td>CONCRETE REHABILITATION</td>
</tr>
<tr>
<td>03 30 50</td>
<td>CAST-IN-PLACE CONCRETE</td>
</tr>
</tbody>
</table>

DIVISION 04 - MASONRY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>04 20 00</td>
<td>UNIT MASONRY</td>
</tr>
</tbody>
</table>

DIVISION 05 - METALS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 50 13</td>
<td>MISCELLANEOUS METAL FABRICATIONS</td>
</tr>
<tr>
<td>05 52 00</td>
<td>ALUMINUM RAILINGS</td>
</tr>
</tbody>
</table>

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 10 00</td>
<td>ROUGH CARPENTRY</td>
</tr>
<tr>
<td>06 20 00</td>
<td>FINISH CARPENTRY</td>
</tr>
<tr>
<td>06 41 16.00 10</td>
<td>PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS</td>
</tr>
<tr>
<td>06 61 16</td>
<td>SOLID SURFACING FABRICATIONS</td>
</tr>
</tbody>
</table>

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 11 13</td>
<td>BITUMINOUS DAMPROOFING</td>
</tr>
<tr>
<td>07 21 13</td>
<td>BOARD AND BLOCK INSULATION</td>
</tr>
<tr>
<td>07 21 16</td>
<td>MINERAL FIBER BLANKET INSULATION</td>
</tr>
<tr>
<td>07 21 23</td>
<td>LOOSE FILL THERMAL INSULATION</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>07 22 00</td>
<td>ROOF AND DECK INSULATION</td>
</tr>
<tr>
<td>07 31 13</td>
<td>ASPHALT SHINGLES</td>
</tr>
<tr>
<td>07 60 00</td>
<td>FLASHING AND SHEET METAL</td>
</tr>
<tr>
<td>07 61 00</td>
<td>SHEET METAL AND CLADDING</td>
</tr>
<tr>
<td>07 84 00</td>
<td>FIRESTOPPING</td>
</tr>
<tr>
<td>07 92 00</td>
<td>JOINT SEALANTS</td>
</tr>
<tr>
<td>DIVISION 08 - OPENINGS</td>
<td></td>
</tr>
<tr>
<td>08 11 13</td>
<td>STEEL DOORS AND FRAMES</td>
</tr>
<tr>
<td>08 33 23</td>
<td>OVERHEAD COILING DOORS</td>
</tr>
<tr>
<td>08 58 01</td>
<td>BLAST MITIGATION OPERABLE ALUMINUM WINDOWS</td>
</tr>
<tr>
<td>08 71 00</td>
<td>DOOR HARDWARE</td>
</tr>
<tr>
<td>08 81 00</td>
<td>GLAZING</td>
</tr>
<tr>
<td>08 91 00</td>
<td>METAL WALL LOUVERS</td>
</tr>
<tr>
<td>DIVISION 09 - FINISHES</td>
<td></td>
</tr>
<tr>
<td>09 22 00</td>
<td>SUPPORTS FOR PLASTER AND GYPSUM BOARD</td>
</tr>
<tr>
<td>09 29 00</td>
<td>GYPSUM BOARD</td>
</tr>
<tr>
<td>09 30 10</td>
<td>CERAMIC, QUARRY, AND GLASS TILING</td>
</tr>
<tr>
<td>09 51 00</td>
<td>ACOUSTICAL CEILINGS</td>
</tr>
<tr>
<td>09 65 00</td>
<td>RESILIENT FLOORING</td>
</tr>
<tr>
<td>09 67 23.13</td>
<td>STANDARD RESINOUS FLOORING</td>
</tr>
<tr>
<td>09 90 00</td>
<td>PAINTS AND COATINGS</td>
</tr>
<tr>
<td>DIVISION 10 - SPECIALTIES</td>
<td></td>
</tr>
<tr>
<td>10 14 00.20</td>
<td>INTERIOR SIGNAGE</td>
</tr>
<tr>
<td>10 28 13</td>
<td>TOILET ACCESSORIES</td>
</tr>
<tr>
<td>10 52 20</td>
<td>FIRE EXTINGuishers AND CABINETS</td>
</tr>
<tr>
<td>DIVISION 12 - FURNISHINGS</td>
<td></td>
</tr>
<tr>
<td>12 21 00</td>
<td>WINDOW BLINDS</td>
</tr>
<tr>
<td>DIVISION 21 - FIRE SUPPRESSION</td>
<td></td>
</tr>
<tr>
<td>21 13 13.00 20</td>
<td>WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION</td>
</tr>
<tr>
<td>DIVISION 22 - PLUMBING</td>
<td></td>
</tr>
<tr>
<td>22 00 00</td>
<td>PLUMBING, GENERAL PURPOSE</td>
</tr>
<tr>
<td>DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)</td>
<td></td>
</tr>
<tr>
<td>23 03 00.00 20</td>
<td>BASIC MECHANICAL MATERIALS AND METHODS</td>
</tr>
<tr>
<td>23 05 93</td>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
</tr>
<tr>
<td>23 07 00</td>
<td>INSULATION OF MECHANICAL SYSTEMS</td>
</tr>
<tr>
<td>23 09 23.13</td>
<td>BACnet DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC</td>
</tr>
<tr>
<td>23 52 43.00 20</td>
<td>LOW PRESSURE WATER HEATING BOILERS (UNDER 800,000 BTU/HR OUTPUT)</td>
</tr>
<tr>
<td>23 73 33</td>
<td>HEATING, VENTILATING, AND COOLING SYSTEM</td>
</tr>
<tr>
<td>DIVISION 26 - ELECTRICAL</td>
<td></td>
</tr>
<tr>
<td>26 00 00</td>
<td>BASIC ELECTRICAL MATERIALS AND METHODS</td>
</tr>
<tr>
<td>26 06 00</td>
<td>GROUNDING AND BONDING</td>
</tr>
<tr>
<td>26 12 19.10</td>
<td>THREE-PHASE PAD-MOUNTED TRANSFORMERS</td>
</tr>
</tbody>
</table>
26 20 00 INTERIOR DISTRIBUTION SYSTEM
26 29 23 VARIABLE FREQUENCY DRIVE SYSTEMS UNDER 600 VOLTS
26 51 00 INTERIOR LIGHTING

DIVISION 27 - COMMUNICATIONS

27 10 00 BUILDING TELECOMMUNICATIONS CABLING SYSTEM
27 54 00.00 20 COMMUNITY ANTENNA TELEVISION (CATV) SYSTEMS

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM

DIVISION 31 - EARTHWORK

31 00 00 EARTHWORK

DIVISION 32 - EXTERIOR IMPROVEMENTS

32 16 13 CONCRETE SIDEWALKS AND CURBS AND GUTTERS
32 17 23 PAVEMENT MARKINGS
32 92 19 SEEDING

DIVISION 33 - UTILITIES

33 11 00 WATER DISTRIBUTION
33 30 00 SANITARY SEWERS
33 40 00 STORM DRAINAGE UTILITIES
33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION
33 82 00 TELECOMMUNICATIONS OUTSIDE PLANT (OSP)

-- End of Project Table of Contents --
LIST OF DRAWINGS

Contract drawings are as follows:

<table>
<thead>
<tr>
<th>NAVFAC SHEET DWG NO. NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-001 60019318</td>
<td>COVER SHEET</td>
</tr>
<tr>
<td>LS101 60019319</td>
<td>BUILDING CODE ANALYSIS</td>
</tr>
<tr>
<td>LS102 60019320</td>
<td>LIFE SAFETY PLAN</td>
</tr>
<tr>
<td>H-101 60019321</td>
<td>ABATEMENT PLANS</td>
</tr>
<tr>
<td>G-001 60019322</td>
<td>EXISTING CONDITIONS SITE PLAN</td>
</tr>
<tr>
<td>CD101 60019323</td>
<td>CIVIL DEMOLITION & EROSION CONTROL PLAN</td>
</tr>
<tr>
<td>CS101 60019324</td>
<td>CIVIL SITE PLAN</td>
</tr>
<tr>
<td>CP101 60019325</td>
<td>CIVIL PLANTING PLAN</td>
</tr>
<tr>
<td>C-501 60019326</td>
<td>EROSION CONTROL DETAILS</td>
</tr>
<tr>
<td>C-502 60019327</td>
<td>CIVIL DETAILS</td>
</tr>
<tr>
<td>C-503 60019328</td>
<td>CIVIL DETAILS</td>
</tr>
<tr>
<td>S-001 60019329</td>
<td>GENERAL STRUCTURAL NOTES & DESIGN LOADS</td>
</tr>
<tr>
<td>SD101 60019330</td>
<td>STRUCTURAL DEMOLITION PLANS</td>
</tr>
<tr>
<td>SD401 60019331</td>
<td>ENLARGED STRUCTURAL DEMOLITION PLANS</td>
</tr>
<tr>
<td>S-101 60019332</td>
<td>STRUCTURAL EXISTING ROOF FRAMING PLAN</td>
</tr>
<tr>
<td>S-102 60019333</td>
<td>STRUCTURAL NEW WORK PLANS</td>
</tr>
<tr>
<td>S-103 60019334</td>
<td>MECHANICAL YARD STRUCTURAL NEW WORK PLANS</td>
</tr>
<tr>
<td>S-301 60019335</td>
<td>NEW CMU SECTIONS AND DETAILS</td>
</tr>
<tr>
<td>S-302 60019336</td>
<td>MECHANICAL OPENING SECTIONS AND DETAILS</td>
</tr>
<tr>
<td>S-401 60019337</td>
<td>ENLARGED STRUCTURAL NEW WORK PLANS</td>
</tr>
<tr>
<td>S-501 60019338</td>
<td>NEW STRUCTURAL SECTIONS AND DETAILS</td>
</tr>
<tr>
<td>S-502 60019339</td>
<td>NEW STRUCTURAL SECTIONS AND DETAILS</td>
</tr>
<tr>
<td>A-001 60019340</td>
<td>GENERAL NOTES & LEGENDS</td>
</tr>
<tr>
<td>AD101 60019341</td>
<td>ARCHITECTURAL DEMOLITION FLOOR PLANS</td>
</tr>
<tr>
<td>AD102 60019342</td>
<td>ARCHITECTURAL DEMOLITION REFLECTED CEILING PLANS</td>
</tr>
<tr>
<td>AD103 60019343</td>
<td>ARCHITECTURAL DEMOLITION ROOF PLAN</td>
</tr>
<tr>
<td>AD201 60019344</td>
<td>ARCHITECTURAL DEMOLITION ELEVATIONS</td>
</tr>
<tr>
<td>AD401 60019345</td>
<td>ARCHITECTURAL DEMOLITION ENLARGED CORE FLOOR PLAN</td>
</tr>
<tr>
<td>AD402 60019346</td>
<td>ARCHITECTURAL DEMOLITION ENLARGED CORE REFLECTED CEILING PLANS</td>
</tr>
<tr>
<td>AD403 60019347</td>
<td>ARCHITECTURAL DEMOLITION ENLARGED SLEEPING ROOM PLAN, RCP & ELEVATIONS</td>
</tr>
<tr>
<td>AD501 60019348</td>
<td>ARCHITECTURAL DEMOLITION DETAILS</td>
</tr>
<tr>
<td>AD901 60019349</td>
<td>DEMOLITION PHOTOS</td>
</tr>
<tr>
<td>A-101 60019350</td>
<td>ARCHITECTURAL NEW WORK FLOOR PLANS</td>
</tr>
<tr>
<td>A-102 60019351</td>
<td>ARCHITECTURAL NEW WORK REFLECTED CEILING PLANS</td>
</tr>
<tr>
<td>A-103 60019352</td>
<td>ARCHITECTURAL NEW WORK ROOF PLAN</td>
</tr>
<tr>
<td>A-104 60019353</td>
<td>MECHANICAL YARD NEW WORK FLOOR, REFLECTED CEILING & ROOF PLAN</td>
</tr>
<tr>
<td>A-201 60019354</td>
<td>BUILDING ELEVATIONS</td>
</tr>
<tr>
<td>A-202 60019355</td>
<td>ENLARGED BUILDING ELEVATIONS</td>
</tr>
<tr>
<td>A-203 60019356</td>
<td>MECHANICAL YARD EXTERIOR ELEVATIONS, SECTIONS & DETAILS</td>
</tr>
<tr>
<td>A-301 60019357</td>
<td>BUILDING SECTIONS</td>
</tr>
<tr>
<td>A-302 60019358</td>
<td>WALL SECTIONS</td>
</tr>
<tr>
<td>A-401 60019359</td>
<td>ENLARGED CORE FLOOR PLANS</td>
</tr>
<tr>
<td>A-402 60019360</td>
<td>ENLARGED CORE REFLECTED CEILING PLANS</td>
</tr>
<tr>
<td>A-403 60019361</td>
<td>ENLARGED SLEEPING ROOM FLOOR PLAN & REFLECTED</td>
</tr>
<tr>
<td>DWG NO.</td>
<td>SHEET NO.</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>60019362</td>
<td>A-404</td>
</tr>
<tr>
<td>60019363</td>
<td>A-405</td>
</tr>
<tr>
<td>60019364</td>
<td>A-501</td>
</tr>
<tr>
<td>60019365</td>
<td>A-502</td>
</tr>
<tr>
<td>60019366</td>
<td>A-503</td>
</tr>
<tr>
<td>60019367</td>
<td>A-504</td>
</tr>
<tr>
<td>60019368</td>
<td>A-601</td>
</tr>
<tr>
<td>60019369</td>
<td>A-602</td>
</tr>
<tr>
<td>60019370</td>
<td>A-603</td>
</tr>
<tr>
<td>60019371</td>
<td>A-604</td>
</tr>
<tr>
<td>60019372</td>
<td>A-605</td>
</tr>
<tr>
<td>60019373</td>
<td>A-606</td>
</tr>
<tr>
<td>60019374</td>
<td>A-607</td>
</tr>
<tr>
<td>60019375</td>
<td>FD101</td>
</tr>
<tr>
<td>60019376</td>
<td>FA001</td>
</tr>
<tr>
<td>60019377</td>
<td>FA002</td>
</tr>
<tr>
<td>60019378</td>
<td>FA101</td>
</tr>
<tr>
<td>60019379</td>
<td>FA401</td>
</tr>
<tr>
<td>60019380</td>
<td>FX101</td>
</tr>
<tr>
<td>60019381</td>
<td>P-001</td>
</tr>
<tr>
<td>60019382</td>
<td>PD101</td>
</tr>
<tr>
<td>60019383</td>
<td>PD401</td>
</tr>
<tr>
<td>60019384</td>
<td>PD402</td>
</tr>
<tr>
<td>60019385</td>
<td>PD403</td>
</tr>
<tr>
<td>60019386</td>
<td>P-101</td>
</tr>
<tr>
<td>60019387</td>
<td>P-102</td>
</tr>
<tr>
<td>60019388</td>
<td>P-103</td>
</tr>
<tr>
<td>60019389</td>
<td>P-104</td>
</tr>
<tr>
<td>60019390</td>
<td>P-401</td>
</tr>
<tr>
<td>60019391</td>
<td>P-402</td>
</tr>
<tr>
<td>60019392</td>
<td>P-403</td>
</tr>
<tr>
<td>60019393</td>
<td>P-404</td>
</tr>
<tr>
<td>60019394</td>
<td>P-501</td>
</tr>
<tr>
<td>60019395</td>
<td>P-502</td>
</tr>
<tr>
<td>60019396</td>
<td>P-601</td>
</tr>
<tr>
<td>60019397</td>
<td>P-701</td>
</tr>
<tr>
<td>60019398</td>
<td>M-001</td>
</tr>
<tr>
<td>60019399</td>
<td>MS101</td>
</tr>
<tr>
<td>60019400</td>
<td>MS102</td>
</tr>
<tr>
<td>60019401</td>
<td>MD101</td>
</tr>
<tr>
<td>60019402</td>
<td>MD102</td>
</tr>
<tr>
<td>60019403</td>
<td>MD401</td>
</tr>
<tr>
<td>60019404</td>
<td>MD402</td>
</tr>
<tr>
<td>60019405</td>
<td>MD403</td>
</tr>
<tr>
<td>60019406</td>
<td>MH101</td>
</tr>
<tr>
<td>60019407</td>
<td>MH102</td>
</tr>
<tr>
<td>60019408</td>
<td>MH401</td>
</tr>
<tr>
<td>60019409</td>
<td>MH402</td>
</tr>
<tr>
<td>60019410</td>
<td>MH403</td>
</tr>
<tr>
<td>60019411</td>
<td>MP101</td>
</tr>
<tr>
<td>60019412</td>
<td>MP401</td>
</tr>
<tr>
<td>DWG NO.</td>
<td>SHEET NO.</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>60019413</td>
<td>M-101</td>
</tr>
<tr>
<td>60019414</td>
<td>M-501</td>
</tr>
<tr>
<td>60019415</td>
<td>M-502</td>
</tr>
<tr>
<td>60019416</td>
<td>M-503</td>
</tr>
<tr>
<td>60019417</td>
<td>M-504</td>
</tr>
<tr>
<td>60019418</td>
<td>M-505</td>
</tr>
<tr>
<td>60019419</td>
<td>M-601</td>
</tr>
<tr>
<td>60019420</td>
<td>M-602</td>
</tr>
<tr>
<td>60019421</td>
<td>M-603</td>
</tr>
<tr>
<td>60019422</td>
<td>M-707</td>
</tr>
<tr>
<td>60019423</td>
<td>M-708</td>
</tr>
<tr>
<td>60019424</td>
<td>M-709</td>
</tr>
<tr>
<td>60019425</td>
<td>M-710</td>
</tr>
<tr>
<td>60019426</td>
<td>M-711</td>
</tr>
<tr>
<td>60019427</td>
<td>M1001</td>
</tr>
<tr>
<td>60019428</td>
<td>M1002</td>
</tr>
<tr>
<td>60019429</td>
<td>M1101</td>
</tr>
<tr>
<td>60019430</td>
<td>M1102</td>
</tr>
<tr>
<td>60019431</td>
<td>MI103</td>
</tr>
<tr>
<td>60019432</td>
<td>MI104</td>
</tr>
<tr>
<td>60019433</td>
<td>MI105</td>
</tr>
<tr>
<td>60019434</td>
<td>MI106</td>
</tr>
<tr>
<td>60019435</td>
<td>MI107</td>
</tr>
<tr>
<td>60019436</td>
<td>MI108</td>
</tr>
<tr>
<td>60019437</td>
<td>MI109</td>
</tr>
<tr>
<td>60019438</td>
<td>MI110</td>
</tr>
<tr>
<td>60019439</td>
<td>E-001</td>
</tr>
<tr>
<td>60019440</td>
<td>ES101</td>
</tr>
<tr>
<td>60019441</td>
<td>ED101</td>
</tr>
<tr>
<td>60019442</td>
<td>ED102</td>
</tr>
<tr>
<td>60019443</td>
<td>ED401</td>
</tr>
<tr>
<td>60019444</td>
<td>ED402</td>
</tr>
<tr>
<td>60019445</td>
<td>E-101</td>
</tr>
<tr>
<td>60019446</td>
<td>E-102</td>
</tr>
<tr>
<td>60019447</td>
<td>E-103</td>
</tr>
<tr>
<td>60019448</td>
<td>E-401</td>
</tr>
<tr>
<td>60019449</td>
<td>E-402</td>
</tr>
<tr>
<td>60019450</td>
<td>E-403</td>
</tr>
<tr>
<td>60019451</td>
<td>E-501</td>
</tr>
<tr>
<td>60019452</td>
<td>E-502</td>
</tr>
<tr>
<td>60019453</td>
<td>E-503</td>
</tr>
<tr>
<td>60019454</td>
<td>E-601</td>
</tr>
<tr>
<td>60019455</td>
<td>E-602</td>
</tr>
<tr>
<td>60019456</td>
<td>E-603</td>
</tr>
<tr>
<td>60019457</td>
<td>E-604</td>
</tr>
<tr>
<td>60019458</td>
<td>E-701</td>
</tr>
</tbody>
</table>
PART 1 GENERAL

1.1 WORK COVERED BY CONTRACT DOCUMENTS

1.1.1 Project Description

The work includes a complete replacement of the electrical system. Upgrades conforming to Minimum Antiterrorism Standards for Buildings. Renovation and reconfiguration of the first lounge into a laundry room. Construction of a new mechanical building to house new natural gas boilers, supporting equipment, a new chiller and enclosure and incidental related work.

1.1.2 Location

The work shall be located at the Marine Corps Base, Camp Lejeune, North Carolina, HP145 approximately as shown. The exact location will be indicated by the Contracting Officer.

1.2 EXISTING WORK

In addition to "FAR 52.236-9, Protection of Existing Vegetation, Structures, Equipment, Utilities, and Improvements":

a. Remove or alter existing work in such a manner as to prevent injury or damage to any portions of the existing work which remain.

b. Repair or replace portions of existing work which have been altered during construction operations to match existing or adjoining work, as approved by the Contracting Officer. At the completion of operations, existing work shall be in a condition equal to or better than that which existed before new work started.

1.3 LOCATION OF UNDERGROUND FACILITIES

The Contractor will be responsible for obtaining the services of a professional utility locator to scan the construction site with electromagnetic or sonic equipment, and mark the surface of the ground where existing underground utilities are discovered. Verify the elevations of existing piping, utilities, and any type of underground obstruction not indicated or specified to be removed but indicated or discovered during scanning in locations to be traversed by piping, ducts, and other work to
be installed. Verify elevations before installing new work closer than nearest manhole or other structure at which an adjustment in grade can be made.

1.3.1 Notification Prior to Excavation

Notify the Contracting Officer 48 hours prior to starting excavation work in order to permit making arrangements with public works personnel to scan the area for unmarked utilities. Obtain station digging permits prior to starting excavation work.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 CUTTING

Shall be done by sawing along straight lines. The amount cut out shall be
the minimum necessary to accommodate the new work. No flame cutting will
be permitted without written permission of the Officer in Charge of
Construction.

1.2 HOLES

Shall be rotary drilled. The size shall be the minimum necessary to
accommodate the new work.

1.3 PATCHING

Shall be done with materials which match the existing in color, quality and
surface texture when finished.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 CONTRACTOR ACCESS AND USE OF PREMISES

1.1.1 Station Regulations

Ensure that Contractor personnel employed on the Station become familiar with and obey Station regulations. Keep within the limits of the work and avenues of ingress and egress as directed. Do not enter restricted areas unless required to do so and until cleared for such entry. Wear hard hats in designated areas. Do not enter any restricted areas unless required to do so and until cleared for such entry. The Contractor's equipment shall be conspicuously marked for identification.

1.1.2 Working Hours

Regular working hours shall consist of an eight and one-half hour period established by the Contracting Officer, Monday through Friday, excluding Government holidays.

1.1.3 Work Outside Regular Hours

Work outside regular working hours requires Contracting Officer approval. Provide written regular working hours requires Contracting Officer approval. Provide written request at least 15 calendar days prior to such work to allow arrangements to be made by the Government for inspecting the work in progress. During periods of darkness, the different parts of the work shall be lighted in a manner approved by the Contracting Officer.

1.1.4 Occupied and Existing Buildings

The Contractor shall be working around existing buildings which are occupied. Do not enter the buildings without prior approval of the Contracting Officer.

The existing buildings and their contents shall be kept secure at all times. Provide temporary closures as required to maintain security as directed by the Contracting Officer.

The Government will remove and relocate other Government property in the areas of the buildings scheduled to receive work.

1.1.5 Utility Cutovers and Interruptions

a. Make utility cutovers and interruptions after normal working hours or on Saturdays, Sundays, and Government holidays. Conform to
procedures required in the paragraph "Work Outside Regular Hours."

b. Ensure that new utility lines are complete, except for the connection, before interrupting existing service.

c. Interruption to water, sanitary sewer, storm sewer, telephone service, electric service, air conditioning, heating, fire alarm, compressed air, and CATV shall be considered utility cutovers pursuant to the paragraph entitled "Work Outside Regular Hours." This time limit includes time for deactivation and reactivation.

d. Operation of Station Utilities: The Contractor shall not operate nor disturb the setting of control devices in the station utilities system, including water, sewer, electrical, and steam services. The Government will operate the control devices as required for normal conduct of the work. The Contractor shall notify the Contracting Officer giving reasonable advance notice when such operation is required.

1.2 SECURITY REQUIREMENTS

Contract Clause "FAR 52.204-2, Security Requirements and Alternate II," "FAC 5252.236-9301, Special Working Conditions and Entry to Work Area".

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

U.S. ARMY CORPS OF ENGINEERS (USACE)

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-01 Preconstruction Submittals

Schedule of prices

1.3 SCHEDULE OF PRICES

1.3.1 Data Required

Within 15 calendar days of notice of award, prepare and deliver to Contracting Officer a schedule of prices (construction contract) on the forms furnished by the Government. Provide a detailed breakdown of the contract price, giving quantities for each of the various kinds of work, unit prices, and extended prices therefor. Schedule of prices shall be separated by individual building numbers with subtotals for each building.

1.3.2 Schedule Instructions

Payments will not be made until the schedule of prices has been submitted to and approved by the Contracting Officer. Identify the cost for site work, and include incidental work to the 5 foot line. Identify costs for the building(s), and include work out to the 5 foot line. Workout to the 5 foot line shall include construction encompassed within a theoretical line 5 feet from the face of exterior walls and shall include attendant construction, such as cooling towers, placed beyond the 5 foot line.

1.3.3 Schedule Requirements for HVAC TAB

The field work Section 23 05 93, "TESTING, ADJUSTING, AND BALANCING FOR HVAC" shall be broken down in the Schedule of Prices and in the Construction Progress Documentation by separate line items which reflect measurable deliverables. Specific payment percentages for each line item
shall be determined on a case by case basis for each contract. The line items shall be as follows:

a. Approval of Design Review Report: The TABS Agency is required to conduct a review of the project plans and specifications to identify any feature, or the lack thereof, that would preclude successful testing and balancing of the project HVAC systems. The resulting findings shall be submitted to the Government to allow correction of the design. The progress payment shall be issued after review and approval of the report.

b. Approval of the pre-field engineering report: The TABS Agency submits a report which outlines the scope of field work. The report shall contain details of what systems will be tested, procedures to be used, sample report forms for reporting test results and a quality control checklist of work items that must be completed before TABS field work commences.

c. Season I field work: Incremental payments are issued as the TABS field work progresses. The TABS Agency mobilizes to the project site and executes the field work as outlined in the pre-field engineering report. The HVAC water and air systems are balanced and operational data shall be collected for one seasonal condition (either summer or winter depending on project timing).

d. Approval of Season I report: On completion of the Season I field work, the data is compiled into a report and submitted to the Government. The report is reviewed, and approved, after ensuring compliance with the pre-field engineering report scope of work.

e. Completion of Season I field QA check: Contract QC and Government representatives meet the TABS Agency at the jobsite to retest portions of the systems reported in the Season I report. The purpose of these tests are to validate the accuracy and completeness of the previously submitted Season I report.

f. Approval of Season II report: The TABS Agency completes all Season II field work, which is normally comprised mainly of taking heat transfer temperature readings, in the season opposite of that under which Season I performance data was compiled. This data shall be compiled into a report and submitted to the Government. On completion of submittal review to ensure compliance with the pre-field engineering report scope, progress payment is issued. Progress payment is less than that issued for the Season I report since most of the water and air balancing work effort is completed under Season I.

1.4 CONTRACT MODIFICATIONS

In conjunction with the Contract Clause "DFARS 252.236-7000, Modification Proposals-Price Breakdown," and where actual ownership and operating costs of construction equipment cannot be determined from Contractor accounting records, equipment use rates shall be based upon the applicable provisions of the EP-1110-1-8.
1.5 CONTRACTOR'S PAYMENT REQUEST

1.5.1 Proper Payment Request

A proper request for payment/invoice shall comply with all requirements specified in this Section and the contract payment clauses. If any invoice does not comply with these requirements, it shall be returned with a statement of the reasons why it was not a proper invoice. A proper payment request/invoice includes the following information, completed forms, and number of copies indicated. Upon request, the Contracting Officer will furnish copies of Government forms.

a. Contractor's Invoice on NAVFAC Form 7300/30, which shall show the basis for arriving at the amount of the invoice. Submit one original and two copies.

b. Contractor's Monthly Estimate for Voucher (LANTNAVFACENGCOM Form 4-4330/110. Submit original and two copies.

c. Payment Certification. Furnish as specified in "FAR Clause 52.232-5 (c) Payments under Fixed-Price Construction Contracts." Submit one original.

d. QC Invoice Certification. Furnish as specified in Section 01 45 10, "Quality Control." Submit one original.

1.5.1.1 Progress Payments

In addition to the requirements stated in Paragraph 1.5.1, "Proper Payment Request" above, the Contractor's request for progress payments shall include the following:

a. Updated Progress Schedule: Furnish an updated progress schedule as specified in contract clause FAR 52.236-15 "Schedules for Construction Contracts" and Section 01 32 16, "Construction Progress Documentation." Submit one copy.

1.5.1.2 Final Payments

The request for final payment is submitted after completion and acceptance of all work and all other requirements of the contract. Before submitting the final invoice the Contractor shall meet with the appropriate Government representatives to determine the final invoice amount, including the assessment of liquidated damages, if any, and to make sure the final release is complete and accurate. In addition to the requirements in Paragraph 1.5.1, "Proper Payment Request" above, the Contractor's request for final payment shall include the following:

a. A final release executed on the standard form provided by the Contracting Officer. Submit two originals with final payment request.

b. NC Tax certified statement and report for the prime and each subcontractor (FAR 52.229-7). Submit two copies.

c. As-built drawings (if applicable).

d. Warranties (if applicable).
e. O&M manuals (if applicable).

f. Final payrolls (FAR 52.222-6).

g. A release for an assignment of claims (if applicable). Submit three originals.

1.5.2 Procedures for Submitting Payment Request

a. The Contractor may submit only one invoice for payment each month as the work progresses.

b. The invoice shall be delivered to the ROICC Office, Administrative Branch, between five calendar days before and five calendar days after the contract award date. Invoices received outside this schedule shall be returned to the Contractor unprocessed. The Contractor will have to wait until the following month to submit their next invoice.

c. Invoices shall be delivered during normal work hours from 7:30 AM up to 4:00 PM (EST), Monday through Friday, excluding holidays.

1.6 PAYMENTS TO THE CONTRACTOR

Payments will be made on submission of a proper payment request/invoice by the Contractor.

1.6.1 Obligation of Government Payments

The obligation of the Government to make payments required under the provisions of this contract will, at the discretion of the Contracting Officer, be subject to the following:

a. Reasonable retention and/or deductions due to defects in material or workmanship; potential liquidated damages; and/or failure to comply with any other requirements of the contract.

b. Claims which the Government may have against the Contractor under or in connection with this contract; and

c. Unless otherwise adjusted, repayment to the Government upon demand for overpayments made to the Contractor.

d. Failure to provide up to date record drawings not current as stated in Contract Clause "FAC 5252.236-9310, Record Drawings"; NC State tax certified statement and report in accordance with FAR 52.229-2; labor payrolls in accordance with FAR 52.222-6; as-built drawings in accordance with Section 01 45 10, "Quality Control"; warranties and O&M manuals; and any other requirements in the contract.

1.6.2 Payment for Onsite and Offsite Materials

Progress payments may be made to the contractor for materials delivered on the site, for materials stored off construction sites, or materials that are in transit to the construction sites under the following conditions:

a. FAR 52.232-5(b) Payments Under Fixed Price Construction Contracts.
b. Materials delivered on the site but not installed, including completed preparatory work, and off-site materials to be considered for progress payment shall be major high cost, long lead, special order, or specialty items, not susceptible to deterioration or physical damage in storage or in transit to the construction site. Examples of materials acceptable for payment considerations include, but are not limited to, structural steel, non-magnetic steel, non-magnetic aggregate, equipment, machinery, large pipe and fittings, precast/ prestressed concrete products, plastic lumber (e.g. fender piles/ curbs), and high-voltage electrical cable. Materials no acceptable for payment include consumable materials such as nails, fasteners, conduits, gypsum board, glass, insulation, and wall coverings.

c. Materials to be considered for progress payment prior to installation shall be specifically and separately identified in the Contractor's estimates of work submitted for the Contracting Officer's approval in accordance with Earned Value Report requirement of this contract. Requests for progress payment considerations for such items shall be supported by documents establishing their value and that the title requirements of the clause at FAR 52.232-5 have been met.

d. Materials are adequately insured and protected from theft and exposure.

e. Provide a written consent from the surety company with each payment request for offsite materials.

f. Materials to be considered for progress payments prior to installation shall be stored in the Continental United States.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 SUBMITTALS

Submit the following in accordance with the Section 01 33 00, "Submittal Procedures."

SD-01 Preconstruction Submittals

List of contact personnel

1.2 MINIMUM INSURANCE REQUIREMENTS

Procure and maintain during the entire period of performance under this contract the following minimum insurance coverage:

a. Comprehensive general liability: $500,000 per occurrence

b. Automobile liability: $200,000 per person, $500,000 per occurrence, $20,000 per occurrence for property damage

c. Workmen's compensation as required by Federal and State workers' compensation and occupational disease laws,

d. Employer's liability coverage of $100,000, except in States where workers compensation may not be written by private carriers,

e. Others as required by State law.

1.3 ELECTRONIC MAIL (EMAIL)

a. The Contractor is required to establish and maintain electronic mail (email) capability along with the capability to open various electronic attachments in Microsoft, Adobe Acrobat, and other similar formats.

b. Within 10 days after contract award; the Contractor shall provide the Contracting Officer a single (only one) email address for the ROICC office to send communications related to this contract correspondence. The ROICC office may also use email to notify the Contractor of base access conditions when emergency conditions warrant, such as hurricanes, terrorist threats, etc.

c. Multiple email addresses are not authorized.

d. It is the Contractor's responsibility to make timely distribution of all ROICC email within its own organization, including field office(s).

e. The Contractor shall promptly notify the Contracting Officer, in
1.4 CONTRACTOR PERSONNEL REQUIREMENTS

1.4.1 Subcontractors and Personnel

Furnish a list of contact personnel of the Contractor and subcontractors including addresses and telephone numbers for use in the event of an emergency. As changes occur and additional information becomes available, correct and change the information contained in previous lists.

1.4.2 Identification Badges

Identification badges will be furnished without charge. Application for and use of badges will be as directed below. Immediately report instances of lost or stolen badges to the Contracting Officer. Employees are required to resubmit a complete 50 state criminal records check in order to renew their contractor badge.

1.4.3 Business Access Security Requirements

1.4.3.1 Business Access Definition

Contractor/subcontractor employees requiring installation access to MCB, Camp Lejeune or MCAS New River, N.C. must obtain a Business Access Identification Badge for that particular installation. Regularly scheduled delivery personnel, to include FEDEX, UPS, Pick-up and deliveries, should, also, follow the Business Access guidelines described below. Personnel requiring Business Access Identification Badges shall submit all documentation listed below. Badges are not required if the contracted position requires the employee to obtain a Common Access Card (CAC) which will be identified separately within the Government contract.

1.4.3.2 Installation Security Access Requirements

Contractor shall accomplish the security requirements below within 10 days after award or prior to performance under the contract.

1.4.3.3 Business Access Identification Badge Requirement

In order to obtain a Business Access Identification Badge for access to MCB, Camp Lejeune, and satellite activities, or MCAS New River, NC, all personnel providing services under this contract shall be required to present the documentation below to the following offices, as applicable:

MCB, Camp Lejeune, NC and its satellite activities. Report as follows:

1. Identification Card Center, 60 Molly Pitcher Road for badge (910-450-8444).

MCAS New River, NC. Report as follows:

1.4.3.4 Proof of Employee Citizenship or Legal Alien Status

Employers may participate in the E-verify program (1-888-464-4218, www.DHS.gov/e-verify) allowing U.S. employers to verify name, DOB, and SSN
along with immigration information for non-citizens, against federal databases in order to verify the employment eligibility of both citizens and non-citizen new hires.

1.4.3.5 Proof of Criminal Records Check

Commercial and contract employees must provide proof a complete 50 state criminal records check on an annual basis. The record check may be obtained from any of the following Internet investigative services: Kroll (former Infolink Screening Services) at www.kroll.com, Castle Branch at www.castlebranch.com, or any other investigative services company that provides records checks for all 50 states. These services also validate social security card numbers. All criminal history checks must be completed no more than 30 days prior to start date of contract. (Note: These Internet screening services are listed as possible sources for obtaining a criminal background check. The United States government and the United States Marine Corps do not endorse nor are they affiliated with any of these services).

1.4.3.6 Letter Provided By Contracting Officer Indicating Contract

Letter provided by Contracting Officer indicating contract, contract period and prime contractor. Proof of employment on a valid Government contract (e.g., a letter on company letterhead from the prime contractor including contract number and term).

1.4.3.7 Photo ID

Valid state or federal issued picture identification card. Acceptable documents include state drivers license, DMV issued photo identification, or alien registration card.

1.4.3.8 National Crime Investigation Center (NCIC) Check

Provost Marshals are authorized to conduct a national crime information center (NCIC) check of all persons entering the installation, if/where applicable, the NCIC check may include drivers’s license query, wants and warrants, and criminal history.

1.4.4 Denial of Access

Installation access shall be denied if it is determined that an employee:

a. Is on the National Terrorist Watch List

b. Is illegally present in the United States.

c. Is subject to an outstanding warrant.

d. Has knowingly submitted an employment questionnaire with false or fraudulent information.

e. Has been issued a debarment order and is currently banned from military installations.

f. Is a Registered Sexual Offender.

g. Has been convicted of a felony or a drug crime within the past five years.
h. Individuals who have received a DUI/DWI in the last year may be allowed access to the installation, but will not be permitted to drive on the installation.

i. Any reason the Installation Commander deems reasonable for the good order and discipline.

1.4.5 Appeal Process

All appeals should be directed to the Base Inspector's Office for any individual that has been denied access to the Base.

1.4.6 Display of Badges

Contractors/subcontractors shall prominently display their badges on their person at all times. Upon completion/termination of this contract or an individual's employment, the Contractor shall collect and turn in to the Pass & ID Office all badges. If the Contractor fails to obtain the employee's badge, the Pass & ID Office will be notified within 24 hours. Immediately report instances of lost or stolen badges to the Contracting Officer.

1.4.7 Contractor and Subcontractor Vehicle Requirements

Each vehicle to be used in contract performance shall show the Contractor's or subcontractor's name so that it is clearly visible and shall always display a valid state license plate and safety inspection sticker. To obtain a vehicle decal, which will be valid for one year or contract period, whichever is shorter, Contractor or subcontractor vehicle operators shall provide to the Vehicle Registration Office, 60 Molly Pitcher Road (910-451-1158) or to MCAS, Building AS-187 (910-449-5513) for vehicle decal:

a. An installation sponsor request forwarded to provost Marshall office

b. A valid form of Federal or state government I.D.

c. If driving a motor vehicle, a valid driver's license, vehicle registration and proof of insurance

Upon completion/termination of this contract or an individual's employment, the Contractor shall collect and turn in to Vehicle Registration all Government vehicle decals. If any are not collected, the Contractor shall notify the Vehicle Registration Office within 24 hours.

1.4.8 Security Checks

Contractor personnel and vehicles shall only be present in locations relevant to contract performance. All Contractor personnel entering the base shall conform to all Government regulations and are subject to such checks as may be deemed necessary to ensure that violations do not occur. Employees shall not be permitted on base when such a check reveals that their presence would be detrimental to the security of the base. Subject to security regulations, the Government will allow access to an area for servicing equipment and/or performing required services. Upon request, the Contractor shall submit to the Contracting Officer questionnaires and other forms as may be required for security purposes.
1.4.9 Subcontractor Special Requirements

1.4.9.1 Space Temperature Control, HVAC TAB, and Apparatus Inspection

All contract requirements of Section 23 09 23.13, BACnet DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC," Section 23 05 93, "TESTING, ADJUSTING, AND BALANCING FOR HVAC," and shall be accomplished directly by a first tier subcontractor. No work required by these sections shall be accomplished by a second tier subcontractor.

1.4.9.2 Telecommunication and High Voltage Work

When telecommunications and high voltage work is required, all work associated with telecommunications and high voltage shall be accomplished by a first tier subcontractor. The contractor must possess a valid North Carolina Public Utility - Electrical, contractor's license and be insured to do such work in the State of North Carolina.

1.4.9.3 Paving Associated with Utility Cuts

All pavement repairs associated with utility cuts shall be completed within 14 days of completing work within paved area.

1.5 DISCLOSURE OF INFORMATION

Contractor shall comply as follows:

(a) The Contractor shall not release to anyone outside the Contractor's organization any unclassified information, regardless of medium (e.g., film, tape, document), pertaining to any part of this contract or any program related to this contract, unless -

 (1) The Contracting Officer has given prior written approval; or

 (2) The information is otherwise in the public domain before the date of release.

(b) Requests for approval shall identify the specific information to be released, the medium to be used, and the purpose for the release. The Contractor shall submit its request to the Contracting Officer at least 45 days before the proposed date for release.

(c) The Contractor agrees to include a similar requirement in each subcontract under this contract. Subcontractors shall submit requests for authorization to release through the prime contractor to the Contracting Officer.

1.6 SUPERVISION

Have at least one qualified supervisor capable of reading, writing, and conversing fluently in the English language on the job site during working hours. In addition, if a Quality Control (CQ) representative is required on the contract, then that individual shall also have fluent English communication skills.
NOTE: If training and experience requirements of Section 01 35 29, "Safety and Occupational Health Requirements" have been met, the Superintendent may also serve as the Site Safety and Health Officer (SSHO). The Quality Control Manager shall be a separate individual.

1.7 PRECONSTRUCTION CONFERENCE

After award of the contract but prior to commencement of any work at the site, meet with the Contracting Officer to discuss and develop a mutual understanding relative to the administration of the value engineering and safety program, preparation of the schedule of prices, shop drawings, and other submittals, scheduling programming, and prosecution of the work. Major subcontractors who will engage in the work shall also attend.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

 SD-11 Closeout Submittals

 Interim DD-1354, Transfer & Acceptance of Military Real Property

1.2 Interim DD-1354, Transfer & Acceptance of Military Real Property

Submit Interim DD-1354 thirty (30) days prior to beneficial occupancy date (draft copy attached).

PART 2 PRODUCTS

Not Used.

PART 3 EXECUTION

Not Used.

 -- End of Section --
PART 1 GENERAL

1.1 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-01 Preconstruction Submittals

Construction schedule

Equipment delivery schedule

1.2 CONSTRUCTION SCHEDULE

Within 21 days after receipt of the Notice of Award, prepare and submit to the Contracting Officer for approval a Critical Path Method (CPM), Network Schedule in accordance with the terms in Contract Clause "FAR 52.236-15, Schedules for Construction Contracts," except as modified in this contract. Primavera P6 will be utilized to produce and update all progress schedules.

1.2.1 HVAC TAB Milestones

Requirements for the milestones related to HVAC TAB work, Section 23 05 93, "TESTING, ADJUSTING, AND BALANCING FOR HVAC" are specified in Section 01 20 00, "Price and Payment Procedures."

1.3 EQUIPMENT DELIVERY SCHEDULE

1.3.1 Initial Schedule

Within 30 calendar days after approval of the proposed construction schedule, submit for Contracting Officer approval a schedule showing procurement plans for materials, plant, and equipment. Submit in the format and content as prescribed by the Contracting Officer, and include as a minimum the following information:

a. Description.

b. Date of the purchase order.

c. Promised shipping date.

d. Name of the manufacturer or supplier.

e. Date delivery is expected.
1.4 NETWORK ANALYSIS SYSTEM (NAS)

The Contractor shall use the critical path method (CPM) to schedule and control construction activities. The Network shall have a minimum of 25 activities and a maximum of 220 activities. The schedule shall identify as a minimum:

a. Construction time for all major systems and components;

b. Manpower requirements for each activity;

c. Major submittals and submittal processing time; and

d. Major equipment lead time.

1.4.1 CPM Submittals and Procedures

The Contractor shall use the critical path method (CPM) to schedule and control project activities. Project schedules shall be prepared and maintained using Primavera P6, Primavera SureTrak or current mandated scheduling program. Save files in Concentric P6 or current mandated scheduling program file format, compatible with the Governments version of the scheduling program. The network analysis system shall be kept current, with changes made to reflect the actual progress and status of the construction.

1.5 UPDATED SCHEDULES

Update the construction schedule and equipment delivery schedule at monthly intervals or when schedule has been revised. Reflect any changes occurring since the last update. Submit copies of the purchase orders and confirmation of the delivery dates as directed.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

1.1.1 Government-Furnished Information

Submittal register will be delivered to the contractor in hard copy format. Register will have the following fields completed, to the extent that will be required by the Government during subsequent usage.

Column (c): Lists specification section in which submittal is required.

Column (d): Lists each submittal description (SD No. and type, e.g. SD-04 Drawings) required in each specification section.

Column (e): Lists one principal paragraph in specification section where a material or product is specified. This listing is only to facilitate locating submitted requirements. Do not consider entries in column (e) as limiting project requirements.

Column (f): Indicate approving authority for each submittal. The Contracting Officer is approving authority for all submittals.

1.2 DEFINITIONS

1.2.1 Submittal

Shop drawings, product data, samples, and administrative submittals presented for review and approval. Contract Clauses "FAR 52.236-5, Material and Workmanship," paragraph (b) and "FAR 52.236-21, Specifications and Drawings for Construction," paragraphs (d), (e), and (f) apply to all "submittals."

1.2.2 Types of Submittals

All submittals are classified as indicated in paragraph "Submittal Descriptions (SD)". Submittals also are grouped as follows:

a. Shop drawings: As used in this section, drawings, schedules, diagrams, and other data prepared specifically for this contract, by contractor or through contractor by way of subcontractor, manufacturer, supplier, distributor, or other lower tier contractor, to illustrate portion of work.

b. Product data: Preprinted material such as illustrations, standard schedules, performance charts, instructions, brochures, diagrams, manufacturer's descriptive literature, catalog data, and other
data to illustrate portion of work, but not prepared exclusively for this contract.

c. Samples: Physical examples of products, materials, equipment, assemblies, or workmanship that are physically identical to portion of work, illustrating portion of work or establishing standards for evaluating appearance of finished work or both.

d. Administrative submittals: Data presented for reviews and approval to ensure that administrative requirements of project are adequately met but not to ensure directly that work is in accordance with design concept and in compliance with contract documents.

1.2.3 Submittal Descriptions (SD)

SD-01 Preconstruction Submittals

Certificates of insurance
Surety bonds
List of proposed subcontractors
List of proposed products
Construction Progress Schedule
Submittal schedule
Schedule of values
Health and safety plan
Work plan
Quality control plan
Environmental protection plan

SD-02 Shop Drawings

Drawings, diagrams and schedules specifically prepared to illustrate some portion of the work.

Diagrams and instructions from a manufacturer or fabricator for use in producing the product and as aids to the contractor for integrating the product or system into the project.

Drawings prepared by or for the contractor to show how multiple systems and interdisciplinary work will be coordinated.

SD-03 Product Data

Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions and brochures illustrating size, physical appearance and other characteristics of materials or equipment for some portion of the work.

Samples of warranty language when the contract requires extended product warranties.

SD-04 Samples

Physical examples of materials, equipment or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged.
Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project.

Field samples and mock-ups constructed on the project site establish standards by which the ensuing work can be judged. Includes assemblies or portions of assemblies which are to be incorporated into the project and those which will be removed at conclusion of the work.

SD-05 Design Data

Calculations, mix designs, analyses or other data pertaining to a part of work.

SD-06 Test Reports

Report signed by authorized official of testing laboratory that a material, product or system identical to the material, product or system to be provided has been tested in accord with specified requirements. (Testing must have been within three years of date of contract award for the project.)

Report which includes findings of a test required to be performed by the contractor on an actual portion of the work or prototype prepared for the project before shipment to job site.

Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.

Investigation reports

Daily checklists

Final acceptance test and operational test procedure

SD-07 Certificates

Statements signed by responsible officials of manufacturer of product, system or material attesting that product, system or material meets specification requirements. Must be dated after award of project contract and clearly name the project.

Document required of Contractor, or of a supplier, installer or subcontractor through Contractor, the purpose of which is to further quality of orderly progression of a portion of the work by documenting procedures, acceptability of methods or personnel qualifications.

Confined space entry permits.

SD-08 Manufacturer's Instructions

Preprinted material describing installation of a product, system or material, including special notices and Material Safety Data sheets concerning impedances, hazards and safety precautions.

SD-09 Manufacturer's Field Reports

Documentation of the testing and verification actions taken by manufacturer's representative to confirm compliance with manufacturer's
standards or instructions.

Factory test reports.

SD-10 Operation and Maintenance Data

Data intended to be incorporated in operations and maintenance manuals.

SD-11 Closeout Submittals

Documentation to record compliance with technical or administrative requirements or to establish an administrative mechanism.

As-built drawings

Special warranties

Posted operating instructions

Training plan

1.2.4 Approving Authority

Person authorized to approve submittal.

1.2.5 Work

As used in this section, on- and off-site construction required by contract documents, including labor necessary to produce construction and materials, products, equipment, and systems incorporated or to be incorporated in such construction.

1.3 SUBMITTALS

Submit the following in accordance with the requirements of this section.

SD-11 Closeout Submittals

Submittal register

Complete Submittal Package 2 CD/DVD's

1.4 USE OF SUBMITTAL REGISTER

Prepare and maintain submittal register, as the work progresses. Use the hard copy submittal register furnished by the Government or other approved format. Do not change data which is output in columns (c), (d), (e), and (f) as delivered by government; retain data which is output in columns (a), (g), (h), and (i) as approved.

1.4.1 Submittal Register

Submit submittal register as a hard copy. Submit with quality control plan and project schedule required by Section 01 45 10, "Quality Control" and Section 01 32 16, "Construction Progress Documentation." Do not change
data in columns (c), (d), (e), and (f) as delivered by the government. Verify that all submittals required for project are listed and add missing submittals.

The Commissioning Authority will review the submittal register and identify submittals which will need to be reviewed by the Commissioning Authority related to the equipment and systems to be Commissioned. Any review comments by the Commissioning Authority will be provided to the COR for consideration.

Complete the following on the register:

Column (a) Activity Number: Activity number from the project schedule.

Column (g) Contractor Submit Date: Scheduled date for approving authority to receive submittals.

Column (h) Contractor Approval Date: Date contractor needs approval of submittal.

Column (i) Contractor Material: Date that contractor needs material delivered to contractor control.

1.4.2 Contractor Use of Submittal Register

Update the following fields in the government-furnished submittal register.

Column (b) Transmittal Number: Contractor assigned list of consecutive numbers.

Column (j) Action Code (k): Date of action used to record contractor's review when forwarding submittals to QC.

Column (l) List date of submittal transmission.

Column (q) List date approval received.

1.4.3 Approving Authority Use of Submittal Register

Update the following fields in the government-furnished submittal register.

Column (b).

Column (l) List date of submittal receipt.

Column (m) through (p).

Column (q) List date returned to contractor.

1.4.4 Contractor Action Code and Action Code

Entries used will be as follows (others may be prescribed by Transmittal Form):

NR - Not Received

AN - Approved as noted

A - Approved
RR - Disapproved, Revise, and Resubmit

1.4.5 Copies Delivered to the Government

Deliver one copy of submitted register updated by contractor to government with each invoice request.

1.5 PROCEDURES FOR SUBMITTALS

1.5.1 Reviewing, Certifying, Approving Authority

QC organization shall be responsible for reviewing and certifying that submittals are in compliance with contract requirements. The Contracting Officer is the approving authority for all submittals.

1.5.2 Constraints

a. Submittals listed or specified in this contract shall conform to provisions of this section, unless explicitly stated otherwise.

b. Submittals shall be complete for each definable feature of work; components of definable feature interrelated as a system shall be submitted at same time.

c. When acceptability of a submittal is dependent on conditions, items, or materials included in separate subsequent submittals, submittal will be returned without review.

d. Approval of a separate material, product, or component does not imply approval of assembly in which item functions.

1.5.3 Scheduling

a. Coordinate scheduling, sequencing, preparing and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow for potential requirements to resubmit.

b. Except as specified otherwise, allow review period, beginning with receipt by approving authority, that includes at least 15 working days for submittals for QC manager approval and 20 working days for submittals for contracting officer approval. Period of review for submittals with contracting officer approval begins when Government receives submittal from QC organization. Period of review for each resubmittal is the same as for initial submittal.

c. For submittals requiring review by fire protection engineer, allow review period, beginning when government receives submittal from QC organization, of 45 working days for return of submittal to the contractor. Period of review for each resubmittal is the same as for initial submittal.

1.5.4 Variations

Variations from contract requirements require Government approval pursuant to contract Clause entitled "FAR 52.236-21, Specifications and Drawings for Construction" and will be considered where advantageous to government.
1.5.4.1 Considering Variations

Discussion with contracting officer prior to submission, will help ensure functional and quality requirements are met and minimize rejections and resubmittals. When contemplating a variation which results in lower cost, consider submission of the variation as a Value Engineering Change Proposal (VECP).

1.5.4.2 Proposing Variations

When proposing variation, deliver written request to the contracting officer, with documentation of the nature and features of the variation and why the variation is desirable and beneficial to government. If lower cost is a benefit, also include an estimate of the cost saving. In addition to documentation required for variation, include the submittals required for the item. Clearly mark the proposed variation in all documentation.

1.5.4.3 Warranting That Variation Are Compatible

When delivering a variation for approval, contractor warrants that this contract has been reviewed to establish that the variation, if incorporated, will be compatible with other elements of work.

1.5.4.4 Review Schedule Is Modified

In addition to normal submittal review period, a period of 10 working days will be allowed for consideration by the Government of submittals with variations.

1.5.5 Contractor's Responsibilities

a. Determine and verify field measurements, materials, field construction criteria; review each submittal; and check and coordinate each submittal with requirements of the work and contract documents.

b. Transmit submittals to QC organization in accordance with schedule on approved Submittal Register, and to prevent delays in the work, delays to government, or delays to separate contractors.

c. Advise contracting officer of variation, as required by paragraph entitled "Variations."

d. Correct and resubmit submittal as directed by approving authority. When resubmitting disapproved transmittals or transmittals noted for resubmittal, the contractor shall provide copy of that previously submitted transmittal including all reviewer comments for use by approving authority. Direct specific attention in writing or on resubmitted submittal, to revisions not requested by approving authority on previous submissions.

e. Furnish additional copies of submittal when requested by contracting officer, to a limit of 20 copies per submittal.

f. Complete work which must be accomplished as basis of a submittal in time to allow submittal to occur as scheduled.
g. Ensure no work has begun until submittals for that work have been returned as "approved," or "approved as noted," except to the extent that a portion of work must be accomplished as basis of submittal.

1.5.6 QC Organization Responsibilities

a. Note date on which submittal was received from contractor on each submittal.

b. Review each submittal; and check and coordinate each submittal with requirements of work and contract documents.

c. Review submittals for conformance with project design concepts and compliance with contract documents.

d. Act on submittals, determining appropriate action based on QC organization's review of submittal.

(1) When QC manager is approving authority, take appropriate action on submittal from the possible actions defined in paragraph entitled, "Actions Possible."

(2) When contracting officer is approving authority or when variation has been proposed, forward submittal to Government with certifying statement or return submittal marked "not reviewed" or "revise and resubmit" as appropriate. The QC organization's review of submittal determines appropriate action.

e. Ensure that material is clearly legible.

f. Stamp each sheet of each submittal with QC certifying statement or approving statement, except that data submitted in bound volume or on one sheet printed on two sides may be stamped on the front of the first sheet only.

(1) When approving authority is contracting officer, QC organization will certify submittals forwarded to contracting officer with the following certifying statement:

"I hereby certify that the (equipment) (material) (article) shown and marked in this submittal is that proposed to be incorporated with contract Number N40085- -B- , is in compliance with the contract drawings and specification, can be installed in the allocated spaces, and is submitted for Government approval.

Certified by Submittal Reviewer _____________________, Date ______
(Signature when applicable)

Certified by QC manager ____________________________, Date ______"
(Signature)

g. Sign certifying statement or approval statement. The person signing certifying statements shall be QC organization member designated in the approved QC plan. The signatures shall be in original ink. Stamped signatures are not acceptable.

h. Update submittal register as submittal actions occur and maintain
the submittal register at project site until final acceptance of all work by contracting officer.

i. Retain a copy of approved submittals at project site, including contractor's copy of approved samples.

1.5.7 Government's Responsibilities

When approving authority is contracting Officer, the Government will:

a. Note date on which submittal was received from QC manager, on each submittal for which the contracting officer is approving authority.

b. Review submittals for approval within scheduling period specified and only for conformance with project design concepts and compliance with contract documents.

c. Identify returned submittals with one of the actions defined in paragraph entitled "Actions Possible" and with markings appropriate for action indicated.

1.5.8 Actions Possible

Submittals will be returned with one of the following notations:

a. Submittals marked "not reviewed" will indicate submittal has been previously reviewed and approved, is not required, does not have evidence of being reviewed and approved by contractor, or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmit submittals returned for lack of review by contractor or for being incomplete, with appropriate action, coordination, or change.

b. Submittals marked "approved" "approved as submitted" authorize contractor to proceed with work covered.

c. Submittals marked "approved as noted" authorize contractor to proceed with work as noted provided contractor takes no exception to the notations.

d. Submittals marked "revise and resubmit" or "disapproved" indicate submittal is incomplete or does not comply with design concept or requirements of the contract documents and shall be resubmitted with appropriate changes. No work shall proceed for this item until resubmittal is approved.

1.6 FORMAT OF SUBMITTALS

1.6.1 Electronic File Format

Provide submittals in electronic format, with the exception of material samples required within the Number of Samples subpart. Compile the submittal file as a single, complete document, to include the Transmittal Form described within. Name the electronic submittal file specifically according to its contents, coordinate the file naming convention with the Contracting Officer. Electronic files must be of sufficient quality that all information is legible. Electronic format shall be in PDF, unless otherwise specified or directed by the Contracting Officer. Generate PDF files from original documents with bookmarks so that the text included in
the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required. Index and bookmark files exceeding 30 pages to allow efficient navigation of the file. When required, the electronic file must include a valid electronic signature, or scan of a signature.

Email electronic submittal documents fewer than 10MB the following email address: ralvar@cems-aes.com. Provide electronic documents over 10MB on an optical disc.

Provide hard copies of submittals when requested by the Contracting Officer. Up to three additional hard copies of any submittal may be requested at the discretion of the Contracting Officer, at no additional cost to the Government.

1.6.2 Complete Submittal Package

Contractor shall make electronic copies of all submittals, including the approved transmittal sheets, and provide two (2) CD/DVD's containing all submittals for the project.

The CD/DVD's shall be marked "Complete Submittal Package - Contract #______.”

1.6.3 Transmittal Form

Transmit each submittal, except sample installations and sample panels, to office of approving authority. Transmit submittals with transmittal form prescribed by contracting officer and standard for project. The transmittal form shall identify contractor, indicate date of submittal, and include information prescribed by transmittal form and required in paragraph entitled "Identifying Submittals." Process transmittal forms to record actions regarding sample panels and sample installations.

1.6.4 Identifying Submittals

Identify submittals, except sample panel and sample installation, with the following information permanently adhered to or noted on each separate component of each submittal and noted on transmittal form. Mark each copy of each submittal identically, with the following:

a. Project title and location.
b. Construction contract number.
c. Section number of the specification section by which submittal is required.
d. Submittal description (SD) number of each component of submittal.
e. When a resubmission, alphabetic suffix on submittal description, for example, SD-10A, to indicate resubmission.
f. Name, address, and telephone number of subcontractor, supplier, manufacturer and any other second tier contractor associated with submittal.
g. Product identification and location in project.
1.6.5 Format for Product Data

a. Present product data submittals for each section as a complete, bound volume. Include table of contents, listing page and catalog item numbers for product data.

b. Indicate, by prominent notation, each product which is being submitted; indicate specification section number and paragraph number to which it pertains.

c. Supplement product data with material prepared for project to satisfy submittal requirements for which product data does not exist. Identify this material as developed specifically for project.

1.6.6 Format for Shop Drawings

a. Shop drawings shall not be less than 8 1/2 by 11 inches nor more than 30 by 42 inches in PDF format per Electronic File Format requirements.

b. Present 8 1/2 by 11 inches sized shop drawings as part of the bound volume for submittals required by section. Present larger drawings in sets in PDF format per Electronic File Format requirements.

c. Include on each drawing the drawing title, number, date, and revision numbers and dates, in addition to information required in paragraph entitled "Identifying Submittals."

d. Dimension drawings, except diagrams and schematic drawings; prepare drawings demonstrating interface with other trades to scale. Shop drawing dimensions shall be the same unit of measure as indicated on the contract drawings. Identify materials and products for work shown.

1.6.7 Format of Samples

a. Furnish samples in sizes below, unless otherwise specified or unless the manufacturer has prepackaged samples of approximately same size as specified:

(1) Sample of Equipment or Device: Full size.

(2) Sample of Materials Less Than 2 by 3 inches: Built up to 8 1/2 by 11 inches.

(3) Sample of Materials Exceeding 8 1/2 by 11 inches: Cut down to 8 1/2 by 11 inches and adequate to indicate color, texture, and material variations.

(4) Sample of Linear Devices or Materials: 10 inch length or length to be supplied, if less than 10 inches. Examples of linear devices or materials are conduit and handrails.

(5) Sample of Non-Solid Materials: Pint. Examples of non-solid materials are sand and paint.

(6) Color Selection Samples: 2 by 4 inches.
(7) Sample Panel: 4 by 4 feet.

(8) Sample Installation: 100 square feet.

b. Samples Showing Range of Variation: Where variations are unavoidable due to nature of the materials, submit sets of samples of not less than three units showing extremes and middle of range.

c. Reusable Samples: Incorporate returned samples into work only if so specified or indicated. Incorporated samples shall be in undamaged condition at time of use.

d. Recording of Sample Installation: Note and preserve the notation of area constituting sample installation but remove notation at final clean up of project.

e. When color, texture or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.

1.6.8 Format of Administrative Submittals

a. When submittal includes a document which is to be used in project or become part of project record, other than as a submittal, do not apply contractor's approval stamp to document, but to a separate sheet accompanying document.

b. Operation and Maintenance Manual Data: Submit in accordance with Section 01 78 23, "Operation and Maintenance Data." Include components required in that section and the various technical sections.

1.7 QUANTITY OF SUBMITTALS

1.7.1 Number of Copies of Product Data

a. Submit five copies of submittals of product data requiring review and approval only by the Contracting Officer. Submit three copies of submittals of product data for operation and maintenance manuals.

1.7.2 Number of Copies of Shop Drawings

Submit shop drawings in compliance with quantity requirements specified for product data.

1.7.3 Number of Samples

a. Submit two samples, or two sets of samples showing range of variation, of each required item. One approved sample or set of samples will be retained by approving authority and one will be returned to contractor.
b. Submit one sample panel. Include components listed in technical section or as directed.

c. Submit one sample installation, where directed.

d. Submit one sample of non-solid materials.

1.7.4 Number of Copies of Administrative Submittals

a. Unless otherwise specified, submit administrative submittals compliance with quantity requirements specified for product data.

b. Submit administrative submittals required under "SD-19 Operation and Maintenance Manuals" to conform to Section 01 78 23, "Operation and Maintenance Data."

1.8 FORWARDING SUBMITTALS

1.8.1 Samples and Submittals

Except as otherwise noted, submit samples and submittals to:

ROICC/OICC
Jacksonville, North Carolina Area
1005 Michael Road
Camp Lejeune, NC 28542-2521

- OR -

Electronic Submittals to:
ralvar@cems-ae.com

Architectural Samples to:
CEMS
300 North 3rd Street
Suite 110
Wilmington, NC 28401

All other Samples to:
CEMS
320 Midland Parkway
Suite C
Summerville, SC 29485-8113

1.8.1.1 Administrative Submittals

Submit administrative submittals for asbestos/lead removal and environmental protection plan to the Resident Officer in Charge of Construction (ROICC/OICC).

1.8.1.2 Fire Protection and Fire Alarm System Submittals

Submit fire protection and fire alarm system submittals to Resident Officer in Charge of Construction (ROICC/OICC), Jacksonville, North Carolina Area, 1005 Michael Road, Camp Lejeune, NC 28542-2521.
1.8.1.3 TAB Submittals
Submit to ROICC/OICC for all projects.

1.8.1.4 HVAC DDC Submittals
Submit HVAC DDC Submittals, Section 23 09 23.13 to the specified address in paragraph 1.8.1. Concurrently submit shop drawings, Product Data, and Design Data electronically to Resident Officer in Charge of Construction (ROICC/OICC), Jacksonville, North Carolina Area. Electronic copy shall be PDF and should be submitted via email. Only if file size exceeds email limits, submit as a CD or DVD.

1.8.1.5 Telecommunications and Community Antenna Television (CATV) Systems Submittals
All submittals of material, equipment and design must be approved by the Telecommunications Support Division (TSD) prior to installing any telecommunications and CATV wiring and equipment.

1.8.2 Shop Drawings, Product Data, and O&M Data
As soon as practicable after award of the contract, and before procurement or fabrication, submit shop drawings, product data and O&M Data required in the technical sections of this specification.

PART 2 PRODUCTS
Not used.

PART 3 EXECUTION
Not used.

-- End of Section --
SUBMITTAL REGISTER

CONTRACTOR

N40085-17-B-0015

Title and Location

Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>TRANS</th>
<th>SPEC</th>
<th>ACTIVITY</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAIL TO CONR</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 20 00</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Schedule of prices</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 30 00</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>List of contact personnel</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 31 50</td>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>Interim DD-1354, Transfer & Acceptance of Military Real Property</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 32 16</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Construction schedule</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 33 00</td>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>Equipment delivery schedule</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 35 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Submittal register</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 36 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Accident Prevention Plan (APP)</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 37 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Activity Hazard Analysis (AHA)</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 38 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Crane Critical Lift Plan</td>
<td>1.9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 39 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Crane Work Plan</td>
<td>1.9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 40 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Crane Operators</td>
<td>1.7.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 41 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 42 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Reports</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 43 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Accident Reports</td>
<td>1.14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 44 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Monthly Exposure Reports</td>
<td>1.14.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 45 29</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Regulatory Citations and Violations</td>
<td>1.14.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBMITTAL FORM Jan 96

PREVIOUS EDITION IS OBSOLETE

PAGE 1 OF 44 PAGES
SUBMITTAL REGISTER

CONTRACTOR

CONTRACT NO.

N40085-17-B-0015

TITLE AND LOCATION

Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>TRANSMISSION</th>
<th>SPECIFICATION</th>
<th>DESCRIPTION</th>
<th>GOVERNMENT CLASSIFICATION</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAIL TO CONTR/</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
</tr>
<tr>
<td>01 35 29</td>
<td>Crane Reports</td>
<td>1.14.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confined Space Entry Permit</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certificate of Compliance</td>
<td>1.14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Third Party Certification of Barge-Mounted Mobile Cranes</td>
<td>1.14.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 45 10</td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QC PLAN</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 50 00</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backflow preventers</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backflow Preventer Tests</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backflow Tester Certifications</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backflow Preventers Certificate</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 57 19</td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid waste disposal permit</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disposal permit for hazardous waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental training documentation</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permit to transport hazardous waste</td>
<td>1.4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazardous waste certification</td>
<td>1.4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 60 00</td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>ACTIVITY</td>
<td>SPEC NO OCT</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>CONTR SCHEDULE DATES</td>
<td>CONTR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>MAIL TO CONTR</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>01 60 00</td>
<td>Certificate of North Carolina</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Licensed Applicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Pesticide/Herbicide</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management Record Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment/product warranty list</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>As-built drawings</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Record of materials</td>
<td>1.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximo requirements</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete Submittal Package</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment/product warranty tag</td>
<td>1.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 23</td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O&M Database</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training Plan</td>
<td>3.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training Outline</td>
<td>3.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training Content</td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training Video Recording</td>
<td>3.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Validation of Training Completion</td>
<td>3.1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 30</td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIS Data Deliverables</td>
<td>1.3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 91 13</td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>SPEC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>SUBMIT</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>CODE</td>
<td>DATE OF ACTION</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 91 13</td>
<td></td>
<td>Completed Pre-Functional Performance Test Checklists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training Attendance Roster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training Questionnaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipment Start up</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DALT</td>
<td>1.6.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAB Deficiency Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAB Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-PVT</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 41 00</td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demolition Plan</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing Conditions</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notification</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Receipts</td>
<td>3.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 82 16</td>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air sampling results</td>
<td>1.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure differential recordings</td>
<td>1.5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for local exhaust system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clearance sampling</td>
<td>3.3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asbestos hazard abatement plan</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>ACTIVITY</td>
<td>SPEC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
<td>DATE RWD TO APPR AUTH</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>02 82 16</td>
<td>Asbestos Waste Shipment</td>
<td>1.5.4</td>
<td>Record N.C. (DHHS-HHCU) Form</td>
<td>3787</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 83 13.00 20</td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occupational and Environmental</td>
<td>1.5.2.3</td>
<td>Assessment Data Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead Compliance Plan</td>
<td>1.5.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competent Person</td>
<td>1.5.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Training Certification</td>
<td>1.5.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lead waste management plan</td>
<td>1.5.2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>written evidence</td>
<td>3.5.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Examinations</td>
<td>1.5.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sampling results</td>
<td>1.5.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occupational and Environmental</td>
<td>1.5.2.3</td>
<td>Assessment Data Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testing laboratory</td>
<td>1.5.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Third party consultant</td>
<td>1.5.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interior/Exterior Repairs at BEQ HP145

SD-11 Closeout Submittals

<table>
<thead>
<tr>
<th>Activity</th>
<th>Specification</th>
<th>Description</th>
<th>Approval Needed By</th>
<th>Material Needed By</th>
<th>Code</th>
<th>Date of Action</th>
<th>Date FWD to Approving Authority</th>
<th>Date RCD to Other Reviewer</th>
<th>Date RCD to Other Reviewer</th>
<th>Date RCD from Oth Reviewer</th>
<th>Date RCD from Approving Authority</th>
<th>Mailed to Contractor</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 83 13.00 20</td>
<td></td>
<td>Clearance Certification</td>
<td></td>
<td></td>
<td>3.5.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hazardous waste manifest</td>
<td></td>
<td></td>
<td>3.5.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>turn-in documents or weight</td>
<td></td>
<td></td>
<td>3.5.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 84 16</td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualifications of CIH</td>
<td></td>
<td></td>
<td>1.8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training Certification</td>
<td></td>
<td></td>
<td>1.8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB and Lamp Removal Work Plan</td>
<td></td>
<td></td>
<td>1.8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB and Lamp Disposal Plan</td>
<td></td>
<td></td>
<td>1.8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transporter certification</td>
<td></td>
<td></td>
<td>3.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Certification of Decontamination</td>
<td></td>
<td></td>
<td>3.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Certificate of Disposal and/or recycling</td>
<td></td>
<td></td>
<td>3.5.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD Form 1348-1</td>
<td></td>
<td></td>
<td>3.5.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testing results</td>
<td></td>
<td></td>
<td>3.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 01 30.71</td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epoxy Resin Binder</td>
<td></td>
<td></td>
<td>2.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epoxy Grout</td>
<td></td>
<td></td>
<td>2.1.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epoxy</td>
<td></td>
<td></td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 20 00</td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hot Weather Procedures</td>
<td></td>
<td></td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cold Weather Procedures</td>
<td></td>
<td></td>
<td>1.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMITTED SPEC</td>
<td>DESCRIPTION</td>
<td>PM #</td>
<td>CLASSIFICATION</td>
<td>MATERIAL NEEDED BY</td>
<td>CODE</td>
<td>DATE OF ACTION</td>
<td>ACTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 20 00</td>
<td>Clay or Shale Brick</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cement</td>
<td>2.2.3.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cementitious Materials</td>
<td>2.4.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mock-Up Panel</td>
<td>1.3.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clay or Shale Brick</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete Masonry Units (CMU)</td>
<td>2.2.3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anchors, Ties, and Bar</td>
<td>2.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positioners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clay Masonry Expansion-Joint</td>
<td>2.6.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-05 Design Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masonry Compressive Strength</td>
<td>2.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efflorescence Test</td>
<td>2.2.2.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Testing of Mortar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Testing of Grout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clay or Shale Brick</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete Masonry Units (CMU)</td>
<td>2.2.3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cementitious Materials</td>
<td>2.4.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admixtures for Masonry Mortar</td>
<td>2.4.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Admixtures for Grout</td>
<td>2.4.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anchors, Ties, and Bar</td>
<td>2.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positioners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joint Reinforcement</td>
<td>2.6.3</td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

CONTRACT NO.
N40085-17-B-0015

TITLE AND LOCATION
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>ITEM SUBMITTED</th>
<th>MATERIAL NEEDED</th>
<th>APPROVAL NEEDED</th>
<th>DATE OF ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>DATE FWD TO OTHER REVIEWER</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE RCD TO CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admixtures for Masonry Mortar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admixtures for Grout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angles and Plates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Hatch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Doors and Panels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Hatch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabrication Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum Railings and Handrails</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchorage and Fastening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welder Qualification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detail Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificates of grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificates of compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>SPEC</td>
<td>SECTION</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02</td>
<td>Shop Drawings</td>
<td>Shop Drawings</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03</td>
<td>Product Data</td>
<td>Wood Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood Finishes</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Finish Schedule</td>
<td>2.11.7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-04</td>
<td>Samples</td>
<td>Plastic Laminates</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cabinet Hardware</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07</td>
<td>Certificates</td>
<td>Quality Assurance</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminate Clad Casework</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminate Clad Casework</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02</td>
<td>Shop Drawings</td>
<td>Detail Drawings</td>
<td>1.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03</td>
<td>Product Data</td>
<td>Solid Polymer Material</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualifications</td>
<td>Solid Polymer Material</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabrications</td>
<td>Solid Polymer Material</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-04</td>
<td>Samples</td>
<td>Counter and Vanity Tops</td>
<td>2.3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material</td>
<td>Counter and Vanity Tops</td>
<td>2.3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-06</td>
<td>Test Reports</td>
<td>Solid Polymer Material</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

TITLE AND LOCATION
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>TRANS</th>
<th>ACTIVITY</th>
<th>SPEC</th>
<th>SECTION</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>ITEM SUBMITTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
|------------|----------|------|---------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | 06 61 16 | SD-07 Certificates | Fabrications | 2.3 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | 07 11 13 | SD-07 Certificates | Qualifications | 1.4.1 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | 07 21 13 | SD-03 Product Data | Clean-up | 3.2 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | 07 11 13 | SD-07 Certificates | Materials | 1.3 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | 07 21 13 | SD-03 Product Data | Manufacturer's Standard Details | 1.3 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Block or Board Insulation | 2.1 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Vapor Retarder | 2.2 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Pressure Sensitive Tape | 2.3 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Accessories | 2.4 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | SD-07 Certificates | Block or Board Insulation | 2.1 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Vapor Retarder | 2.2 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Special Warranties | 1.7 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Special Warranties | 1.7 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | SD-08 Manufacturer's Instructions | Block or Board Insulation | 2.1 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | Adhesive | 2.4.1 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | 07 21 16 | SD-03 Product Data | Blanket Insulation | 2.1 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| | | SD-08 Manufacturer's Instructions | Insulation | 3.3.1 | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |</p>
<table>
<thead>
<tr>
<th>TRANS ACTIVITY</th>
<th>SPEC No</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBMITTAL REGISTER

CONTRACTOR

CONTRACT NO.

N40085-17-B-0015

TITLE AND LOCATION

Interior/Exterior Repairs at BEQ HP145

PREVIOUS EDITION IS OBSOLETE

PAGE 11 OF 44 PAGES
<table>
<thead>
<tr>
<th>TRANSMISSION LOCATION</th>
<th>DESCRIPTION</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAIL TO CONTR/ DATE RCD</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 31 13</td>
<td>Manufacturer's Warranty</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contractor's Warranty</td>
<td>1.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 60 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exposed Sheet Metal</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gutters</td>
<td>3.1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downspouts</td>
<td>3.1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expansion Joints</td>
<td>3.1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base Flashing</td>
<td>3.1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flashing at Roof Penetrations and Equipment Supports</td>
<td>3.1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drip Edges</td>
<td>3.1.10</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td>1.4.2</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Samples</td>
<td>1.4.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instructions for Installation</td>
<td>1.4.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality Control Plan</td>
<td>3.5</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleaning and Maintenance</td>
<td>1.4.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 61 00</td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exposed Sheet Metal Items</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fasteners</td>
<td>2.1.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum Alloy Sheet and Plate</td>
<td>2.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish</td>
<td>2.1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 84 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firestopping System</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMISSION SPECIFICATION</td>
<td>DESCRIPTION</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>CONTRACTOR ACTION</td>
<td>DATE OF ACTION</td>
<td>DATE FWD TO APPR AUTH</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 84 00</td>
<td>SD-03 Product Data</td>
<td>Firestopping Materials</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspector Qualifications</td>
<td></td>
<td>1.5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firestopping Materials</td>
<td></td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installer Qualifications</td>
<td></td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 92 00</td>
<td>SD-03 Product Data</td>
<td>Sealants</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primers</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bond breakers</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backstops</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Sealant</td>
<td>3.3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 11 13</td>
<td>SD-02 Shop Drawings</td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frames</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frames</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accessories</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Doors</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frames</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accessories</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 33 23</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Specification</td>
<td>Description</td>
<td>Item Submitted</td>
<td>Action</td>
<td>Approval Needed By</td>
<td>Material Needed By</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>--</td>
<td>----------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08 33 23</td>
<td>Overhead Coiling Doors</td>
<td>2.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manual Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bottom Bars</td>
<td>2.2.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guides</td>
<td>2.1.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mounting Brackets</td>
<td>2.2.3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overhead Drum</td>
<td>2.2.1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hood</td>
<td>3.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Installation Drawings</td>
<td>2.1.1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overhead Coiling Doors</td>
<td>2.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardware</td>
<td>2.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manual Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-05 Design Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overhead Coiling Doors</td>
<td>2.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hardware</td>
<td>2.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manual Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Operation and Maintenance</td>
<td>3.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manuals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Materials</td>
<td>3.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Procedures</td>
<td>3.3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>SPECIFIC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>CONTRACTOR SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
</tr>
<tr>
<td>08 33 23</td>
<td></td>
<td>Manufacture's Brochures</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parts Lists</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warranty</td>
<td>3.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 58 01</td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>windows</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windows</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weatherstripping</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glass</td>
<td>2.1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fasteners</td>
<td>2.2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accessories</td>
<td>2.1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardware</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blast Resistance Certification</td>
<td>1.3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-05 Design Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fastener Design Calculations</td>
<td>2.2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 71 00</td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardware schedule</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keying system</td>
<td>2.3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardware items</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

Title and Location:
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>TRANSMITTED SPECIFICATION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVERNMENT CLASSIFICATION</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAILING AUTHORITY</th>
<th>MAIL DATE TO CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 71 00</td>
<td>Hardware Schedule</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key Bitting</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 81 00</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulating Glass</td>
<td>1.6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glazing Accessories</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulating Glass</td>
<td>1.6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glazing Compound</td>
<td>2.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tape</td>
<td>2.4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sealant</td>
<td>2.4.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insulating Glass</td>
<td>1.6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting and Sealing Materials</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass Setting</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 91 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall louvers</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall louvers</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metal Wall Louvers</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall louvers</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall louvers</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 22 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metal support systems</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>ACTIVITY</td>
<td>SPEC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 29 00</td>
<td>SD-03 Product Data</td>
<td>Moisture Resistant Impact</td>
<td>2.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resistant Gypsum Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accessories</td>
<td>2.1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Joint Treatment Materials</td>
<td>2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asbestos Free Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 30 10</td>
<td>SD-03 Product Data</td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Setting-Bed</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mortar, Grout, and Adhesive</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reinforcing Wire Fabric</td>
<td>2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sealants</td>
<td>2.4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grout</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thresholds</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Membrane Waterproofing</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maintenance Instructions</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sealants</td>
<td>2.4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 51 00</td>
<td>SD-02 Shop Drawings</td>
<td>Approved Detail Drawings</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other Submittals Requirements</td>
<td>1.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>N40085-17-B-0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE AND LOCATION</td>
<td>Interior/Exterior Repairs at BEQ HP145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
<th>SUBMITTAL REGISTER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SPECIFICATION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAIL TO CONTR/REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 51 00</td>
<td>Acoustical Units</td>
<td>Acoustical Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td>Acoustical Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acoustic Ceiling Tiles</td>
<td>Acoustic Ceiling Tiles</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td>Other Submittals Requirements</td>
<td>1.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceiling Attenuation Class and Test</td>
<td>Ceiling Attenuation Class and Test</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Other Submittals Requirements</td>
<td>1.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acoustical Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acoustic Ceiling Tiles</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 65 00</td>
<td>SD-02 Shop Drawings</td>
<td>Resilient Flooring and Accessories</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resilient Wall Base</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Resilient Flooring and Accessories</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adhesives</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>Resilient Flooring and Accessories</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>CONTRACT NO.</th>
<th>N40085-17-B-0015</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SPECIFICATION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>APPROVAL NEEDED BY</th>
<th>MATERIAL NEEDED BY</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAILLED TO CONTR/</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>09 65 00</td>
<td>SD-10 Operation and Maintenance</td>
<td>Data</td>
<td>Resilient Flooring and Accessories</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 67 23.13</td>
<td>SD-02 Shop Drawings</td>
<td>Installation Drawings</td>
<td>Resilient Wall Base</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Manufacturer's Catalog Data</td>
<td></td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td>Hardboard Mounted Epoxy Flooring</td>
<td></td>
<td>1.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floor Topping</td>
<td></td>
<td>3.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 90 00</td>
<td>SD-03 Product Data</td>
<td>Coating</td>
<td>Manufacturer's Technical Data Sheets</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:*
- *[a]*
- *[b]*
- *[c]*
- *[d]*
- *[e]*
- *[f]*
- *[g]*
- *[h]*
- *[i]*
- *[j]*
- *[k]*
- *[l]*
- *[m]*
- *[n]*
- *[o]*
- *[p]*
- *[q]*
- *[r]*
<table>
<thead>
<tr>
<th>TRANSMISSION</th>
<th>SPECIFICATION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 90 00</td>
<td></td>
<td>Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applicator's qualifications</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td>3.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application instructions</td>
<td>3.6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixing</td>
<td>3.6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manufacturer's Material Safety</td>
<td>1.7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Sheets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 14 00.20</td>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>1.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detail Drawings</td>
<td>1.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schedule</td>
<td>1.3.2</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warranty</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interior Signage</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approved Manufacturer's</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 28 13</td>
<td></td>
<td>SD-03 Product Data</td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>SPEC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| Activity: Finishes | 2.1.2 | 10 28 13
SD-04 Samples | Accessory Items | 2.2 | SD-07 Certificates | Accessory Items | 2.2 | SD-10 Operation and Maintenance | Data | Electric Hand Dryer | 2.2,12 | 10 52 20 | SD-03 Product Data | Fire extinguishers | 2.1 | Fire extinguisher cabinets | 2.2 | 12 21 00 | SD-02 Shop Drawings | Installation | 3.3 | SD-03 Product Data | Window Blinds | 2.1 | Installation | SD-04 Samples | Window Blinds | 2.1 | SD-06 Test Reports | Window Blinds | 2.1 | SD-08 Manufacturer’s Instructions | Window Blinds | 2.1 | SD-10 Operation and Maintenance | Data |
<table>
<thead>
<tr>
<th>Activity</th>
<th>Specification</th>
<th>Description</th>
<th>Submittal Date</th>
<th>Approval Needed By</th>
<th>Material Needed By</th>
<th>Action Code</th>
<th>Approval Date</th>
<th>Date Fwd to Appr Auth</th>
<th>Date Rcd From Contr</th>
<th>Date Rcd From Other Reviewer</th>
<th>Date Rcd From Other Reviewer</th>
<th>Action Code</th>
<th>Date of Action</th>
<th>Mail To Contr</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window Blinds</td>
<td>2.1</td>
<td>SD-02 Shop Drawings</td>
<td>12 21 00</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Shop Drawings</td>
<td>1.5, 2</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Pipe</td>
<td>2.2.1</td>
<td>SD-03 Product Data</td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Pipe</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Fittings</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Alarm valves</td>
<td>2.2.8</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Valves</td>
<td>2.2.6</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Sprinklers</td>
<td>2.2.5</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Pipe hangers and supports</td>
<td>2.2.7</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Sprinkler Alarm Switches</td>
<td>2.3.1</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Fire department connections</td>
<td>2.2.9</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Mechanical couplings</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Backflow Prevention Assembly</td>
<td>2.2.10</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Seismic Bracing</td>
<td>2.2.7</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>SD-05 Design Data</td>
<td>1.3</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Calculations</td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>Request to schedule Preliminary Tests</td>
<td>3.6</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Preliminary Test Report</td>
<td>3.6</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Request to schedule Final Acceptance Test</td>
<td>3.7</td>
<td></td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Final Acceptance Test Report</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td>TRANSMITTING ACTIVITY SPECIFICATION</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>CONTRACTOR SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)</td>
<td></td>
</tr>
<tr>
<td>21 13 13.00 20</td>
<td>Inspection by Fire Protection</td>
<td>3.1 G</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Fire Protection Engineer</td>
<td>1.5.1 G</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Sprinkler System Installer</td>
<td>1.5.2 G</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>Operating and Maintenance Instructions</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>SD-11 Closeout Submittals As-built drawings</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>On-site training</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>22 00 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>Plumbing System</td>
<td>3.8.1</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>SD-03 Product Data Fixtures</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>Flush valve water closets</td>
<td>2.4.2</td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td>Wall hung lavatories</td>
<td>2.4.3</td>
<td></td>
</tr>
<tr>
<td>(k)</td>
<td>Countertop lavatories</td>
<td>2.4.4</td>
<td></td>
</tr>
<tr>
<td>(l)</td>
<td>Service sinks</td>
<td>2.4.5</td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>Drinking-water coolers</td>
<td>2.4.6</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>WATER HEATERS</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>(o)</td>
<td>HOT-WATER EXPANSION TANKS</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>(p)</td>
<td>Pumps</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td>Thermostatic Mixing Valve</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>(r)</td>
<td>Thermostatic Mixing Valve</td>
<td>3.1.2</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>TRANSMISSION SPEC NO.</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>APPRAVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM APPR AUTH</td>
<td>DATE OF ACTION</td>
<td>MILED TO CONTR/</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 00 00</td>
<td>Backflow prevention assemblies</td>
<td>3.8.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shower Faucets</td>
<td>2.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding</td>
<td>1.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOMESTIC WATER SERVICE</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumbing System</td>
<td>3.8.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tests, Flushing and Disinfection</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test of Backflow Prevention</td>
<td>3.8.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assemblies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prefunctional Construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Checklists</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials and Equipment</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolts</td>
<td>2.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-09 Manufacturer’s Field Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumbing System</td>
<td>3.8.1</td>
<td></td>
</tr>
<tr>
<td>23 03 00.00 20</td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>TRANSMITTER SPECIFIC N-O-T</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>ACTION</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>MAILING DATE TO CONTRACTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23 03 00.00.20</td>
<td>Field Reports</td>
<td></td>
</tr>
<tr>
<td>23 05 93</td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Records of Existing Conditions</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Records of Existing Conditions</td>
<td>1.3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Firm:</td>
<td>1.5.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB team assistants:</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB team engineer</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Specialist</td>
<td>1.5.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB team field leader</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Schematic Drawings and Report Forms</td>
<td>1.3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment and Performance</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Related HVAC Submittals</td>
<td>1.5.4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Procedures</td>
<td>1.5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td>1.5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systems Readiness Check</td>
<td>1.3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Execution</td>
<td>1.5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Verification</td>
<td>1.5.5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALT and TAB Work Execution</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALT and TAB Procedures</td>
<td>3.7</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)
<table>
<thead>
<tr>
<th>CONTRACT NO.</th>
<th>N40085-17-B-0015</th>
</tr>
</thead>
</table>

SUBMITTAL REGISTER

Title and Location: Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
<th>Item Submitted</th>
<th>Approval Needed By</th>
<th>Material Needed By</th>
<th>Date of Action</th>
<th>Date FWd To Appr Auth</th>
<th>Code</th>
<th>Date Rcd From Contr</th>
<th>Code</th>
<th>Date Rcd To Other Reviewer</th>
<th>Code</th>
<th>Date Rcd From Oth Reviewer</th>
<th>Code</th>
<th>Date Rcd Frm Appr Auth</th>
<th>Code</th>
<th>Mailed To Contr.</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
<td>(n)</td>
<td>(o)</td>
<td>(p)</td>
<td>(q)</td>
<td>(r)</td>
<td></td>
</tr>
<tr>
<td>23 05 93</td>
<td>Design review report</td>
<td>1.3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design review report</td>
<td>1.6.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Final DALT report</td>
<td>1.5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Final DALT report</td>
<td>1.6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Final DALT report</td>
<td>3.3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final DALT report</td>
<td>1.5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final DALT report</td>
<td>1.6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final DALT report</td>
<td>3.3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB report for Season 1</td>
<td>1.5.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB report for Season 1</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB report for Season 2</td>
<td>1.5.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB report for Season 2</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Independent TAB agency and personnel qualifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advance notice of Pre-Final</td>
<td>3.3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DALT field work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed Pre-Final DALT Work</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Checklist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Notice for Season 1</td>
<td>1.6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Field Work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed Season 1 Pre-TAB</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work Checklist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Notice for Season 2</td>
<td>1.6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Field Work</td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

TITLE AND LOCATION
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>N40085-17-B-0015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBMITTAL NUMBER</th>
<th>CONTRACTOR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>N40085-17-B-0015</td>
<td>Interior/Exterior Repairs at BEQ HP145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>CODE</th>
<th>SPECIFICATION</th>
<th>SHEET</th>
<th>SECTION</th>
<th>ITEM SUBMITTED</th>
<th>SUBMIT</th>
<th>APPROVAL</th>
<th>MATERIAL</th>
<th>CODE</th>
<th>DATE OF ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD FROM OTH REVIEWER</th>
<th>DATE RCD FROM OTH REVIEWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 05 93</td>
<td>Completed Season 2 Pre-TAB Work Checklist</td>
<td>3.7</td>
<td>1.5.4.1</td>
<td>P A P A R A G L A N G E R T E A T E O V P O W H N R</td>
<td></td>
</tr>
<tr>
<td>23 07 00</td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td>23 09 23.13</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>TRANSMITTAL NUMBER</td>
<td>ACTIVITY</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>GOVT CLASSIFICATION</td>
<td>ACTION CODE</td>
<td>DATE OF ACTION</td>
<td>DATE FWD TO APPR AUTH</td>
<td>DATE RCD TO OTHER REVIEWER</td>
<td>DATE FWD TO OTHER REVIEWER</td>
<td>DATE RCD TO APPR AUTH</td>
<td>Mailed to Contr/Date Rcd From Other Reviewer</td>
<td>Date Rcd From Contr/Date Fwd To Contr</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 09 23.13</td>
<td>Control System Drawings</td>
<td>Title</td>
<td>1.4.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sheet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>List of I/O Points</td>
<td></td>
<td>1.4.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control System Components List</td>
<td></td>
<td>1.4.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control System Schematics</td>
<td></td>
<td>1.4.1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HVAC Equipment Control Ladder</td>
<td></td>
<td>1.4.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagrams</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Component Wiring Diagrams</td>
<td></td>
<td>1.4.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal Strip Diagrams</td>
<td></td>
<td>1.4.1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACnet Communication</td>
<td></td>
<td>1.4.1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architecture Schematic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct Digital Controllers</td>
<td></td>
<td>2.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACnet Gateways</td>
<td></td>
<td>2.1.3.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notebook Computer Software</td>
<td></td>
<td>2.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notebook Computer</td>
<td></td>
<td>2.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensors and Input Hardware</td>
<td></td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Hardware</td>
<td></td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surge and Transient Protection</td>
<td></td>
<td>2.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duct smoke detectors</td>
<td></td>
<td>2.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variable Frequency (Motor)</td>
<td></td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-05 Design Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance Verification Testing</td>
<td></td>
<td>3.5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-PVT Checklist</td>
<td></td>
<td>3.5.1</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY NO.</td>
<td>SPEC DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>APPROVAL NEEDED BY</td>
<td>CONTRACTOR SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>DATE RCD TO APPR AUTH</td>
<td>DATE RC'D TO OTHER REVIEWER</td>
<td>DATE RCD TO OTHER REVIEWER</td>
<td>DATE RCD FROM OTH REVIEWER</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>23 09 23.13</td>
<td>Pre-PVT Checklist</td>
<td>3.5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance Verification Testing</td>
<td>3.5.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus Waveform Report</td>
<td>3.5.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contractor's Qualifications</td>
<td>1.6.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-09 Manufacturer's Field Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACnet Direct Digital Control Systems</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controls System Operators Manuals</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VFD Service Manuals</td>
<td>2.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals Training Documentation</td>
<td>3.6.1</td>
<td></td>
</tr>
<tr>
<td>23 52 43.00 20</td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONDENSING BOILERS</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiler trim and control equipment</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burners and control equipment</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operational tests</td>
<td>3.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR</td>
<td>CONTRACTOR SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>SUBMITTAL REGISTER</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSMITTER SPEC SECTION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD FROM OTH REVIEWER</th>
<th>DATE OF ACTION</th>
<th>DATE RCD</th>
<th>Mailed tocontr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2352 43.00 20</td>
<td>CONDENSING BOILERS</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burnsers and control equipment</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiler trim and control equipment</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONDENSING BOILERS</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONDENSING BOILERS</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONDENSING BOILERS</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2373 33</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature control systems</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment layout drawings</td>
<td>1.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dehumidifer Units</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>air-handling Units</td>
<td>2.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air-cooled water chillers</td>
<td>2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Series fan powered variable air volume (VAV) terminals</td>
<td>2.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit heaters</td>
<td>2.1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pumps</td>
<td>2.1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exhaust fans</td>
<td>2.1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Recovery Ventilator</td>
<td>2.1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire dampers</td>
<td>2.3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expansion and Buffer Tanks</td>
<td>2.5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dirt-Air separators</td>
<td>2.5.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>TRANS</th>
<th>SPEC</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT CLASS</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAILED TO CONTR/ DATE RCD FROM APPR AUTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
</tr>
<tr>
<td>23</td>
<td>73</td>
<td>33</td>
<td>Heat Tape</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pipe hangers and supports</td>
<td>2.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flexible pipe connectors</td>
<td>2.5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dampers</td>
<td>2.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diffusers, registers, and grilles</td>
<td>2.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outside air intake louvers</td>
<td>2.3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duct Hot Water Coils</td>
<td>2.3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flexible round ducts</td>
<td>2.3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valves</td>
<td>2.4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pipe and fittings</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydraulic Separator</td>
<td>2.5.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>air-handling units</td>
<td>2.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air-cooled water chillers</td>
<td>2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Series fan powered variable air volume (VAV) terminals</td>
<td>2.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Certification of welders’ qualifications</td>
<td>1.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-08 Manufacturer’s Instructions Installation manual</td>
<td>1.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>air-handling units</td>
<td>2.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air-cooled water chillers</td>
<td>2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Series fan powered variable air volume (VAV) terminals
2.1.4

Unit heaters
2.1.5

Pumps
2.1.6

Exhaust fans
2.1.7

Fire dampers
2.3.7

Pad-mounted transformer drawings
1.4.1

Air-cooled water chillers
1.3.5

Air filter inventory
1.4.1

Ground rods
2.2

Grounding and bonding connectors
2.2

Grounding and bonding conductors
2.3

SD-02 Shop Drawings
26 06 00

Layout and location drawings
1.2.1

SD-03 Product Data
2.1

Approval needed by

Material needed by

Date of action

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code

Date of other review

Code

Date of action

Code
SUBMITTAL REGISTER

Title and Location: Interior/Exterior Repairs at BEQ HP145

<p>| Activity Specification | Description | Material Needed By | Approval Needed By | Date of Action | Code | Code | Date FWD to Other Reviewer | Code | Code | Date of Action | Code | Code | Date FWD to Appr Auth | Code | Code | Date RCD From Other Reviewer | Code | Code | Date RCD From Contr | Code | Mailed toContr/Date Rcd | Date Rcd From Appr Auth | Date Rcd From Contr/Date Rcd From Appr Auth |
|------------------------|-------------|--------------------|-------------------|------------------|------|------|-----------------------------|------|------|-----------------|------|------|-----------------------------|------|------|--------------------------|------|------|-------------------------|------|------|------------------------|
| (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | (k) | (l) | (m) | (n) | (o) | (p) | (q) | (r) |
| 26 12 19.10 | Acceptance checks and tests | 3.6.1 | | | | | | | | | | | | | | | |
| SD-07 Certificates | Transformer losses | 1.4.2 | | | | | | | | | | | | | | | |
| Transformer's Field | design tests | 2.6.2 | | | | | | | | | | | | | | | |
| Reports | routine and other tests | 2.6.3 | | | | | | | | | | | | | | | |
| SD-10 Operation and Maintenance | Transformer(s) | 1.5.1 | | | | | | | | | | | | | | | |
| Data | SD-11 Closeout Submittals | | | | | | | | | | | | | | | | |
| Transformer test schedule | | 2.6.1 | | | | | | | | | | | | | | | |
| 26 20 00 | SD-02 Shop Drawings | | | | | | | | | | | | | | | | |
| Panelboards | Transformers | 2.12 | | | | | | | | | | | | | | | |
| SD-03 Product Data | Receptacles | 2.8 | | | | | | | | | | | | | | | |
| Circuit breakers | Switches | 2.9.2 | | | | | | | | | | | | | | | |
| Transformers | Transmitters | 2.12 | | | | | | | | | | | | | | | |
| Enclosed circuit breakers | | 2.10 | | | | | | | | | | | | | | | |
| Motor controllers | Motor controllers | 2.13 | | | | | | | | | | | | | | | |
| Manual motor starters | | 2.14 | | | | | | | | | | | | | | | |
| SD-06 Test Reports | 600-volt wiring test | 3.2.2 | | | | | | | | | | | | | | | |
| Grounding system test | 3.2.5 | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>CONTRACTOR: INTERIOR/EXTERIOR REPAIRS AT BEQ HP145</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE WFD TO APPR AUTH/DATE RCD DATE RCD FROM OTH REVIEWER DATE RCD FROM CONTR</td>
</tr>
<tr>
<td>ACTION CODE ACTION CODE ACTION CODE</td>
</tr>
<tr>
<td>SD-07 Certificates</td>
</tr>
<tr>
<td>Fuses</td>
</tr>
<tr>
<td>SD-09 Manufacturer's Field Reports</td>
</tr>
<tr>
<td>Transformer factory tests 2.18.1</td>
</tr>
<tr>
<td>SD-10 Operation and Maintenance Data</td>
</tr>
<tr>
<td>Electrical Systems 1.5.1</td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
</tr>
<tr>
<td>Schematic diagrams 1.5.1</td>
</tr>
<tr>
<td>Interconnecting diagrams 1.5.2</td>
</tr>
<tr>
<td>Installation drawings 1.5.3</td>
</tr>
<tr>
<td>SD-03 Product Data</td>
</tr>
<tr>
<td>Variable frequency drives 2.1</td>
</tr>
<tr>
<td>Wires and cables 2.3</td>
</tr>
<tr>
<td>Equipment schedule 1.5.4</td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
</tr>
<tr>
<td>VFD Test 3.2.1</td>
</tr>
<tr>
<td>Performance Verification Tests 3.2.2</td>
</tr>
<tr>
<td>Endurance Test 3.2.3</td>
</tr>
<tr>
<td>SD-08 Manufacturer's Instructions Installation instructions 1.5.5</td>
</tr>
<tr>
<td>SD-09 Manufacturer's Field Reports</td>
</tr>
<tr>
<td>TRANSMISSION</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>26 29 23</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>26 51 00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>27 10 00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CONTRACTOR</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>CONTRACTOR:</td>
</tr>
<tr>
<td>SCHEDULE DATES</td>
</tr>
<tr>
<td>G O V T</td>
</tr>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>27 10 00</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

27 54 00.00 20 SD-02 Shop Drawings
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSMISSION</td>
<td>SD-03 Product Data</td>
</tr>
<tr>
<td></td>
<td>Attenuators</td>
</tr>
<tr>
<td></td>
<td>Amplifiers</td>
</tr>
<tr>
<td></td>
<td>Cables</td>
</tr>
<tr>
<td></td>
<td>Terminators</td>
</tr>
<tr>
<td></td>
<td>Splitters/combiners</td>
</tr>
<tr>
<td></td>
<td>Line Taps</td>
</tr>
<tr>
<td></td>
<td>Outlets</td>
</tr>
<tr>
<td></td>
<td>Connectors</td>
</tr>
<tr>
<td></td>
<td>Tilt compensator</td>
</tr>
<tr>
<td></td>
<td>Grounding block</td>
</tr>
<tr>
<td></td>
<td>SD-05 Design Data</td>
</tr>
<tr>
<td></td>
<td>CATV System Loss Calculations</td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
</tr>
<tr>
<td></td>
<td>Operational test plan</td>
</tr>
<tr>
<td></td>
<td>Operational test procedures</td>
</tr>
<tr>
<td></td>
<td>System pretest</td>
</tr>
<tr>
<td></td>
<td>Acceptance tests</td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
</tr>
<tr>
<td></td>
<td>Connector Installation</td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
</tr>
<tr>
<td></td>
<td>Nameplates</td>
</tr>
<tr>
<td></td>
<td>Wiring Diagrams</td>
</tr>
</tbody>
</table>

Remarks

- (a) wiring diagrams and installation details
- (b) system components
- (c) 1.4.4
- (d) 2.2.2
- (e) 2.3.1
- (f) 2.3.2
- (g) 2.3.3
- (h) 2.3.4
- (i) 2.3.5
- (j) 2.3.6
- (k) 2.3.7
- (l) 2.3.8
- (m) 2.4.1
- (n) 1.6.2
- (o) 1.6.3
- (p) 1.6.4
- (q) 3.2.1
- (r) 3.2.2
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SPEC</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>CONTRACTOR: SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAILING TO REVIEWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 31 76</td>
<td>SD-03</td>
<td>System Layout</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Operation</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notification Appliances</td>
<td>2.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplifiers</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Data And Computer</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire Alarm Control Unit and Mass</td>
<td>2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notification Control Unit (FMCP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminal Cabinets</td>
<td>3.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual Stations</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmitters</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Batteries</td>
<td>2.12.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Battery Chargers</td>
<td>2.12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smoke Sensors</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notification Appliances</td>
<td>2.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Addressable Interface Devices</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplifiers</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digitalized Voice Generators</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital Alarm Communicator</td>
<td>2.20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmitter (DACT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-05 Design Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Battery Power</td>
<td>2.12.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Battery Chargers</td>
<td>2.12.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field Quality Control</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMISSION SPEC</td>
<td>DESCRIPTION</td>
<td>ACTION</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>28 31 76</td>
<td>Testing Procedures</td>
<td>3.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoke Sensor Testing</td>
<td>2.10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installer</td>
<td>1.7.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formal Inspection and Tests</td>
<td>3.5.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Testing</td>
<td>3.5.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-09 Manufacturer’s Field Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Operation</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire Alarm/Mass Notification System</td>
<td>1.7.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation and Maintenance</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(O&M) Instructions and Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instruction of Government</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Employees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>As-Built Drawings</td>
<td>3.5.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 00 00</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilization of Excavated Materials</td>
<td>3.8</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shoulder Construction</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>3.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Borrow Site Testing</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSMISSION SPECIFICATION</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>CONTRACTOR SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>MAIL TO CONTR/ DATE RCD FROM APPR AUTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>31 00 00</td>
<td>SD-07 Certificates</td>
<td>Testing</td>
<td>3.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 16 13</td>
<td>SD-03 Product Data</td>
<td>Concrete</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 17 23</td>
<td>SD-03 Test Reports</td>
<td>Field Quality Control</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior Surface Preparation</td>
<td>Material Safety Data Sheets (MSDS)</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflective media for roads</td>
<td>Thermoplastic compound</td>
<td>2.2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermoplastic compound</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermoplastic compound</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td>Reflective Media for Roads</td>
<td>2.2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermoplastic Compound</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermoplastic Compounds</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Reports</td>
<td>3.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>Qualifications</td>
<td>1.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflective Media for Roads</td>
<td>2.2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile Organic Compound</td>
<td>1.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermoplastic Compound</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermoplastic Compound</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td>Thermoplastic Compound</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

Title and Location: Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>TRANSMITTED SPECIFICATION NO.</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOvt. Class Code</th>
<th>APPROVAL NEEDED BY</th>
<th>MATERIAL NEEDED BY</th>
<th>DATE OF ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>MAIL TO CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
</tr>
<tr>
<td>32 17 23</td>
<td>Thermoplastic Compound</td>
<td>3.3.2</td>
<td></td>
</tr>
<tr>
<td>32 92 19</td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wood cellulose fiber mulch</td>
<td>2.5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertilizer</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topsoil composition tests</td>
<td>2.2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seed</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion Control Materials</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>33 11 00</td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping Materials</td>
<td>2.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water distribution main</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indicator posts</td>
<td>2.1.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indicator posts</td>
<td>2.1.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valve boxes</td>
<td>2.1.2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disinfection</td>
<td>3.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delivery, storage, and handling</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>3.1.1</td>
<td></td>
</tr>
<tr>
<td>33 30 00</td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existing Conditions</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drawings</td>
<td>1.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

CONTRACT NO.
N40085-17-B-0015

TITLE AND LOCATION
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>CONTRACTOR</th>
<th>GOVERNMENT CLASSIFICATION</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>MAILING TO CONTR/</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>MATERIAL NEEDED BY</th>
<th>APPROVAL NEEDED BY</th>
<th>CODE</th>
<th>DATE OF ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>DATE RCD FROM CONTR</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD TO OTHER REVIEWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline materials</td>
<td>33 30 00</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>Reports</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td>33 40 00</td>
<td>Placing Pipe</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-04 Samples</td>
<td>Pipe for Culverts and Storm</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Drains</td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td>Resin Certification</td>
<td>2.1.2</td>
<td>Pipeline Testing</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrostatic Test on Watertight Joints</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Determination of Density</td>
<td>3.7.5</td>
<td>Frame and Cover for Gratings</td>
<td>2.3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td>Medium voltage cable</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium voltage cable joints</td>
<td>2.7</td>
<td>Medium voltage cable terminations</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live end caps</td>
<td>2.9</td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>Medium voltage cable qualification and production tests</td>
<td>2.15.2</td>
<td>Field Acceptance Checks and Tests</td>
<td>3.18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
<td>DATE RWD TO APPR AUTH</td>
<td>DATE RWD TO OTHER REVIEWER</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM CONTR</td>
<td>ACTION CODE</td>
<td>DATE OF ACTION</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>33 71 02</td>
<td>Arc-proofing test</td>
<td>2.15.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable Installation Plan and Procedure</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td>1.4.1</td>
<td></td>
</tr>
<tr>
<td>33 82 00</td>
<td>Cable Installer Qualifications</td>
<td>1.6.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-02 Shop Drawings</td>
<td>1.6.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications Outside Plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications Entrance Facility Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wire and cable</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable splices, and connectors</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closures</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building protector assemblies</td>
<td>2.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protector modules</td>
<td>2.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-connect terminal cabinets</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spare Parts</td>
<td>1.8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-installation tests</td>
<td>3.5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acceptance tests</td>
<td>3.5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outside Plant Test Plan</td>
<td>1.6.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications Contractor Qualifications</td>
<td>1.6.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key Personnel Qualifications</td>
<td>1.6.2.2</td>
<td></td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>N40085-17-B-0015</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>TITLE AND LOCATION</td>
<td>Interior/Exterior Repairs at BEQ HP145</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANS</th>
<th>M S P E C</th>
<th>ACTIVITY</th>
<th>TITLE</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT CLASS</th>
<th>G R A R</th>
<th>G H H N R</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>82 00</td>
<td>SD-08</td>
<td>Manufacturer’s Instructions</td>
<td>Building protector assembly 2.2.1</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
</tr>
<tr>
<td>33</td>
<td>82 00</td>
<td>SD-09</td>
<td>Manufacturer’s Field Reports</td>
<td>Fiber Optic Splices 3.1.9.2</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
</tr>
<tr>
<td>33</td>
<td>82 00</td>
<td>SD-10</td>
<td>Operation and Maintenance Data</td>
<td>Telecommunications outside plant (OSP) 1.6.1.1</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
</tr>
<tr>
<td>33</td>
<td>82 00</td>
<td>SD-11</td>
<td>Closeout Submittals</td>
<td>Record Documentation 1.8.1</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
</tr>
</tbody>
</table>
SECTION 01 35 29
SAFETY AND OCCUPATIONAL HEALTH REQUIREMENTS

07/14

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)

ASSE/SAFE Z359.1 (2007) Safety Requirements for Personal Fall Arrest Systems, Subsystems and Components

ASME INTERNATIONAL (ASME)

ASME B30.22 (2010) Articulating Boom Cranes
ASME B30.3 (2009) Tower Cranes
ASME B30.8 (2010) Floating Cranes and Floating Derricks

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 10 (2013) Standard for Portable Fire Extinguishers
NFPA 51B (2009; TIA 09-1) Standard for Fire Prevention During Welding, Cutting, and Other Hot Work
NFPA 70 (2017) National Electrical Code
NFPA 70E (2009; Errata 09-1) Standard for Electrical Safety in the Workplace

U.S. ARMY CORPS OF ENGINEERS (USACE)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910
Occupational Safety and Health Standards

29 CFR 1910.146
Permit-required Confined Spaces

29 CFR 1910.94
Ventilation

29 CFR 1915
Confined and Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment

29 CFR 1919
Gear Certification

29 CFR 1926
Safety and Health Regulations for Construction

29 CFR 1926.500
Fall Protection

1.2 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00
SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Accident Prevention Plan (APP)

Activity Hazard Analysis (AHA)

Crane Critical Lift Plan

Crane Work Plan

Proof of qualifications for Crane Operators

SD-06 Test Reports

Reports

Submit reports as their incidence occurs, in accordance with the requirements of the paragraph entitled, "Reports."

Accident Reports

Monthly Exposure Reports

Regulatory Citations and Violations

Crane Reports

SD-07 Certificates

Confined Space Entry Permit

Certificate of Compliance (Crane)

Third Party Certification of Barge-Mounted Mobile Cranes
Submit one copy of each permit/certificate attached to each Daily Report.

1.3 DEFINITIONS

a. Associate Safety Professional (ASP). An individual who is currently certified by the Board of Certified Safety Professionals.

b. Certified Construction Health & Safety Technician (CHST). An individual who is currently certified as a CHST by the Board of Certified Safety Professionals.

c. Certified Industrial Hygienist (CIH). An individual who is currently certified as a CIH by the American Board of Industrial Hygiene.

d. Certified Safety Professional (CSP). An individual who is currently certified as a CSP by the Board of Certified Safety Professionals.

e. Certified Safety Trained Supervisor (STS). An individual who is currently certified as an STS by the Board of Certified Safety Professionals.

f. Competent Person for Fall Protection. A person who is capable of identifying hazardous or dangerous conditions in the personal fall arrest system or any component thereof, as well as their application and use with related equipment, and has the authority to take prompt corrective measures to eliminate the hazards of falling.

g. High Visibility Accident. Any mishap which may generate publicity and/or high visibility.

h. Low-slope roof. A roof having a slope less than or equal to 4 in 12 (vertical to horizontal).

i. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

j. Multi-Employer Work Site (MEWS). A multi-employer work site, as defined by OSHA, is one in which many employers occupy the same site. The Government considers the Prime Contractor to be the "controlling authority" for all work site safety and health of the subcontractors.

k. Operating Envelope. The area surrounding any crane. Inside this "envelope" is the crane, the operator, riggers, rigging gear between the hook and the load, the load and the crane's supporting structure (ground, rail, etc.).

l. Qualified Person for Fall Protection. A person with a recognized degree or professional certifications, extensive knowledge, training and experience in the field of fall protection who is capable of performing design, analysis, and evaluation of fall protection systems and equipment.

m. Recordable Injuries or Illnesses. Any work-related injury or illness that results in:

 (1) Death, regardless of the time between the injury and death,
or the length of the illness;
(2) Days away from work;
(3) Restricted work;
(4) Transfer to another job;
(5) Medical treatment beyond first aid;
(6) Loss of consciousness; or
(7) A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (6) above.

n. Site Safety and Health Officer (SSHO). The superintendent or other qualified or competent person who is responsible for the on-site safety and health required for the project.

o. Steep roof. A roof having a slope greater than 4 in 12 (vertical to horizontal).

p. "USACE" property and equipment specified in USACE EM 385-1-1 should be interpreted as Government property and equipment.

q. Weight Handling Equipment (WHE) Accident. A WHE accident occurs when any one or more of the six elements in the operating envelope fails to perform correctly during operation, including operation during maintenance or testing resulting in personnel injury or death; material or equipment damage; dropped load; derailment; two-blocking; overload; and collision, including unplanned contact between the load, crane, and/or other objects. A dropped load, derailment, two-blocking, overload and collision are considered accidents even though no material damage or injury occurs. A component failure (e.g., motor burnout, gear tooth failure, bearing failure) is not considered an accident solely due to material or equipment damage unless the component failure results in damage to other components (e.g., dropped boom, dropped load, roll over, etc.).

1.4 CONTRACTOR SAFETY SELF-EVALUATION CHECKLIST

Contracting Officer will provide a "Contractor Safety Self-Evaluation checklist" to the Contractor at the pre-construction conference. The checklist will be completed monthly by the Contractor and submitted with each request for payment voucher. An acceptable score of 90 or greater is required. Failure to submit the completed safety self-evaluation checklist or achieve a score of at least 90, will result in a retention of up to 10 percent of the voucher.

1.5 REGULATORY REQUIREMENTS

In addition to the detailed requirements included in the provisions of this contract, work performed shall comply with USACE EM 385-1-1, and the following laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards to the appropriate administrative agency for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements shall apply.
1.6 DRUG PREVENTION PROGRAM

Conduct a proactive drug and alcohol use prevention program for all workers, prime and subcontractor, on the site. Ensure that no employee uses illegal drugs or consumes alcohol during work hours. Ensure there are no employees under the influence of drugs or alcohol during work hours. After accidents, collect blood, urine, or saliva specimens and test the injured and involved employees for the influence of drugs and alcohol. A copy of the test shall be made available to the Contracting Officer upon request.

1.7 SITE QUALIFICATIONS, DUTIES AND MEETINGS

1.7.1 Personnel Qualifications

Work performed under this contract shall meet Level 2.

1.7.1.1 Site Safety and Health Officer (SSHO)

Site Safety and Health Officer (SSHO) shall be provided at the work site at all times to perform safety and occupational health management, surveillance, inspections, and safety enforcement for the Contractor. The SSHO shall meet the following requirements:

Level 1:
- Worked on similar projects.
- 10-hour OSHA construction safety class or equivalent within last 3 years.
- Competent person training as needed.

Level 2:
- A minimum of 3 years safety work on similar project.
- 30-hour OSHA construction safety class or equivalent within last 3 years.
- Competent person training as needed.

Level 3:
- A minimum of 5 years safety work on similar projects.
- 30-hour OSHA construction safety class or equivalent within the last 5 years.
- An average of at least 24 hours of formal safety training each year for the past 5 years.
- Competent person training as needed.

Level 4:
- A minimum of 10 years safety work of a progressive nature with at least 5 years of experience on similar projects.
- 30-hour OSHA construction safety class or equivalent within the last 5 years.
- An average of at least 24 hours of formal safety training each year for the past 5 years with training for competent person status for at least the following areas of competency: Excavation; Scaffolding; Fall protection; Hazardous energy; Confined space; Health hazard recognition, evaluation and control of chemical,
physical and biological agents; Personal protective equipment and clothing to include selection, use and maintenance.

Level 5:
Provide an Associate Safety Professional (ASP); Certified Safety Trained Supervisor (STS); and/or Construction Health & Safety Technician (CHST) at the work site to perform safety management, surveillance, inspections, and safety enforcement for the Contractor to meet the designated safety level in paragraph 1.7. The ASP, STS, and/or CHST shall be the safety and occupational health "competent person" as defined by USACE EM 385-1-1. The ASP, STS, and/or CHST shall be at the work site at all times whenever work or testing is being performed and shall conduct and document daily safety inspections. The ASP, STS, and/or CHST shall have no other duties other than safety and occupational health management, inspections, and enforcement on this contract. A minimum of 10 years safety work of a progressive nature with at least 5 years of experience on similar projects.
30-hour OSHA construction safety class or equivalent within the last 5 years.
An average of at least 24 hours of formal safety training each year for the past 5 years with training for competent person status for at least the following areas of competency: Excavation; Scaffolding; Fall protection; Hazardous energy; Confined space; Health hazard recognition, evaluation and control of chemical, physical and biological agents; Personal protective equipment and clothing to include selection, use and maintenance.

Level 6:
Provide a Certified Safety Professional (CSP) and/or Certified Industrial Hygienist (CIH) at the work site to perform safety and occupational health management, surveillance, inspections, and safety enforcement for the Contractor. The CSP and/or CIH shall be the safety and occupational health "competent person" as defined by USACE EM 385-1-1. The CSP and/or CIH shall have no other duties than safety and occupational health management, inspections, and/or industrial hygiene.
A minimum of 10 years safety work of a progressive nature with at least 5 years of experience on similar projects.
30-hour OSHA construction safety class or equivalent within the last 5 years.
An average of at least 24 hours of formal safety training each year for the past 5 years with training for competent person status for at least the following areas of competency: Excavation; Scaffolding; Fall protection; Hazardous energy; Confined space; Health hazard recognition, evaluation and control of chemical, physical and biological agents; Personal protective equipment and clothing to include selection, use and maintenance.

1.7.1.2 Competent Person for Confined Space Entry

Provide a competent person meeting the requirements of EM 385-1-1 who is assigned in writing by the Designated Authority to assess confined spaces and who possesses demonstrated knowledge, skill and ability to:

a. Identify the structure, location, and designation of confined and permit-required confined spaces where work is done;

b. Calibrate and use testing equipment including but not limited to,
oxygen indicators, combustible gas indicators, carbon monoxide indicators, and carbon dioxide indicators, and to interpret accurately the test results of that equipment;

c. Perform all required tests and inspections specified in 29 CFR 1910.146 and 29 CFR 1915 Subpart B;

d. Assess hazardous conditions including atmospheric hazards in confined space and adjacent spaces and specify the necessary protection and precautions to be taken;

e. Determine ventilation requirements for confined space entries and operations;

f. Assess hazards associated with hot work in confined and adjacent space and determine fire watch requirements; and,

g. Maintain records required.

When the work involves marine operations that handle combustible or hazardous materials, this qualified person shall be a NFPA certified marine chemist.

1.7.1.3 Competent Person for the Health Hazard Control and Respiratory Protection Program

Provide a competent person meeting the requirements of EM 385-1-1 who is:

a. Capable by education, specialized training and/or experience of anticipating, recognizing, and evaluating employee exposure to hazardous chemical, physical and biological agents in accordance with USACE EM 385-1-1, Section 6.

b. Capable of specifying necessary controls and protective actions to ensure worker health.

1.7.1.4 Crane Operators

Crane operators shall meet the requirements in USACE EM 385-1-1, Section 16 and Appendix G. In addition, for mobile cranes with Original Equipment Manufacturer (OEM) rated capacities of 50,000 pounds or greater, crane operators shall be designated as qualified by a source that qualifies crane operators (i.e., union, a government agency, or an organization that tests and qualifies crane operators). Proof of current qualifications shall be provided.

1.7.2 Personnel Duties

1.7.2.1 Site Safety and Health Officer (SSHO)/Superintendent

a. Conduct daily safety and health inspections and maintain a written log which includes area/operation inspected, date of inspection, identified hazards, recommended corrective actions, estimated and actual dates of corrections. Safety inspection logs shall be attached to the Contractors' daily report.

b. Conduct mishap investigations and complete required reports. Maintain the OSHA Form 300 and Daily Production reports for prime and sub-contractors.
c. Maintain applicable safety reference material on the job site.

d. Attend the pre-construction conference, pre-work meetings including preparatory inspection meeting, and periodic in-progress meetings.

e. Implement and enforce accepted APPS and AHAs.

f. Maintain a safety and health deficiency tracking system that monitors outstanding deficiencies until resolution. A list of unresolved safety and health deficiencies shall be posted on the safety bulletin board.

g. Ensure sub-contractor compliance with safety and health requirements.

h. Ensure an approved "Special Permission Energized Electrical Work Permit" prior to starting any activity on energized electrical systems.

Failure to perform the above duties will result in dismissal of the superintendent and/or SSHO, and a project work stoppage. The project work stoppage will remain in effect pending approval of a suitable replacement.

1.7.2.2 Certified Safety Professional (CSP), Certified Industrial Hygienist (CIH), Associate Safety Professional (ASP), Certified Safety Trained Supervisor (STS), and/or Certified Construction Health & Safety Technician (CHST)

a. Perform safety and occupational health management, surveillance, inspections, and safety enforcement for the project.

b. Perform as the safety and occupational health "competent person" as defined by USACE EM 385-1-1.

c. Be on site whenever work or testing is being performed.

d. Conduct and document safety inspections.

e. Shall have no other duties other than safety and occupational health management, inspections, and enforcement on this contract.

If the CSP, CIH, ASP, STS, CHST is appointed as the SSHO all duties of that position shall also be performed.

1.7.3 Meetings

1.7.3.1 Preconstruction Conference

a. The Contractor will be informed, in writing, of the date of the preconstruction conference. The purpose of the preconstruction conference is for the Contractor and the Contracting Officer's representatives to become acquainted and explain the functions and operating procedures of their respective organizations and to reach mutual understanding relative to the administration of the overall project's Accident Prevention Plan (APP) before the initiation of work.

b. Contractor representatives who have a responsibility or significant role in accident prevention on the project shall attend the preconstruction conference. This includes the project superintendent,
site safety and health officer, quality control supervisor, or any other assigned safety and health professionals who participated in the development of the APP (including the Activity Hazard Analyses (AHAs) and special plans, program and procedures associated with it).

c. The Contractor shall discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, a schedule for the preparation, submittal, review, and acceptance of AHAs shall be established to preclude project delays.

d. Deficiencies in the submitted APP will be brought to the attention of the Contractor at the preconstruction conference, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Work shall not begin until there is an accepted APP.

e. The functions of a Preconstruction conference may take place at the Post-Awqrd Kickoff meeting for Design Build Contracts.

1.7.3.2 Weekly Safety Meetings

Conduct weekly safety meetings at the project site for all employees. The Contracting Officer will be informed of the meeting in advance and be allowed attendance. Minutes showing contract title, signatures of attendees and a list of topics discussed shall be attached to the Contractors' daily report.

1.7.3.3 Work Phase Meetings

The appropriate AHA shall be reviewed and attendance documented by the Contractor at the preparatory, initial, and follow-up phases of quality control inspection. The analysis should be used during daily inspections to ensure the implementation and effectiveness of safety and health controls.

1.8 TRAINING

1.8.1 New Employee Indoctrination

New employees (prime and sub-contractor) will be informed of specific site hazards before they begin work. Documentation of this orientation shall be kept on file at the project site.

1.8.2 Periodic Training

Provide Safety and Health Training in accordance with USACE EM 385-1-1 and the accepted APP. Ensure all required training has been accomplished for all onsite employees.

1.8.3 Training on Activity Hazard Analysis (AHA)

Prior to beginning a new phase, training will be provided to all affected employees to include a review of the AHA to be implemented.
1.9 ACCIDENT PREVENTION PLAN (APP)

The Contractor shall use a qualified person to prepare the written site-specific APP. Prepare the APP in accordance with the format and requirements of USACE EM 385-1-1 and as supplemented herein. Cover all paragraph and subparagraph elements in USACE EM 385-1-1, Appendix A, "Minimum Basic Outline for Preparation of Accident Prevention Plan". Where a paragraph or subparagraph element is not applicable to the work to be performed indicate "Not Applicable" next to the heading. Specific requirements for some of the APP elements are described below at paragraph 1.8.1. The APP shall be job-specific and shall address any unusual or unique aspects of the project or activity for which it is written. The APP shall interface with the Contractor's overall safety and health program. Any portions of the Contractor's overall safety and health program referenced in the APP shall be included in the applicable APP element and made site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all work site safety and health of the subcontractors. Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out. The APP shall be signed by the person and firm (senior person) preparing the APP, the Contractor, the on-site superintendent, the designated site safety and health officer and any designated CSP and/or CIH.

Submit the APP to the Contracting Officer 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP. The Contracting Officer reviews and comments on the Contractor's submitted APP and accepts it when it meets the requirements of the contract provisions.

Once accepted by the Contracting Officer, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified.

Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer, project superintendent, SSHO and quality control manager. Should any unforeseen hazard become evident during the performance of work, the project superintendent shall inform the Contracting Officer, both verbally and in writing, for resolution as soon as possible. In the interim, all necessary action shall be taken by the Contractor to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public, and the environment.

Copies of the accepted plan will be maintained at the resident engineer's office and at the job site. The APP shall be continuously reviewed and amended, as necessary, throughout the life of the contract. Unusual or high-hazard activities not identified in the original APP shall be incorporated in the plan as they are discovered.

1.9.1 EM 385-1-1 Contents

In addition to the requirements outlines in Appendix A of USACE EM 385-1-1, the following is required:
a. Names and qualifications (resumes including education, training, experience and certifications) of all site safety and health personnel designated to perform work on this project to include the designated site safety and health officer and other competent and qualified personnel to be used such as CSPs, CIHs, STSs, CHSTs. The duties of each position shall be specified.

b. Qualifications of competent and of qualified persons. As a minimum, competent persons shall be designated and qualifications submitted for each of the following major areas: excavation; scaffolding; fall protection; hazardous energy; confined space; health hazard recognition, evaluation and control of chemical, physical and biological agents; personal protective equipment and clothing to include selection, use and maintenance.

c. Confined Space Entry Plan. Develop a confined space entry plan in accordance with USACE EM 385-1-1, applicable OSHA standards 29 CFR 1910, 29 CFR 1915, and 29 CFR 1926, and any other federal, state and local regulatory requirements identified in this contract. Identify the qualified person's name and qualifications, training, and experience. Delineate the qualified person's authority to direct work stoppage in the event of hazardous conditions. Include procedure for rescue by contractor personnel and the coordination with emergency responders. (If there is no confined space work, include a statement that no confined space work exists and none will be created.)

d. Health Hazard Control Program. The Contractor shall designate a competent and qualified person to establish and oversee a Health Hazard Control Program in accordance with USACE EM 385-1-1, Section 6. The program shall ensure that employees, on-site Government representatives, and others, are not adversely exposed to chemical, physical and biological agents and that necessary controls and protective actions are instituted to ensure health.

e. Crane Critical Lift Plan. Prepare and sign weight handling critical lift plans for lifts over 75 percent of capacity of the crane or hoist (or lifts over 50 percent of the capacity of a barge mounted mobile crane's hoists) at any radius of lift; lifts involving more than one crane or hoist; lifts of personnel; and lifts involving more than rigging or operation, sensitive equipment, or unusual safety risks. The plan shall be submitted 15 calendar days prior to on-site work and include the requirements of USACE EM 385-1-1, paragraph 16.c.18. and the following:

(1) For lifts of personnel, the plan shall demonstrate compliance with the requirements of 29 CFR 1926.500(g).

(2) For barge mounted mobile cranes, barge stability calculations identifying barge list and trim based on anticipated loading; and load charts based on calculated list and trim. The amount of list and trim shall be within the crane manufacturer's requirements.

f. Alcohol and Drug Abuse Plan

(1) Describe plan for random checks and testing with pre-employment screening in accordance with the DFAR Clause subpart 252.223-7004, "Drug Free Work Force."

(2) Description of the on-site prevention program
g. Fall Protection and Prevention (FP&P) Plan. The plan shall be site specific and address all fall hazards in the work place and during different phases of construction. It shall address how to protect and prevent workers from falling to lower levels when they are exposed to fall hazards above 1.8 m (6 feet). A qualified person for fall protection shall prepare and sign the plan. The plan shall include fall protection and prevention systems, equipment and methods employed for every phase of work, responsibilities, assisted rescue self-rescue and evacuation procedures, training requirements, and monitoring methods. Fall Protection and Prevention Plan shall be revised every six months for lengthy projects, reflecting any changes during the course of construction due to changes in personnel, equipment, systems or work habits. The accepted Fall Protection and Prevention Plan shall be kept and maintained at the job site for the duration of the project. The Fall Protection Plan shall be included in the Accident Prevention Plan (APP).

h. Training Records and Requirements. List of mandatory training and certifications which are applicable to this project (e.g. explosive actuated tools, confined space entry, fall protection, crane operation, vehicle operator, forklift operators, personal protective equipment); list of requirements for periodic retraining/certification; outline requirements for supervisory and employee safety meetings.

i. Occupant Protection Plan. The safety and health aspects of lead-based paint removal, prepared in accordance with Section 02 83 19.00 10 Lead Based Paint Hazard Abatement, Target Housing & Child Occupied Facilities, 02 82 33.13 20 Removal/Control and Disposal of Lead Containig Paint.

j. Lead Compliance Plan. The safety and health aspects of lead work, prepared in accordance with Section 02 83 13.00 20 Lead in Construction.

k. Asbestos Hazard Abatement Plan. The safety and health aspects of asbestos work, prepared in accordance with Section 02 2 16.00, "Engineering Control of Asbestos Containing Materials"

l. Site Safety and Health Plan. The safety and health aspects prepared in accordance with this section.

m. PCB Plan. The safety and health aspects of Polychlorinated Biphenyls work, prepared in accordance with Sections 02 84 33, "Removal and Disposal of Polychlorinated Biphenyls (PCBs) and 02 61 23, "Removal and Disposal of PCB Contaminated Soils)".

n. Site Demolition Plan. The safety and health aspects prepared in accordance with Section 02 41 00.00 40, Demolition" and referenced sources. Include engineering survey as applicable.

o. Excavation Plan. The safety and health aspects prepared in accordance with Section 3100, Earthwork.

p. Crane Work Plan. The contractor shall provide a crane work plan to the Contracting Officer for acceptance. The crane work plan shall include the specific model of each crane and a drawing identifying their locations (exact), the dimensions, wheel sizes, number of wheels, wheel spacing, tire pressure(s), number of axles, axle spacing, minimum wheel load to be exerted during operations and maximum outrigger load to
be exerted during operations. The Contractor shall allow at least 10 working days for acceptance/non-acceptance of the crane work plan. No crane operations shall begin prior to written acceptance of the crane plan by the Government. ROICC shall be the government approving authority.

1.10 ACTIVITY HAZARD ANALYSIS (AHA)

The Activity Hazard Analysis (AHA) format shall be in accordance with USACE EM 385-1-1. Submit the AHA for review at least 15 calendar days prior to the start of each phase. Format subsequent AHA as amendments to the APP. An AHA will be developed by the Contractor for every operation involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or subcontractor is to perform work. The analysis must identify and evaluate hazards and outline the proposed methods and techniques for the safe completion of each phase of work. At a minimum, define activity being performed, sequence of work, specific safety and health hazards anticipated, control measures (to include personal protective equipment) to eliminate or reduce each hazard to acceptable levels, equipment to be used, inspection requirements, training requirements for all involved, and the competent person in charge of that phase of work. For work with fall hazards, including fall hazards associated with scaffold erection and removal, identify the appropriate fall protection methods used. For work with materials handling equipment, address safeguarding measures related to materials handling equipment. For work requiring excavations, include requirements for safeguarding excavations. An activity requiring an AHA shall not proceed until the AHA has been accepted by the Contracting Officer's representative and a meeting has been conducted by the Contractor to discuss its contents with everyone engaged in the activity, including on-site Government representatives. The Contractor shall document meeting attendance at the preparatory, initial, and follow-up phases of quality control inspection. The AHA shall be continuously reviewed and, when appropriate, modified to address changing site conditions or operations. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.

The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.

Activity hazard analyses shall be updated as necessary to provide an effective response to changing work conditions and activities. The on-site superintendent, site safety and health officer and competent persons used to develop the AHAs, including updates, shall sign and date the AHAs before they are implemented.

The activity hazard analyses shall be developed using the project schedule as the basis for the activities performed. Any activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier or subcontractor and provided to the prime contractor for submittal to the Contracting Officer.

1.11 DISPLAY OF SAFETY INFORMATION

Within 1 calendar days after commencement of work, erect a safety bulletin board at the job site. The following information shall be displayed on the safety bulletin board in clear view of the on-site construction personnel, maintained current, and protected against the elements and unauthorized
removal:

a. Map denoting the route to the nearest emergency care facility.
b. Emergency phone numbers.
c. Copy of the most up-to-date APP.
d. Current AHA(s).
e. OSHA 300A Form.
f. OSHA Safety and Health Protection-On-The-Job Poster.
g. Confined space entry permit.
h. Hot work permit.
i. A sign indicating the number of hours worked since last lost workday accident.
j. Safety and Health Warning Posters.

1.12 SITE SAFETY REFERENCE MATERIALS

Maintain safety-related references applicable to the project, including those listed in the article "References." Maintain applicable equipment manufacturer's manuals.

1.13 EMERGENCY MEDICAL TREATMENT

Contractors will arrange for their own emergency medical treatment. Government has no responsibility to provide emergency medical treatment.

1.14 REPORTS

1.14.1 Accident Reports

a. For recordable injuries and illnesses, and property damage accidents resulting in at least $2,000 in damages, the Prime Contractor shall conduct an accident investigation to establish the root cause(s) of the accident, complete the Navy Contractor Significant Incident Report (CSIR) form or USACE Accident Report Form 3394 and provide the report to the Contracting Officer within 1 calendar day(s) of the accident. The Contracting Officer will provide copies of any required or special forms.

b. For a weight handling equipment accident (including rigging gear accidents) the Prime Contractor shall conduct an accident investigation to establish the root cause(s) of the accident, complete the WHE Accident Report (Crane and Rigging Gear) form and provide the report to the Contracting Officer within 30 calendar days of the accident. Crane operations shall not proceed until cause is determined and corrective actions have been implemented to the satisfaction of the Contracting Officer. The Contracting Officer will provide a blank copy of the accident report form.
1.14.2 Accident Notification

Notify the Contracting Officer as soon as practical, but not later than four hours, after any accident meeting the definition of Recordable Injuries or Illnesses or High Visibility Accidents, property damage equal to or greater than $2,000, or any weight handling equipment accident. Information shall include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Government investigation team arrives on site and Government investigation is conducted.

1.14.3 Monthly Exposure Reports

Monthly exposure reporting to the Contracting Officer is required to be attached to the monthly billing request. This report is a compilation of employee-hours worked each month for all site workers, both prime and subcontractor. The Contracting Officer will provide copies of any special forms.

1.14.4 Regulatory Citations and Violations

Contact the Contracting Officer immediately of any OSHA or other regulatory agency inspection or visit, and provide the Contracting Officer with a copy of each citation, report, and contractor response. Correct violations and citations promptly and provide written corrective actions to the Contracting Officer.

1.14.5 Crane Reports

Submit crane inspection reports required in accordance with USACE EM 385-1-1, Appendix H and as specified herein with Daily Reports of Inspections.

1.14.6 Certificate of Compliance

The Contractor shall provide a Certificate of Compliance for each crane entering an activity under this contract (see Contracting Officer for a blank certificate). Certificate shall state that the crane and rigging gear meet applicable OSHA regulations (with the Contractor citing which OSHA regulations are applicable, e.g., cranes used in construction, demolition, or maintenance shall comply with 29 CFR 1926 and USACE EM 385-1-1 section 16 and Appendix H. Certify on the Certificate of Compliance that the crane operator(s) is qualified and trained in the operation of the crane to be used. For cranes at DOD activities in foreign countries, the Contractor shall certify that the crane and rigging gear conform to the appropriate host country safety standards. The Contractor shall also certify that all of its crane operators working on the DOD activity have been trained in the proper use of all safety devices (e.g., anti-two block devices). These certifications shall be posted on the crane.

1.14.7 Third Party Certification of Barge-Mounted Mobile Cranes

Barge-mounted mobile cranes shall be certified in accordance with 29 CFR 1919 by an OSHA accredited person.
1.15 HOT WORK

Prior to performing "Hot Work" (welding, cutting, etc.) or operating other flame-producing/spark producing devices, a written permit shall be requested from the Fire Division. CONTRACTORS ARE REQUIRED TO MEET ALL CRITERIA BEFORE A PERMIT IS ISSUED. The Contractor will provide at least two (2) twenty (20) pound 4A:20 BC rated extinguishers for normal "Hot Work". All extinguishers shall be current inspection tagged, approved safety pin and tamper resistant seal. It is also mandatory to have a designated FIRE WATCH for any "Hot Work" done at this activity. The Fire Watch shall be trained in accordance with NFPA 51B and remain on-site for a minimum of 30 minutes after completion of the task or as specified on the hot work permit.

a. Oil painting materials (paint, brushes, empty paint cans, etc.), and all flammable liquids shall be removed from the facility at quitting time. All painting materials and flammable liquids shall be stored outside in a suitable metal locker or box and will require re-submittal with non-hazardous materials.

b. Accumulation of trays, paper, shavings, sawdust, boxes and other packing materials shall be removed from the facility at the close of each workday and such material disposed of in the proper containers located away from the facility.

c. The storage of combustible supplies shall be a safe distance from structures.

d. Area outside the facility undergoing work shall be cleaned of trash, paper, or other discarded combustibles at the close of each workday.

e. All portable electric devices (saws, sanders, compressors, extension chord, lights, etc.) shall be disconnected at the close of each workday. When possible, the main electric switch in the facility shall be deactivated.

f. When starting work in the facility, Contractors shall require their personnel to familiarize themselves with the location of the nearest fire alarm boxes and place in memory the emergency phone number 911. ANY FIRE, NO MATTER HOW SMALL, SHALL BE REPORTED IMMEDIATELY.

g. Obtain services from the FIRE DIVISION for "HOT WORK" within or around flammable materials (such as fuel systems, welding/cutting on fuel pipes) or confined spaces (such as sewer wet wells, manholes, vaults, etc.) that have the potential for flammable or explosive atmospheres.

PART 2 PRODUCTS

2.1 CONFINED SPACE SIGNAGE

The Contractor shall provide permanent signs integral to or securely attached to access covers for all required confined spaces. Signs wording: "DANGER--PERMIT-REQUIRED CONFINED SPACE - DO NOT ENTER -" in bold letters a minimum of 25 mm(one inch) in height and constructed to be clearly legible with all paint removed. The signal word "DANGER" shall be red and readable from 1.52 m(5 feet).
2.2 FALL PROTECTION ANCHORAGE

Fall protection anchorage, conforming to ASSE/SAFE Z359.1, installed under the supervision of a qualified person in fall protection, shall be left in place for continued customer use and so identified by signage stating the capacity of the anchorage (strength and number of persons who may be tied-off to it at any one time).

PART 3 EXECUTION

3.1 CONSTRUCTION AND/OR OTHER WORK

The Contractor shall comply with USACE EM 385-1-1, NFPA 241, the APP, the AHA, Federal and/or State OSHA regulations, and other related submittals and activity fire and safety regulations. The most stringent standard shall prevail.

3.1.1 Hazardous Material Use

Any work or storage involving hazardous chemicals or materials must be done in a manner that will not expose Government or Contractor employees to any unsafe or unhealthful conditions. Adequate protective measures must be taken to prevent Government or Contractor employees from being exposed to any hazardous condition that could result from the work or storage. The Prime Contractor shall keep a complete inventory of hazardous materials brought onto the work-site. Approval by the Contracting Officer of protective measures and storage area is required prior to the start of the work.

3.1.2 Hazardous Material Exclusions

Notwithstanding any other hazardous material used in this contract, radioactive materials or instruments capable of producing ionizing/non-ionizing radiation (with the exception of radioactive material and devices used in accordance with USACE EM 385-1-1 such as nuclear density meters for compaction testing and laboratory equipment with radioactive sources) as well as materials which contain asbestos, mercury or polychlorinated biphenyls, di-isocynates, lead-based paint are prohibited. The Contracting Officer, upon written request by the Contractor, may consider exceptions to the use of any of the above excluded materials.

3.1.3 Unforeseen Hazardous Material

The design should have identified materials such as PCB, lead paint, and friable and non-friable asbestos. If additional material, not indicated, that may be hazardous to human health upon disturbance during construction operations is encountered, stop that portion of work and notify the Contracting Officer immediately. Within 14 calendar days the Government will determine if the material is hazardous. If material is not hazardous or poses no danger, the Government will direct the Contractor to proceed without change. If material is hazardous and handling of the material is necessary to accomplish the work, the Government will issue a modification pursuant to "FAR 52.243-4, Changes" and "FAR 52.236-2, Differing Site Conditions."

3.2 PRE-OUTAGE COORDINATION MEETING

Contractors are required to apply for utility outages at least 15 days in
advance. As a minimum, the request should include the location of the outage, utilities being affected, duration of outage and any necessary sketches. Special requirements for electrical outage requests are contained elsewhere in this specification section. Once approved, and prior to beginning work on the utility system requiring shut down, the Contractor shall attend a pre-outage coordination meeting with the Contracting Officer to review the scope of work and the lock-out/tag-out procedures for worker protection. No work will be performed on energized electrical circuits unless proof is provided that no other means exist.

3.3 FALL HAZARD PROTECTION AND PREVENTION

The Contractor shall establish a fall protection and prevention program, for the protection of all employees exposed to fall hazards. The program shall include company policy, identify responsibilities, education and training requirements, fall hazard identification, prevention and control measures, inspection, storage, care and maintenance of fall protection equipment and rescue and escape procedures.

3.3.1 Training

The Contractor shall institute a fall protection training program. As part of the Fall Hazard Protection and Prevention Program, the Contractor shall provide training for each employee who might be exposed to fall hazards. A competent person for fall protection shall provide the training. Training requirements shall be in accordance with USACE EM 385-1-1, section 21.A.16.

3.3.2 Fall Protection Equipment

The Contractor shall enforce use of the fall protection equipment designated for each specific work activity in the Fall Protection and Prevention Plan and/or AHA at all times when an employee is on a surface 1.8 m (6 feet) or more above lower levels. Fall protection systems such as guardrails, personnel fall arrest system, safety nets, etc., are required when working within 1.8m (6 feet) of any leading edge. In addition to the required fall protection systems, safety skiff, personal floatation devices, life rings etc., are required when working above or next to water in accordance with USACE EM 385-1-1, paragraphs 05.I. and 05.J. Personal fall arrest systems are required when working from an articulating or extendible boom, swing stages, or suspended platform. In addition, personal fall arrest systems may be required when operating other equipment such as scissor lifts if the work platform is capable of being positioned outside the wheelbase. The need for tying-off in such equipment is to prevent ejection of the employee from the equipment during raising, lowering, or travel. Fall protection must comply with 29 CFR 1926.500, Subpart M and USACE EM 385-1-1.

3.3.2.1 Personal Fall Arrest Equipment

Personal fall arrest equipment, systems, subsystems, and components shall meet ASSE/SAFE Z359.1. Only a full-body harness with a shock-absorbing lanyard or self-retracting lanyard is an acceptable personal fall arrest device. Body belts may only be used as a positioning device system (for uses such as steel reinforcing assembly and in addition to an approved fall arrest system). Harnesses shall have a fall arrest attachment affixed to the body support (usually a Dorsal D-ring) and specifically designated for attachment to the rest of the system. Only locking snap hooks and carabiners shall be used. Webbing, straps, and ropes shall be made of synthetic fiber. The maximum free fall distance when using fall arrest
equipment shall not exceed 1.8 m (6 feet). The total fall distance and any swinging of the worker (pendulum-like motion) that can occur during a fall shall always be taken into consideration when attaching a person to a fall arrest system.

3.3.3 Fall Protection for Roofing Work

Fall protection controls shall be implemented based on the type of roof being constructed and work being performed. The roof area to be accessed shall be evaluated for its structural integrity including weight-bearing capabilities for the projected loading.

a. Low Sloped Roofs:

(1) For work within 1.8 m (6 feet) of an edge, on low-slope roofs, personnel shall be protected from falling by use of personal fall arrest systems, guardrails, or safety nets. A safety monitoring system is not adequate fall protection and is not authorized.

(2) For work greater than 1.8 m (6 feet) from an edge, warning lines shall be erected and installed in accordance with 29 CFR 1926.500 and USACE EM 385-1-1.

b. Steep Roofs: Work on steep roofs requires a personal fall arrest system, guardrails with toe-boards, or safety nets. This requirement also includes residential or housing type construction.

3.3.4 Safety Nets

If safety nets are used as the selected fall protection system on the project, they shall be provided at unguarded workplaces, leading edge work or when working over water, machinery, dangerous operations and or other surfaces where the use of ladders, scaffolds, catch platforms, temporary floors, fall arrest systems or restraint/positioning systems are impractical. Safety nets shall be tested immediately after installation with a drop test of 181.4 kg (400 pounds) dropped from the same elevation a person might fall, and every six months thereafter.

3.3.5 Existing Anchorage

Existing anchorages, to be used for attachment of personal fall arrest equipment, shall be certified (or re-certified) by a qualified person for fall protection in accordance with ASSE/SAFE Z359.1. Exiting horizontal lifeline anchorages shall be certified (or re-certified) by a registered professional engineer with experience in designing horizontal lifeline systems.

3.3.6 Horizontal Lifelines

Horizontal lifelines shall be designed, installed, certified and used under the supervision of a qualified person for fall protection as part of a complete fall arrest system which maintains a safety factor of 2 (29 CFR 1926.500).

3.3.7 Guardrail Systems

Guardrails shall consist of top and mid-rails, post and toe boards. The top edge height of standard railing must be 42 inches plus or minus 3
inches above the walking/working level. When mid-rails are used, they must be installed at a height midway between the top edge of the guardrail system and the walking/working level. Posts shall be placed no more than 8 feet apart (29 CFR 1926.500 and USACE EM 385-1-1).

3.3.8 Rescue and Evacuation Procedures

When personal fall arrest systems are used, the contractor must ensure that the mishap victim can self-rescue or can be rescued promptly should a fall occur. A Rescue and Evacuation Plan shall be prepared by the contractor and include a detailed discussion of the following: methods of rescue; methods of self-rescue; equipment used; training requirement; specialized training for the rescuers; procedures for requesting rescue and medical assistance; and transportation routes to a medical facility. The Rescue and Evaluation Plan shall be included in the Activity Hazard Analysis (AHA) for the phase of work, in the Fall Protection and Prevention (FP&P) Plan, and the Accident Prevention Plan (APP).

3.4 PERSONAL PROTECTIVE EQUIPMENT

All personnel who enter a construction site area shall wear Personal Protective Equipment (PPE) at all times as outlined in the EM 385 1-1. In addition to the requirements of the EM 385 1-1, Safety Glasses (ANSI Z87.1) will be worn at all times on construction sites. Hearing protection is required in noise hazard areas or when performing noise hazard tasks. Mandatory PPE on all construction sites includes:

a. Hard Hats
b. Safety Glasses
c. Safety-Toed Shoes or Boots

3.5 SCAFFOLDING

Employees shall be provided with a safe means of access to the work area on the scaffold. Climbing of any scaffold braces or supports not specifically designed for access is prohibited. Access to scaffold platforms greater than 6 m (20 feet) in height shall be accessed by use of a scaffold stair system. Vertical ladders commonly provided by scaffold system manufacturers shall not be used for accessing scaffold platforms greater than 6 m (20 feet) in height. The use of an adequate gate is required. Contractor shall ensure that employees are qualified to perform scaffold erection and dismantling. Do not use scaffold without the capability of supporting at least four times the maximum intended load or without appropriate fall protection as delineated in the accepted fall protection and prevention plan. Stationary scaffolds must be attached to structural building components to safeguard against tipping forward or backward. Special care shall be given to ensure scaffold systems are not overloaded. Side brackets used to extend scaffold platforms on self-supported scaffold systems for the storage of material is prohibited. The first tie-in shall be at the height equal to 4 times the width of the smallest dimension of the scaffold base. Work platforms shall be placed on mud sills. Scaffold or work platform erectors shall have fall protection during the erection and dismantling of scaffolding or work platforms that are more than six feet. Delineate fall protection requirements when working above six feet or above dangerous operations in the Fall Protection and Prevention (FP&P) Plan and Activity Hazard Analysis (AHA) for the phase of work.
3.5.1 Stilts

The use of stilts for gaining additional height in construction, renovation, repair or maintenance work is prohibited.

3.6 EQUIPMENT

3.6.1 Material Handling Equipment

a. Material handling equipment such as forklifts shall not be modified with work platform attachments for supporting employees unless specifically delineated in the manufacturer's printed operating instructions.

b. The use of hooks on equipment for lifting of material must be in accordance with manufacturer's printed instructions.

c. Operators of forklifts or power industrial trucks shall be licensed in accordance with OSHA.

3.6.2 Weight Handling Equipment

a. Cranes must be equipped with:

 (1) Load indicating devices (LIDs) and a boom angle or radius indicator,

 (2) or load moment indicating devices (LMIs).

 (3) Anti-two block prevention devices.

 (4) Boom hoist hydraulic relief valve, disconnect, or shutoff (stops hoist when boom reaches a predetermined high angle).

 (5) Boom length indicator (for telescoping booms).

 (6) Device to prevent uncontrolled lowering of a telescoping hydraulic boom.

 (7) Device to prevent uncontrolled retraction of a telescoping hydraulic boom.

b. The Contractor shall notify the Contracting Officer 15 days in advance of any cranes entering the activity so that necessary quality assurance spot checks can be coordinated. Contractor's operator shall remain with the crane during the spot check.

c. The Contractor shall comply with the crane manufacturer's specifications and limitations for erection and operation of cranes and hoists used in support of the work. Erection shall be performed under the supervision of a designated person (as defined in ASME B30.5). All testing shall be performed in accordance with the manufacturer's recommended procedures.

d. The Contractor shall comply with ASME B30.5 for mobile and locomotive cranes, ASME B30.22 for articulating boom cranes, ASME B30.3 for construction tower cranes, and ASME B30.8 for floating cranes and floating derricks.
e. The presence of Government personnel does not relieve the Contractor of an obligation to comply with all applicable safety regulations. The Government will investigate all complaints of unsafe or unhealthful working conditions received in writing from contractor employees, federal civilian employees, or military personnel.

f. Each load shall be rigged/attached independently to the hook/master-link in such a fashion that the load cannot slide or otherwise become detached. Christmas-tree lifting (multiple rigged materials) is not allowed.

g. Under no circumstance shall a Contractor make a lift at or above 90% of the cranes rated capacity in any configuration.

h. When operating in the vicinity of overhead transmission lines, operators and riggers shall be alert to this special hazard and shall follow the requirements of USACE EM 385-1-1 section 11 and ASME B30.5 or ASME B30.22 as applicable.

i. Crane suspended personnel work platforms (baskets) shall not be used unless the Contractor proves that using any other access to the work location would provide a greater hazard to the workers or is impossible. Personnel shall not be lifted with a line hoist or friction crane.

j. A fire extinguisher having a minimum rating of 10BC and a minimum nominal capacity of 5lb of extinguishing agent shall be available at all operator stations or crane cabs. Portable fire extinguishers shall be inspected, maintained, and recharged as specified in NFPA 10, Standard for Portable Fire Extinguishers.

k. All employees shall be kept clear of loads about to be lifted and of suspended loads.

l. A weight handling equipment operator shall not leave his position at the controls while a load is suspended.

m. The Contractor shall use cribbing when performing lifts on outriggers.

n. The crane hook/block must be positioned directly over the load. Side loading of the crane is prohibited.

o. A physical barricade must be positioned to prevent personnel from entering the counterweight swing (tail swing) area of the crane.

p. A substantial and durable rating chart containing legible letters and figures shall be provided with each crane and securely mounted onto the crane cab in a location allowing easy reading by the operator while seated in the control station.

q. Certification records which include the date of inspection, signature of the person performing the inspection, and the serial number or other identifier of the crane that was inspected shall always be available for review by Contracting Officer personnel.

r. Written reports listing the load test procedures used along with any repairs or alterations performed on the crane shall be available for review by Contracting Officer personnel.
s. The Contractor shall certify that all crane operators have been trained in proper use of all safety devices (e.g. anti-two block devices).

3.6.3 Equipment and Mechanized Equipment

a. Equipment shall be operated by designated qualified operators. Proof of qualifications shall be kept on the project site for review.

b. Manufacture specifications or owner's manual for the equipment shall be on site and reviewed for additional safety precautions or requirements that are sometimes not identified by OSHA or USACE EM 385-1-1. Such additional safety precautions or requirements shall be incorporated into the AHAs.

c. Equipment and mechanized equipment shall be inspected in accordance with manufacturer's recommendations for safe operation by a competent person prior to being placed into use.

d. Daily checks or tests shall be conducted and documented on equipment and mechanized equipment by designated competent persons.

3.7 EXCAVATIONS

The competent person for excavations performed as a result of contract work shall be on-site when excavation work is being performed, and shall inspect, and document the excavations daily prior to entry by workers. The competent person must evaluate all hazards, including atmospheric, that may be associated with the work, and shall have the resources necessary to correct hazards promptly. The competent person shall perform soil classification in accordance with 29 CFR 1926.

3.7.1 Utility Locations

All underground utilities in the work area must be positively identified by a third party, independent, private utility locating company in addition to any station locating service and coordinated with the station utility department. Any markings made during the utility investigation must be maintained throughout the contract.

3.7.2 Utility Location Verification

The Contractor must physically verify underground utility locations, including utility depth, by hand digging using wood or fiberglass handled tools when any adjacent construction work is expected to come within three feet of the underground system. Digging within 2 feet of a known utility must not be performed by means of mechanical equipment; hand digging shall be used. If construction is parallel to an existing utility the utility shall be exposed by hand digging every 100 feet if parallel within 5 feet of the excavation.

3.7.3 Utilities Within and Under Concrete, Bituminous Asphalt and Other Impervious Surfaces

Utilities located within concrete slabs or pier decks, bridges, parking areas, and the like, are extremely difficult to identify. Whenever contract work involves chipping, saw cutting, or core drilling through concrete, bituminous asphalt or other impervious surfaces, the existing
utility location must be coordinated with station utility departments in addition to location and depth verification by a third party, independent, private locating company. The third party, independent, private locating company shall locate utility depth by use of Ground Penetrating Radar (GPR), X-ray, bore scope, or ultrasound prior to the start of demolition and construction. Outages to isolate utility systems must be used in circumstances where utilities are unable to be positively identified. The use of historical drawings does not alleviate the contractor from meeting this requirement.

3.7.4 Shoring Systems

Trench and shoring systems must be identified in the accepted safety plan and AHA. Manufacture tabulated data and specifications or registered engineer tabulated data for shoring or benching systems shall be readily available on site for review. Job-made shoring or shielding shall have the registered professional engineer stamp, specifications, and tabulated data. Extreme care must be used when excavating near direct burial electric underground cables.

3.7.5 Trenching Machinery

Trenching machines with digging chain drives shall be operated only when the spotters/laborers are in plain view of the operator. Operator and spotters/laborers shall be provided training on the hazards of the digging chain drives with emphasis on the distance that needs to be maintained when the digging chain is operating. Documentation of the training shall be kept on file at the project site.

3.8 ELECTRICAL

3.8.1 Conduct of Electrical Work

Underground electrical spaces must be certified safe for entry before entering to conduct work. Cables that will be cut must be positively identified and de-energized prior to performing each cut. Positive cable identification must be made prior to submitting any outage request for electrical systems. Arrangements are to be coordinated with the Contracting Officer and Station Utilities for identification. The Contracting Officer will not accept an outage request until the Contractor satisfactorily documents that the circuits have been clearly identified. Perform all high voltage cable cutting remotely using hydraulic cutting tool. When racking in or live switching of circuit breakers, no additional person other than the switch operator will be allowed in the space during the actual operation. Plan so that work near energized parts is minimized to the fullest extent possible. Use of electrical outages clear of any energized electrical sources is the preferred method. When working in energized substations, only qualified electrical workers shall be permitted to enter. When work requires Contractor to work near energized circuits as defined by the NFPA 70, high voltage personnel must use personal protective equipment that includes, as a minimum, electrical hard hat, safety shoes, insulating gloves with leather protective sleeves, fire retarding shirts, coveralls, face shields, and safety glasses. In addition, provide electrical arc flash protection for personnel as required by NFPA 70E. Insulating blankets, hearing protection, and switching suits may be required, depending on the specific job and as delineated in the Contractor's AHA.
3.8.2 Arc Flash Risk/Hazard Analysis

Contractor shall provide an Arc Flash Risk/Hazard Analysis in accordance with NFPA 70E for all locations where workers may be exposed to arc flash hazard (work on energized electrical equipment). The Arc Flash Risk/Hazard Analysis shall be sealed and signed by a qualified professional engineer.

3.8.3 Arc Flash Risk/Hazard Analysis Qualifications

Contractor shall engage the services of a qualified organization to provide Arc Flash Risk/Hazard Analysis of the electrical distribution system. Organization shall be independent of the supplier, manufacturer, and installer of the equipment. The organization shall be a first tier subcontractor. This work shall not be performed by a second tier subcontractor.

 a. Submit name and qualifications of organization. Organization shall have been regularly engaged in providing Arc Flash Risk/Hazard Analysis for a minimum of 5 years.

 b. Submit name and qualifications of the professional engineer performing the analysis. Include a list of three comparable jobs performed by the engineer with specific names and telephone numbers for reference.

3.8.4 Special Permission Energized Electrical Work Permit

All work on energized electrical systems, including high voltage, must have an approved "Special Permission Energized Electrical Work Permit." The results of a Arc Flash Risk/Hazard Analysis, per NFPA 70E, shall be included in the "Special Permission Energized Electrical Work Permit" request. Flame-resistant (FR) clothing and personal protective equipment (PPE) shall be rated for a minimum of 8 calories per square centimeter even if the flash hazard analysis indicates a lower value. A blank copy of the permit request is attached. An editable version may be obtained from the Contracting Officer.

3.8.5 Portable Extension Cords

Portable extension cords shall be sized in accordance with manufacturer ratings for the tool to be powered and protected from damage. All damaged extension cords shall be immediately removed from service. Portable extension cords shall meet the requirements of NFPA 70.

3.9 WORK IN CONFINED SPACES

The Contractor shall comply with the requirements in Section 06.I of USACE EM 385-1-1 and OSHA 29 CFR 1910.146. Any potential for a hazard in the confined space requires a permit system to be used.

 a. Entry Procedures. Prohibit entry into a confined space by personnel for any purpose, including hot work, until the qualified person has conducted appropriate tests to ensure the confined or enclosed space is safe for the work intended and that all potential hazards are controlled or eliminated and documented. (See Section 06.I.05 of USACE EM 385-1-1 for entry procedures.) All hazards pertaining to the space shall be reviewed with each employee during review of the AHA.
b. Forced air ventilation is required for all confined space entry operations and the minimum air exchange requirements must be maintained to ensure exposure to any hazardous atmosphere is kept below its' action level.

c. Ensure the use of rescue and retrieval devices in confined spaces greater than 1.5 m (5 feet) in depth. Conform to Sections 06.I.09, 06.I.10 and 06.I.11 of USACE EM 385-1-1.

d. Sewer wet wells require continuous atmosphere monitoring with audible alarm for toxic gas detection.

e. Include training information for employees who will be involved as entrants and attendants for the work. Conform to Section 06.I.06 of USACE EM 385-1-1.

f. Daily Entry Permit. Post the permit in a conspicuous place close to the confined space entrance.

3.10 CRYSTALLINE SILICA

Grinding, abrasive blasting, and foundry operations of construction materials containing crystalline silica, shall comply with OSHA regulations, such as 29 CFR 1910.94, and USACE EM 385-1-1, Appendix C. The Contractor shall develop and implement effective exposure control and elimination procedures to include dust control systems, engineering controls, and establishment of work area boundaries, as well as medical surveillance, training, air monitoring, and personal protective equipment.

3.11 HOUSEKEEPING

3.11.1 Clean-Up

All debris in work areas shall be cleaned up daily or more frequently if necessary. Construction debris may be temporarily located in an approved location, however garbage accumulation must be removed each day.

3.11.2 Falling Object Protection

All areas must be barricaded to safeguard employees. When working overhead, barricade the area below to prevent entry by unauthorized employees. Construction warning tape and signs shall be posted so they are clearly visible from all possible access points. When employees are working overhead all tools and equipment shall be secured so that they will not fall. When using guardrail as falling object protection, all openings shall be small enough to prevent passage of potential falling objects.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

Various publications are referenced in other sections of the specifications to establish requirements for the work. These references are identified in each section by document number, date and title. The document number used in the citation is the number assigned by the standards producing organization (e.g. ASTM B564 Standard Specification for Nickel Alloy Forgings). However, when the standards producing organization has not assigned a number to a document, an identifying number has been assigned for reference purposes.

1.2 ORDERING INFORMATION

The addresses of the standards publishing organizations whose documents are referenced in other sections of these specifications are listed below, and if the source of the publications is different from the address of the sponsoring organization, that information is also provided. Documents listed in the specifications with numbers which were not assigned by the standards producing organization should be ordered from the source by title rather than by number.

ACOUSTICAL SOCIETY OF AMERICA (ASA)
1305 Walt Whitman Road, Suite 300
Melville, NY 11747-4300
Ph: 516-576-2360
Fax: 631-923-2875
E-mail: asa@aip.org
Internet: http://asa.aip.org

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)
30 West University Drive
Arlington Heights, IL 60004-1893
Ph: 847-394-0150
Fax: 847-253-0088
E-mail: amca@amca.org
Internet: http://www.amca.org

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)
2111 Wilson Blvd, Suite 500
Arlington, VA 22201
Ph: 703-524-8800
Fax: 703-562-1942
Internet: http://www.ahrinet.org

ALUMINUM ASSOCIATION (AA)
National Headquarters
1525 Wilson Boulevard, Suite 600
Arlington, VA 22209
Ph: 703-358-2960
E-Mail: info@aluminum.org
ELECTRONIC COMPONENTS ASSOCIATION (ECA)

ELECTRONIC INDUSTRIES ALLIANCE (EIA)
EIA has become part of the ELECTRONIC COMPONENTS INDUSTRY ASSOCIATION (ECIA)

FM GLOBAL (FM)
270 Central Avenue
P.O. Box 7500
Johnston, RI 02919-4923
Ph: 877-364-6726
Fax: 401-275-3029
E-mail: servicedesk.myrisk@fmglobal.com
Internet: http://www.fmglobal.com

FOREST STEWARDSHIP COUNCIL (FSC)
212 Third Avenue North
Suite 445
Minneapolis, MN 55401
Ph: 612-353-4511
E-mail: info@us.fsc.org
Internet: https://us.fsc.org/

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)
University of South California
Research Annex 219
3716 South Hope Street
Los Angeles, CA 90089-7700
Ph: 213-740-2032 or 866-545-6340
Fax: 213-740-8399
E-mail: fccchr@usc.edu
Internet: http://www.usc.edu/dept/fccchr

GLASS ASSOCIATION OF NORTH AMERICA (GANA)
800 SW Jackson St., Suite 1500
Topeka, KS 66612-1200
Ph: 785-271-0208
E-mail: gana@glasswebsite.com
Internet: http://www.glasswebsite.com

GYPSUM ASSOCIATION (GA)
6525 Belcrest Road, Suite 480
Hyattsville, MD 20782
Ph: 301-277-8686
Fax: 301-277-8747
E-mail: info@gypsum.org
Internet: http://www.gypsum.org

HARDWOOD PLYWOOD AND VENEER ASSOCIATION (HPVA)
1825 Michael Faraday Dr.
Reston, VA 20190
Ph: 703-435-2900
Fax: 703-435-2537
E-mail: hpva@hpva.org
Internet: http://www.hpva.org
E-mail: central@iso.ch
Internet: http://www.iso.org

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)
127 Park Street, NE
Vienna, VA 22180-4602
Ph: 703-281-6613
E-mail: info@mss-hq.com
Internet: http://mss-hq.org/Store/index.cfm

MARBLE INSTITUTE OF AMERICA (MIA)
380 E. Lorain Street
Oberlin, OH 44074
Ph: 440-250-9222
Fax: 440-774-9222
E-mail: miainfo@marble-institute.com
Internet: http://www.marble-institute.com

MASTER PAINTERS INSTITUTE (MPI)
2800 Ingleton Avenue
Burnaby, BC CANADA V5C 6G7
Ph: 1-888-674-8937
Fax: 1-888-211-8708
E-mail: info@paintinfo.com or techservices@mpi.net
Internet: http://www.mpi.net/

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)
800 Roosevelt Road, Bldg C, Suite 312
Glen Ellyn, IL 60137
Ph: 630-942-6591
Fax: 630-790-3095
E-mail: wlewis7@cox.net (Wes Lewis, technical consultant)
Internet: http://www.naamm.org

NATIONAL CABLE AND TELECOMMUNICATIONS ASSOCIATION (NCTA)
25 Massachusetts Avenue, NW, Suite 100
Washington, DC 20001-1413
Ph: 202-222-2300
Fax: 202-222-2514
E-mail: info@ncta.com
Internet: http://www.ncta.com

NATIONAL ELECTRICAL CONTRACTORS ASSOCIATION (NECA)
3 Bethesda Metro Center, Suite 1100
Bethesda, MD 20814
Ph: 301-657-3110
Fax: 301-215-4500
Internet: http://www.necanet.org/

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
1300 North 17th Street, Suite 900
Arlington, VA 22209
Ph: 703-841-3200
Internet: http://www.nema.org/

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)
8575 Grovemont Circle
Gaithersburg, MD 20877
Ph: 301-977-3698
Fax: 301-977-9589
Internet: http://www.nebb.org

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
1 Batterymarch Park
Quincy, MA 02169-7471
Ph: 617-770-3000
Fax: 617-770-0700
Internet: http://www.nfpa.org

NATIONAL HARDWOOD LUMBER ASSOCIATION (NHLA)
6830 Raleigh LaGrange Road
PO Box 34518
Memphis, TN 38184
Ph: 901-377-1818
Store: 901-399-7563
Internet: http://www.nhla.org

NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
10255 West Higgins Road, Suite 600
Rosemont, IL 60018-5607
Ph: 866-275-6722 (866-ASK-NRCA)
Fax: 847-299-1183
E-mail: info@nrca.net
Internet: http://www.nrca.net

NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA)
272 Tuttle Road
Cumberland, ME 04021
Ph: 207-829-6901
Fax: 207-829-4293
E-mail: info@nelma.org
Internet: http://www.nelma.org

NSF INTERNATIONAL (NSF)
789 North Dixboro Road
P.O. Box 130140
Ann Arbor, MI 48105
Ph: 734-769-8010 or 800-NSF-MARK
Fax: 734-769-0109
E-mail: info@nsf.org
Internet: http://www.nsf.org

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD)
2, rue Andre Pascal
75775 Paris Cedex 16, France
Ph: +33 1 45 24 82 00
Fax: 33 1 45 24 85 00
Internet: http://www.oecd.org
U.S. Contact Center
OECD Washington Center
2001 L Street, NW, Suite 650
Washington, DC 20036-4922
Ph: 202-785-6323
Fax: 202-785-0350
E-mail: washington.contact@oecd.org
PLASTIC PIPE AND FITTINGS ASSOCIATION (PPFA)
800 Roosevelt Road
Building C, Suite 312
Glen Ellyn, IL 60137
Ph: 630-858-6540
Fax: 630-790-3095
Internet: http://www.ppfahome.org

PLUMBING AND DRAINAGE INSTITUTE (PDI)
800 Turnpike Street, Suite 300
North Andover, MA 01845
Ph: 978-557-0720 or 800-589-8956
E-Mail: pdi@PDionline.org
Internet: http://www.pdionline.org

REDWOOD INSPECTION SERVICE (RIS) OF THE CALIFORNIA REDWOOD ASSOCIATION (CRA)
818 Grayson Road, Suite 201
Pleasant Hill, CA 94523
Ph: 925-935-1499
Fax: 925-935-1496
E-Mail: ris@calredwood.org
Internet: http://www.redwoodinspection.com

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
4201 Lafayette Center Drive
Chantilly, VA 20151-1219
Ph: 703-803-2980
Fax: 703-803-3732
Internet: http://www.smacna.org

SOCIETY FOR PROTECTIVE COATINGS (SSPC)
40 24th Street, 6th Floor
Pittsburgh, PA 15222
Ph: 412-281-2331
Fax: 412-281-9992
E-mail: info@sspc.org
Internet: http://www.sspc.org

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)
400 Commonwealth Drive
Warrendale, PA 15096
Ph: 724-776-4970
Fax: 877-606-7323
E-mail: customerservice@sae.org
Internet: http://www.sae.org

SOUTHERN CYPRESS MANUFACTURERS ASSOCIATION (SCMA)
665 Rodi Road, Suite 305
Pittsburgh, PA 15235
Ph: 412-244-0440
Fax: 412-244-9090
E-Mail: member-services@cypressinfo.org
Internet: http://www.cypressinfo.org

SOUTHERN PINE INSPECTION BUREAU (SPIB)
P.O. Box 10915
Pensacola, FL 32504-0915
Ph: 850-434-2611
Fax: 850-433-5594
Internet: http://www.spib.org

STEEL DOOR INSTITUTE (SDI/DOOR)
30200 Detroit Road
Westlake, OH 44145
Ph: 440-899-0010
Fax: 440-892-1404
E-mail: info@steeldoor.org
Internet: http://www.steeldoor.org

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)
1320 N. Courthouse Rd., Suite 200
Arlington, VA 22201
Ph: 703-907-7700
Fax: 703-907-7727
Internet: http://www.tiaonline.org

THE MASONRY SOCIETY (TMS)
105 South Sunset Street, Suite Q
Longmont, CO USA 80501-6172
Ph: 303-939-9700
Fax: 303-541-9215

TILE COUNCIL OF NORTH AMERICA (TCNA)
100 Clemson Research Boulevard
Anderson, SC 29625
Ph: 864-646-8453
Fax: 864-646-2821
E-mail: info@tileusa.com
Internet: http://www.tileusa.com

TRUSS PLATE INSTITUTE (TPI)
218 N. Lee Street, Suite 312
Alexandria, VA 22314
Ph: 703-683-1010
Fax: 866-501-4012
E-mail: info@tpinst.org
Internet: http://www.tpinst.org

U.S. ARMY CORPS OF ENGINEERS (USACE)
CRD-C DOCUMENTS available on Internet:
http://www.wbdg.org/ccb/browse_cat.php?c=68
Order Other Documents from:
USACE Publications Depot
Attn: CEHEC-IM-PD
2803 52nd Avenue
Hyattsville, MD 20781-1102
Ph: 301-394-0081
Fax: 301-394-0084
E-mail: pubs-army@usace.army.mil
Internet: http://www.publications.usace.army.mil/
or
http://www.hnc.usace.army.mil/Missions/Engineering/TECHINFO.aspx

U.S. DEFENSE LOGISTICS AGENCY (DLA)

Fort Belvoir, VA
Internet: http://www.dla.mil

U.S. DEPARTMENT OF AGRICULTURE (USDA)
Order AMS Publications from:
AGRICULTURAL MARKETING SERVICE (AMS)
Seed Regulatory and Testing Branch
801 Summit Crossing Place, Suite C
Gastonia, NC 28054-2193
Ph: 704-810-8871
Fax: 704-852-4189
E-mail: seed.ams@usda.gov
Internet: http://www.ams.usda.gov/lsg/seed.htm

Order Other Publications from:
U.S. Department of Agriculture, Rural Utilities Program
USDA Rural Development, Room 4051-S
Mail Stop 1510
1400 Independence Avenue SW
Washington, DC 20250-1510
Phone: (202) 720-9540
TTY: (800) 877-8339 (Federal Relay Service)
Fax: (202) 720-1725
Internet: http://www.rurdev.usda.gov/utilities_lp.html

U.S. DEPARTMENT OF COMMERCE (DOC)
1401 Constitution Avenue, NW
Washington, DC 20230
Ph: 202-482-2000
Internet: http://www.commerce.gov/

Order Publications From:
National Technical Information Service (NTIS)
Alexandria, VA 22312
Ph: 703-605-6050 or 800-533-6847
E-mail: customerservice@ntis.gov
Internet: http://www.ntis.gov

U.S. DEPARTMENT OF DEFENSE (DOD)
Order DOD Documents from:
Room 3A750-The Pentagon
1400 Defense Pentagon
Washington, DC 20301-1400
Ph: 703-571-3343
FAX: 215-697-1462
E-mail: customerservice@ntis.gov
Internet: http://www.ntis.gov

Obtain Military Specifications, Standards and Related Publications from:
Acquisition Streamlining and Standardization Information System (ASSIST)
Department of Defense Single Stock Point (DODSSP)
Document Automation and Production Service (DAPS)
Building 4/D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Ph: 215-697-6396 – for account/password issues
Internet: http://assist.daps.dla.mil/online/start/; account registration required
Obtain Unified Facilities Criteria (UFC) from:
Whole Building Design Guide (WBDG)
Order from:
Superintendent of Documents
U. S. Government Printing Office (GPO)
710 North Capitol Street, NW
Washington, DC 20401
Ph: 202-512-1800
Fax: 202-512-2104
E-mail: contactcenter@gpo.gov
Internet: http://www.gpoaccess.gov

U.S. GENERAL SERVICES ADMINISTRATION (GSA)
General Services Administration
1275 First St. NE
Washington, DC 20417
Ph: 202-501-1231
Internet: http://www.gsaelibrary.gsa.gov/ElibMain/home.do
Obtain documents from:
Acquisition Streamlining and Standardization Information System (ASSIST)
Internet: https://assist.dla.mil/online/start/; account registration required

U. S. GREEN BUILDING COUNCIL (USGBC)
2101 L St NW, Suite 500
Washington, D.C. 20037
Ph: 800-795-1747
Internet: http://www.usgbc.org

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
8601 Adelphi Road
College Park, MD 20740-6001
Ph: 866-272-6272
Fax: 301-837-0483
Internet: http://www.archives.gov
Order documents from:
Superintendent of Documents
U.S. Government Printing Office (GPO)
710 North Capitol Street, NW
Washington, DC 20401
Ph: 202-512-1800
Fax: 202-512-2104
E-mail: contactcenter@gpo.gov
Internet: http://www.gpoaccess.gov

UNDERWRITERS LABORATORIES (UL)
2600 N.W. Lake Road
Camas, WA 98607-8542
Ph: 877-854-3577
E-mail: CEC.us@us.ul.com
Internet: http://www.ul.com/
UL Directories available through IHS at http://www.ihs.com

UNI-BELL PVC PIPE ASSOCIATION (UBPPA)
2711 LBJ Freeway, Suite 1000
Dallas, TX 75234
Ph: 972-243-3902
Fax: 972-243-3907
E-mail: info@uni-bell.org
Internet: http://www.uni-bell.org
WEST COAST LUMBER INSPECTION BUREAU (WCLIB)
P.O. Box 23145
Portland, OR 97281
Ph: 503-639-0651
Fax: 503-684-8928
E-mail: info@wclib.org
Internet: http://www.wclib.org

WESTERN WOOD PRODUCTS ASSOCIATION (WWPA)
1500 SW First Ave., Suite 870
Portland, OR 97201
Ph: 503-224-3930
Fax: 503-224-3934
E-mail: info@wwpa.org
Internet: http://www.wwpa.org

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)
330 N Wabash Avenue, Suite 2000
Chicago, IL 60611
Ph: 312-321-6802
E-mail: wdma@wdma.com
Internet: http://www.wdma.com

WOOD MOULDING AND MILLWORK PRODUCERS ASSOCIATION (WMMPA)
507 First Street
Woodland, CA 95695
Ph: 530-661-9591 or 800-550-7889
Fax: 530-661-9586
E-mail: info@wmmpa.com
Internet: http://www.wmmpa.com

PART 2 PRODUCTS

Not used

PART 3 EXECUTION

Not used

 -- End of Section --
SECTION 01 45 10
QUALITY CONTROL
09/01

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D 3666 (2009a) Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-11 Closeout Submittals

Quality Control Plan (QC PLAN)

Submit a QC plan within 30 calendar days after receipt of Notice of Award.
1.3 INFORMATION FOR THE CONTRACTING OFFICER

Deliver the following to the Contracting Officer:

a. Combined Contractor Production Report/Contractor Quality Control Report (1 sheet): Original and 1 copy, by 10:00 AM the next working day after each day that work is performed;

b. QC Specialist Reports and Test Results: Originals and 1 copy, by 10:00 AM the next working day after each day that work is performed;

c. Testing Plan and Log, 1 copy, at the end of each month;

d. QC Meeting Minutes: 1 copy, within 2 calendar days of the meeting;

e. Rework Items List: 1 copy, by the last working day of the month and;

f. QC Certifications: As required by the paragraph entitled "QC Certifications".

1.4 QC PROGRAM REQUIREMENTS

Establish and maintain a QC program as described in this section. The QC program consists of a QC Organization, a QC Plan, attending a QC Plan meeting, attending a Coordination and Mutual Understanding Meeting, conducting QC meetings, performing three phases of control, performing submittal review, ensuring testing is performed, and preparing QC certifications and documentation necessary to provide materials, equipment, workmanship, fabrication, construction and operations which comply with the requirements of this Contract. The QC program shall cover construction operations on-site and off-site and shall be keyed to the proposed construction sequence.

1.5 QC ORGANIZATION

1.5.1 QC Manager

1.5.1.1 Duties

Provide a QC Manager at the work site to manage and implement the QC program. The QC Manager is required to attend the QC Plan meeting, attend the Coordination and Mutual Understanding Meeting, conduct the QC meetings, perform the three phases of control, perform submittal review, ensure testing is performed and prepare QC certifications and documentation required in this Contract. The QC Manager is responsible for managing and coordinating the three phases of control and documentation performed by the QC specialists. In addition to managing and implementing the QC program, the QC Manager may perform the duties of project superintendent.

1.5.1.2 Qualifications

An individual with a minimum of five years experience as a foreman, superintendent, inspector, QC Manager, project manager, or construction manager on similar size construction contracts which included the major trades that are part of this Contract.
1.5.1.3 Construction Quality Management Training

In addition to the above experience and education requirements, the QC Manager shall have completed the course entitled "Construction Quality Management for Contractors." This course is periodically offered by the Navy and the Corps of Engineers. However, it is sponsored by both the AGC and the ABC of Charlotte, North Carolina. Call one of the following to sign up for the next available class:

The Army Corps of Engineers, Baltimore District;
(Offered in Baltimore, MD)
Contact: Corps of Engineers, Baltimore District
10 South Howard Street
Baltimore, MD 21201
Phone: 410-962-2323

The Associated General Contractors (AGC), Virginia Chapter in Cooperation with the Army Corps of Engineers, Norfolk District, and the Naval Facilities Engineering Command, Atlantic Division.
(Offered at rotating locations in Norfolk, Williamsburg, and Richmond)
Contact: AGC of Virginia
8631 Maylan Drive, Parham Park
Richmond, VA 23294
Phone: 804-346-3383

Carolinas Associated General Contractors (CACG)
Contact: CACG
1100 Euclid Avenue
Charlotte, NC 28203
Phone: 704-372-1450 (ext. 5248)

Associated Builders and Contractors (ABC), Carolinas Chapter
Contact: ABC, Carolinas Chapter
3705 Latrobe Drive
Charlotte, NC 28211
Phone: 704-367-1331
or: 877-470-4819

1.5.2 Alternate QC Manager Duties and Qualifications

Designate an alternate for the QC Manager at the work site to serve in the event of the designated QC Manager's absence. The period of absence may not exceed two weeks at one time, and not more than 30 workdays during a calendar year. The qualification requirements for the Alternate QC Manager shall be three years of experience in one of the specified positions.

1.6 QC PLAN

1.6.1 Requirements

Provide for approval by the Contracting Officer, a QC plan submitted in a 3-ring binder with pages numbered sequentially that covers, both on-site and off-site work and includes, the following:

a. A table of contents listing the major sections identified with tabs in the following order:

 I. QC ORGANIZATION
 II. NAMES AND QUALIFICATIONS
III. DUTIES, RESPONSIBILITY AND AUTHORITY OF QC PERSONNEL
IV. OUTSIDE ORGANIZATIONS
V. APPOINTMENT LETTERS
VI. SUBMITTAL PROCEDURES AND INITIAL SUBMITTAL REGISTER
VII. TESTING LABORATORY INFORMATION
VIII. TESTING PLAN AND LOG
IX. PROCEDURES TO COMPLETE REWORK ITEMS
X. DOCUMENTATION PROCEDURES
XI. LIST OF DEFINABLE FEATURES
XII. PROCEDURES FOR PERFORMING THE THREE PHASES OF CONTROL
XIII. PERSONNEL MATRIX
XIV. PROCEDURES FOR COMPLETION INSPECTION

b. A chart showing the QC organizational structure and its relationship to the production side of the organization.

c. Names and qualifications, in resume format, for each person in the QC organization.

d. Duties, responsibilities and authorities of each person in the QC organization.

e. A listing of outside organizations such as, architectural and consulting engineering firms that will be employed by the Contractor and a description of the services these firms will provide.

f. A letter signed by an officer of the firm appointing the QC Manager and stating that he/she is responsible for managing and implementing the QC program as described in this contract. Include in this letter the QC Manager's authority to direct the removal and replacement of non-conforming work.

g. Procedures for reviewing, approving and managing submittals. Provide the names of the persons in the QC organization authorized to review and certify submittals prior to approval.

h. Testing laboratory information required by the paragraphs entitled "Accredited Laboratories" or "Testing Laboratory Requirements", as applicable.

i. A Testing Plan and Log that includes the tests required, referenced by the specification paragraph number requiring the test, the frequency, and the person responsible for each test.

j. Procedures to identify, record, track and complete rework items.

k. Documentation procedures, including proposed report formats.

l. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks and requires separate control requirements. As a minimum, if approved by the Contracting Officer, consider each Section of the Specifications as a definable feature of work. However, at times, there may be more than one definable feature of work in each Section of the Specifications.

m. A personnel matrix showing, for each section of the specification, who will perform and document the three phases of control, and who
will perform and document the testing.

o. Procedures for Identifying and Documenting the Completion Inspection process. Include in these procedures the responsible party for punch out inspection, prefinal inspection, and final acceptance inspection.

1.6.2 Preliminary Work Authorized Prior to Approval

The only work that is authorized to proceed prior to the approval of the QC plan is mobilization of storage and office trailers and surveying.

1.6.3 Approval

Approval of the QC plan is required prior to the start of construction. The Contracting Officer reserves the right to require changes in the QC plan and operations as necessary to ensure the specified quality of work. The Contracting Officer reserves the right to interview any member of the QC organization at any time in order to verify his/her submitted qualifications.

1.6.4 Notification of Changes

Notify the Contracting Officer, in writing, of any proposed change, including changes in the QC organization personnel, a minimum of seven calendar days prior to a proposed change. Proposed changes must be approved by the Contracting Officer.

1.7 QC PLAN MEETING

Prior to submission of the QC plan, meet with the Contracting Officer to discuss the QC plan requirements of this Contract. The purpose of this meeting is to develop a mutual understanding of the QC plan requirements prior to plan development and submission.

1.8 COORDINATION AND MUTUAL UNDERSTANDING MEETING

After submission of the QC Plan, but prior to the start of construction, meet with the Contracting Officer to discuss the QC program required by this Contract. The purpose of this meeting is to develop a mutual understanding of the QC details, including forms to be used for documentation, administration for on-site and off-site work, and the coordination of the Contractor's management, production and QC personnel with the Contracting Officer. As a minimum, the Contractor's personnel required to attend shall include the project manager, project superintendent, and QC Manager. Minutes of the meeting shall be prepared by the QC Manager and signed by both the Contractor and the Contracting Officer.

1.9 QC MEETINGS

After the start of construction, the QC Manager shall conduct weekly QC meetings at the work site with the project superintendent and QC specialists. The QC Manager shall prepare the minutes of the meeting and provide a copy to the Contracting Officer within 2 working days after the meeting. The Contracting Officer may attend these meetings. The QC Manager shall notify the Contracting Officer at least 48 hours in advance of each meeting. As a minimum, the following shall be accomplished at each meeting:

SECTION 01 45 10 Page 6
a. Review the minutes of the previous meeting;

b. Review the schedule and the status of work:
 - Work or testing accomplished since last meeting
 - Rework items identified since last meeting
 - Rework items completed since last meeting;

c. Review the status of submittals:
 - Submittals reviewed and approved since last meeting
 - Submittals required in the near future;

d. Review the work to be accomplished in the next 2 weeks and documentation required. Schedule the three phases of control and testing:
 - Establish completion dates for rework items
 - Preparatory phases required
 - Initial phases required
 - Follow-up phases required
 - Testing required
 - Status of off-site work or testing
 - Documentation required;

e. Resolve QC and production problems; and

f. Address items that may require revising the QC plan:
 - Changes in QC organization personnel
 - Changes in procedures.

1.9.1 THREE PHASES OF CONTROL

The QC Manager shall perform the three phases of control to ensure that work complies with Contract requirements. The Three Phases of Control shall adequately cover both on-site and off-site work and shall include the following for each definable features of work: A definable feature of work is a task which is separate and distinct from other tasks and requires separate control requirements.

1.9.2 Preparatory Phase

Notify the Contracting Officer at least 48 hours in advance of each preparatory phase. Conduct the preparatory phase with the superintendent, and the foreman responsible for the definable feature. Document the results of the preparatory phase actions in the daily Contractor Quality Control Report. Perform the following prior to beginning work on each definable feature of work:

a. Review each paragraph of the applicable specification sections;

b. Review the Contract drawings;

c. Verify that appropriate shop drawings and submittals for materials and equipment have been submitted and approved. Verify receipt of approved factory test results, when required;
d. Review the testing plan and ensure that provisions have been made to provide the required QC testing;

e. Examine the work area to ensure that the required preliminary work has been completed;

f. Examine the required materials, equipment and sample work to ensure that they are on hand and conform to the approved shop drawings and submitted data;

g. Review the safety plan and appropriate activity hazard analysis to ensure that applicable safety requirements are met, and that required Material Safety Data Sheets (MSDS) are submitted; and

h. Discuss construction methods

1.9.3 Initial Phase

Notify the Contracting Officer at least 48 hours in advance of each initial phase. When construction crews are ready to start work on a definable feature of work, conduct the initial phase with the QC Specialists, the superintendent, and the foreman responsible for that definable feature of work. Observe the initial segment of the definable feature of work to ensure that the work complies with Contract requirements. Document the results of the initial phase in the daily Contractor Quality Control Report. Repeat the initial phase for each new crew to work on-site, or when acceptable levels of specified quality are not being met. Perform the following for each definable feature of work:

a. Establish the quality of workmanship required;

b. Resolve conflicts;

c. Review the Safety Plan and the appropriate activity hazard analysis to ensure that applicable safety requirements are met; and

d. Ensure that testing is performed by an approved laboratory.

1.9.4 Follow-Up Phase

Perform the following for on-going work daily, or more frequently as necessary until the completion of each definable feature of work and document in the daily Contractor Quality Control Report:

a. Ensure the work is in compliance with Contract requirements;

b. Maintain the quality of workmanship required;

c. Ensure that testing is performed by an approved laboratory; and

d. Ensure that rework items are being corrected.

1.9.5 Notification of Three Phases of Control for Off-Site Work

Notify the Contracting Officer at least two weeks prior to the start of the preparatory and initial phases.
1.10 SUBMITTAL REVIEW

Procedures for submittals are as described in Section entitled "Submittal Procedures."

1.11 TESTING

Except as stated otherwise in the specification sections, perform sampling and testing required under this Contract.

1.11.1 Testing Laboratory Requirements

Provide an independent testing laboratory or establish a laboratory qualified to perform sampling and tests required by this Contract. When the proposed testing laboratory is not accredited by an acceptable accreditation program as described by the paragraph entitled "Accredited Laboratories", submit to the Contracting Officer for approval, certified statements signed by an official of the testing laboratory attesting that the proposed laboratory meets or conforms to the following requirements:

a. Sampling and testing shall be under the technical direction of a Registered Professional Engineer (P.E) with at least 5 years of experience in construction material testing.

b. Laboratories engaged in testing of concrete and concrete aggregates shall meet the requirements of ASTM C 1077.

c. Laboratories engaged in testing of bituminous paving materials shall meet the requirements of ASTM D 3666.

d. Laboratories engaged in testing of soil and rock, as used in engineering design and construction, shall meet the requirements of ASTM D 3740.

e. Laboratories engaged in inspection and testing of steel, stainless steel, and related alloys will be evaluated according to ASTM A 880. Laboratories shall meet the requirements of ASTM E 329.

f. Laboratories engaged in nondestructive testing (NDT) shall meet the requirements of ASTM E 543.

g. Laboratories engaged in hazardous materials testing shall meet the requirements of OSHA and EPA.

1.11.2 Accredited Laboratories

Acceptable accreditation programs are the National Institute of Standards and Technology (NIST) National Voluntary Laboratory Accreditation Program (NVLAP), the American Association of State Highway and Transportation Officials (AASHTO) program and the American Association for Laboratory Accreditation (A2LA) program. Furnish to the Contracting Officer, a copy of the Certificate of Accreditation, Scope of Accreditation and latest directory of the accrediting organization for accredited laboratories. The scope of the laboratory's accreditation shall include the test methods required by the Contract.

1.11.3 Inspection of Testing Laboratories

Prior to approval of non-accredited laboratories, the proposed testing
laboratory facilities and records shall be subject to inspection by the Contracting Officer. Records subject to inspection include equipment inventory, equipment calibration dates and procedures, library of test procedures, audit and inspection reports by agencies conducting laboratory evaluations and certifications, testing and management personnel qualifications, test report forms, and the internal QC procedures.

1.11.4 Capability Check

The Contracting Officer retains the right to check laboratory equipment in the proposed laboratory and the laboratory technician's testing procedures, techniques, and other items pertinent to testing, for compliance with the standards set forth in this Contract.

1.11.5 Test Results

Cite applicable Contract requirements, tests or analytical procedures used. Provide actual results and include a statement that the item tested or analyzed conforms or fails to conform to specified requirements. Conspicuously stamp the cover sheet for each report in large red letters "CONFORMS" or "DOES NOT CONFORM" to the specification requirements, whichever is applicable. Test results shall be signed by a testing laboratory representative authorized to sign certified test reports. Furnish the signed reports, certifications, and other documentation to the Contracting Officer via the QC Manager. Furnish a summary report of field tests at the end of each month. Attach a copy of the summary report to the last daily Contractor Quality Control Report of each month.

1.12 QC CERTIFICATIONS

1.12.1 Contractor Quality Control Report Certification

Each Contractor Quality Control Report shall contain the following statement: "On behalf of the Contractor, I certify that this report is complete and correct and equipment and material used and work performed during this reporting period is in compliance with the contract drawings and specifications to the best of my knowledge, except as noted in this report".

1.12.2 Invoice Certification

Furnish a certificate to the Contracting Officer with each payment request, signed by the QC Manager, attesting that as-built drawings are current and attesting that the work for which payment is requested, including stored material, is in compliance with contract requirements.

1.12.3 Completion Certification

Upon completion of work under this Contract, the QC Manager shall furnish a certificate to the Contracting Officer attesting that "the work has been completed, inspected, tested and is in compliance with the Contract".

1.13 DOCUMENTATION

Maintain current and complete records of on-site and off-site QC program operations and activities.
1.13.1 Contractor Production Report

Reports are required for each day that work is performed and shall be attached to the Contractor Quality Control Report prepared for the same day. Account for each calendar day throughout the life of the Contract. The reporting of work shall be identified by terminology consistent with the construction schedule. Contractor Production Reports are to be prepared, signed and dated by the project superintendent and shall contain the following information:

a. Date of report, report number, name of contractor, contract number, title and location of Contract and superintendent present.

b. Weather conditions in the morning and in the afternoon including maximum and minimum temperatures.

c. A list of Contractor and subcontractor personnel on the work site, their trades, employer, work location, description of work performed and hours worked.

e. A list of job safety actions taken and safety inspections conducted. Indicate that safety requirements have been met including the results on the following:

 1. Was a job safety meeting held this date? (If YES, attach a copy of the meeting minutes.)

 2. Were there any lost time accidents this date? (If YES, attach a copy of the completed OSHA report.)

 3. Was crane/manlift/trenching/scaffold/hv electrical/high work/hazmat work done? (If YES, attach a statement or checklist showing inspection performed.)

 4. Was hazardous material/waste released into the environment? (If YES, attach a description of incident and proposed action.)

f. A list of safety actions taken today and safety inspections conducted.

g. A list of equipment/material received each day that is incorporated into the job.

h. A list of construction and plant equipment on the work site including the number of hours used, idle and down for repair.

i. Include a "remarks" section in this report which will contain pertinent information including directions received, problems encountered during construction, work progress and delays, conflicts or errors in the drawings or specifications, field changes, safety hazards encountered, instructions given and corrective actions taken, delays encountered and a record of visitors to the work site.

1.13.2 Contractor Quality Control Report

Reports are required for each day that work is performed and for every seven consecutive calendar days of no-work and on the last day of a no-work period. Account for each calendar day throughout the life of the
Contract. The reporting of work shall be identified by terminology consistent with the construction schedule. Contractor Quality Control Reports are to be prepared, signed and dated by the QC Manager and shall contain the following information:

a. Identify the control phase and the definable feature of work.

b. Results of the Preparatory Phase meetings held including the location of the definable feature of work and a list of personnel present at the meeting. Indicate in the report that for this definable feature of work, the drawings and specifications have been reviewed, submittals have been approved, materials comply with approved submittals, materials are stored properly, preliminary work was done correctly, the testing plan has been reviewed, and work methods and schedule have been discussed.

c. Results of the Initial Phase meetings held including the location of the definable feature of work and a list of personnel present at the meeting. Indicate in the report that for this definable feature of work the preliminary work was done correctly, samples have been prepared and approved, the workmanship is satisfactory, test results are acceptable, work is in compliance with the Contract, and the required testing has been performed and include a list of who performed the tests.

d. Results of the Follow-up Phase inspections held including the location of the definable feature of work. Indicate in the report for this definable feature of work that the work complies with the Contract as approved in the Initial Phase, and that required testing has been performed and include a list of who performed the tests.

e. Results of the three phases of control for off-site work, if applicable, including actions taken.

f. List the rework items identified, but not corrected by close of business.

g. List the rework items corrected from the rework items list along with the corrective action taken.

h. Include a "remarks" section in this report which will contain pertinent information including directions received, quality control problem areas, deviations from the QC plan, construction deficiencies encountered, QC meetings held, acknowledgement that as-built drawings have been updated, corrective direction given by the QC Organization and corrective action taken by the Contractor.

i. Contractor Quality Control Report certification.

1.13.3 Testing Plan and Log

As tests are performed, the QC Manager shall record on the "Testing Plan and Log" the date the test was conducted, the date the test results were forwarded to the Contracting Officer, remarks and acknowledgement that an accredited or Contracting Officer approved testing laboratory was used. Attach a copy of the updated "Testing Plan and Log" to the last daily Contractor Quality Control Report of each month.
1.13.4 Rework Items List

The QC Manager shall maintain a list of work that does not comply with the Contract, identifying what items need to be reworked, the date the item was originally discovered, and the date the item was corrected. There is no requirement to report a rework item that is corrected the same day it is discovered. Attach a copy of the "Contractor Rework Items List" to the last daily Contractor Quality Control Report of each month. The Contractor shall be responsible for including on this list items needing rework including those identified by the Contracting Officer.

1.13.5 As-Built Drawings

The QC Manager is required to review the as-built drawings required by Section 01 78 00, "Closeout Procedures", to ensure that as-built drawings are kept current on a daily basis and marked to show deviations which have been made from the Contract drawings. The QC Manager shall initial each deviation and each revision. Upon completion of work, the QC Manager shall furnish a certificate attesting to the accuracy of the as-built drawings prior to submission to the Contracting Officer.

1.13.6 Report Forms

The following forms, which are attached at the end of this section, are acceptable for providing the information required by the paragraph entitled "Documentation". While use of these specific formats are not required, any other format used shall contain the same information:

a. Combined Contractor Production Report and Contractor Quality Control Report (1 sheet), with separate continuation sheet

b. Testing Plan and Log

c. Rework Items List

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C511 (2007) Standard for Reduced-Pressure Principle Backflow Prevention Assembly

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)

FCCCHR List (continuously updated) List of Approved Backflow Prevention Assemblies

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-03 Product Data

Backflow preventers

SD-06 Test Reports

Backflow Preventer Tests

SD-07 Certificates

Backflow Tester Certifications

Backflow Preventers Certificate of Full Approval

1.3 BACKFLOW TESTER CERTIFICATIONS

Certificate of Full Approval from FCCCHR List, University of Southern California, attesting that the design, size and make of each backflow preventer has satisfactorily passed the complete sequence of performance
testing and evaluation for the respective level of approval. Certificate of Provisional Approval will not be acceptable.

1.3.1 Backflow Preventers Certificate

The Contractor shall submit a certificate recognized by the State or local authority that states the Contractor has completed at least 10 hours of training in backflow preventer installations. The certificate must be current.

1.4 TEMPORARY UTILITIES

1.4.1 Availability of Utility Services

a. The Contract clause related to utilities applies. Reasonable amounts of water and electricity from the nearest outlet will be provided free of charge for pursuit of work within a facility under this contract. If the nearest available outlet cannot be utilized by the Contractor because of improper voltage, insufficient current, improper pressure, incompatible connectors, etc., it shall be the responsibility of the Contractor to provide temporary utilities as required.

b. Reasonable amounts of utilities for contractor trailers and storage buildings will be made available to the Contractor, when available. The Contractor shall be responsible for providing transformers, electrical service poles and drops for electrical services, and backflow preventer devices on connections to domestic water lines. Final taps and tie-ins to the Government utility grid will be made by the Contractor after approval by the Contracting Officer. Tap-in cost, if any, shall be the responsibility of the Contractor. Under no circumstances will taps to base fire hydrants be allowed for obtaining domestic water.

1.4.2 Trailers

Electrical service will be supplied by the Government, when available, except at Tarawa Terrace where Carolina Power and Light Company will be the supplier.

1.4.3 Energy and Utilities Conservation

The Contractor shall carefully conserve utilities furnished without charge. The Contractor, at his own expense and in a manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines and remove the same prior to final acceptance of the construction.

1.4.4 Location of Underground Utilities

Location and protection of underground utilities shall be the responsibility of the Contractor. Where existing-to-remain piping, utilities, and underground obstructions of any type are indicated in locations to be traversed by new piping, ducts, and other excavations the elevations of the existing utilities and obstructions shall be determined before the new work is completed.

a. In addition, the Contractor will be responsible for obtaining the services of a professional utility locator prior to digging.
Contractor will provide documentation that the site has been surveyed and checked for underground utilities. All utilities must be located, including but not limited to power, water, sewer, storm drains, fiber optics, T.V. cable, telephone, and intrusion detection wiring. A set of known utility drawings will be available in the ROICC office for review to assist the locator.

b. It is mandatory that the Contractor also contact the Base Telephone Office (451-2531) prior to accomplishing any digging at Camp Lejeune. A telephone office representative will assist in locating telephone lines.

c. It is mandatory that the Contractor also contact Charter Communications, cable TV service prior to accomplishing any digging at Camp Lejeune, to ensure that all buried cable lines are identified. Contact Mr. Olin Criswell at 353-8677 for assistance.

d. It is mandatory that the contractor also contact the North Carolina One-Call Center to coordinate the location of underground natural gas infrastructure. North Carolina 811, Inc. can be reached at 811 on a touch-tone phone in the state of North Carolina or toll-free at 1.800.632.4949 if calling from out of state. Work requests may also be submitted online at www.nc811.org.

1.4.4.1 The Locations of Underground Utilities

The locations of underground utilities shown at only approximate and the information provided may be incomplete. Contractor shall attempt to ascertain locations of existing underground utilities prior to and during digging operations.

1.4.4.2 Damage to Underground Utilities

Immediate notice shall be delivered to the Contracting Officer of any damage. The Contractor shall make temporary repairs immediately, and shall provide permanent repairs as soon as practicable. For any additional work required by reason of conflict between the new and existing work, an adjustment in contract price will be made in accordance with Contract clause entitled "Differing Site Conditions", if appropriate.

1.5 WEATHER PROTECTION

Take necessary precautions to ensure that roof openings and other critical openings in the building are monitored carefully. Take immediate actions required to seal off such openings when rain or other detrimental weather is imminent, and at the end of each workday. Ensure that the openings are completely sealed off to protect materials and equipment in the building from damage.

1.5.1 Building and Site Storm Protection

When a warning of gale force winds is issued, take precautions to minimize danger to persons, and protect the work and nearby Government property. Precautions shall include, but are not limited to, closing openings; removing loose materials, tools and equipment from exposed locations; and removing or securing scaffolding and other temporary work. Close openings in the work when storms of lesser intensity pose a threat to the work or any nearby Government property.
Hurricane Conditions of Readiness

Unless directed otherwise, comply with:

a. **Condition FIVE**: Normal weather conditions are expected for the foreseeable future. No action is required.

b. **Condition FOUR** (Sustained winds of 74 mph or greater expected within 72 hours): Contractors shall continue normal daily clean up and good housekeeping practices. Collect and store in piles or containers scrap lumber, waste material, and rubbish for removal and disposal at the close of each work day. Stack lumber in neat piles less than 4 feet high. Prepare to remove or secure all debris, trash, or stored materials that could become missile hazards during high wind conditions. Meetings should be held on-site with all subcontractors to review the measures that are going to need to be taken should the base go to a higher readiness condition. Contact ROICC for any additional updates and upon completion of all required actions.

c. **Condition THREE** (Sustained winds of 74 mph or greater expected within 48 hours): Once Condition 3 is set, contractors shall shift their focus from their normal activities to taking the actions that are required to prepare the job site for the potential of destructive weather. All debris and rubbish shall be removed from the site at the end of the workday. All stored materials shall either be removed from the job site or secured (metal straps or heavy lines/ropes). All tools, equipment and gear shall be secured at the end of the workday. Begin preparations to adequately secure the facility (windows boarded up, etc.). Meetings should be held on-site with all subcontractors to review the measures that are going to be taken should base go to a higher readiness condition. Contract the ROICC for any additional updates and upon completion of all required actions.

d. **Condition TWO** (Sustained winds of 74 mph or greater expected within 24 hours): Cease all normal activities until the job-site is completely prepared for the onslaught of destructive weather. The job site should be completely free of debris, rubbish and scrap materials. The facility being worked on should be made weather-tight. All scaffolding planking shall be removed. All formwork and free standing structural steel shall be braced. All machinery, tools, equipment and materials shall be properly secured or removed from the job-site. Expend every effort to clear all missiles hazards and loose equipment from the job site. When the contractor secures for the day the job site should be left in a condition that is ready for the storm and the contractor should assume that they will not be allowed to return to their job site until after the storm passes and the base is reopened. Contact ROICC for additional updates and upon completion of required actions.

e. **Condition ONE** (Sustained winds of 74 mph or greater expected within 12 hours): If still on the job site, the contractor will be required to immediately leave the base until the storm passes and the base is reopened.
1.6 STORAGE AREAS

The Contract Clause entitled "FAR 52.236-10, Operations and Storage Areas" and the following apply:

1.6.1 Storage Size and Location

The open site available for storage shall be coordinated with the government.

1.6.2 Storage in Existing Buildings

The Contractor shall be working in an existing building; the storage of material will be allowed will not be allowed in the building.

1.7 TEMPORARY SANITARY FACILITIES

Provide adequate sanitary conveniences of a type approved for the use of persons employed on the work, properly secluded from public observation, and maintained in such a manner as required and approved by the Contracting Officer. Maintain these conveniences at all times without nuisance. Upon completion of the work, remove the conveniences from the premises, leaving the premises clean and free from nuisance. Dispose of sewage through connection to a municipal, district, or station sanitary sewage system. Where such systems are not available, use chemical toilets or comparably effective units, and periodically empty wastes into a municipal, district, or station sanitary sewage system, or remove waste to a commercial facility. Include provisions for pest control and elimination of odors.

1.8 TEMPORARY BUILDINGS

Locate these where directed and within the indicated operations area.

1.8.1 Maintenance of Temporary Facilities

Suitably paint and maintain the temporary facilities. Failure to do so will be sufficient reason to require their removal.

1.8.2 Trailers or Storage Buildings

Trailers or storage buildings will be permitted, where space is available, subject to the approval of the Contracting Officer. The trailers or buildings shall be in good condition, free from visible damage rust and deterioration, and meet all applicable safety requirements. Trailers shall be roadworthy and comply with all appropriate state and local vehicle requirements. Failure to maintain storage trailers or buildings to these standards shall result in the removal of non-complying units at the Contractor's expense. A sign not smaller than 24 by 24 inches shall be conspicuously placed on the trailer depicting the company name, business phone number, and emergency phone number. Trailers shall be anchored to resist high winds and must meet applicable state of local standards for anchoring mobile trailers.
PART 2 PRODUCTS

2.1 Backflow Preventers

Reduced pressure principle type conforming to the applicable requirements AWWA C511. Provide backflow preventers complete with 150 pound flanged cast iron, bronze mounted gate valve and strainer, 304 stainless steel or bronze, internal parts. The particular make, model/design, and size of backflow preventers to be installed shall be included in the latest edition of the List of Approved Backflow Prevention Assemblies issued by the FCCCHR List and shall be accompanied by a Certificate of Full Approval from FCCCHR List.

PART 3 EXECUTION

3.1 REDUCED PRESSURE BACKFLOW PREVENTERS

Provide an approved reduced pressure backflow prevention assembly at each location where the Contractor taps into the Government potable water supply.

A certified tester(s) shall perform testing of backflow preventer(s) for proper installation and operation and provide subsequent tagging. Backflow preventer tests shall be performed using test equipment, procedures, and certification forms conforming to those outlined in the latest edition of the Manual of Cross-Connection Control published by the FCCCHR Manual. Test and tag each reduced pressure backflow preventer upon initial installation (prior to continued water use) and quarterly thereafter. Tag shall contain the following information: make, model, serial number, dates of tests, results, maintenance performed, and signature of tester. Record test results on certification forms conforming to requirements cited earlier in this paragraph.

Not used.

-- End of Section --
SECTION 01 57 19

TEMPORARY ENVIRONMENTAL CONTROLS

09/14

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

 U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-S-16165 (Rev E) Shielding Harnesses, Shielding Items and Shielding Enclosures for Use in the Reduction of Interference from Engine Electrical Systems

MIL-STD-461 (2015; Rev G) Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment

MIL-STD-462 (Rev D; Notice 4) Electromagnetic Interference Characteristics

 U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40 CFR 261 Identification and Listing of Hazardous Waste

40 CFR 262 Standards Applicable to Generators of Hazardous Waste

40 CFR 263 Standards Applicable to Transporters of Hazardous Waste

40 CFR 264 Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities

40 CFR 265 Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities

40 CFR 300 National Oil and Hazardous Substances Pollution Contingency Plan

49 CFR 171 General Information, Regulations, and Definitions
1.2 Contractor Liabilities for Environmental Protection

Contractors shall complete and provide environmental training documentation for training required by Federal, State, and local regulations.

1.3 DEFINITIONS

1.3.1 Sediment

Soil and other debris that have eroded and have been transported by runoff water or wind.

1.3.2 Solid Waste

Rubbish, debris, garbage, and other discarded solid materials, except recyclables and hazardous waste as defined in paragraph entitled "Hazardous Waste," resulting from industrial, commercial, and agricultural operations and from community activities.

1.3.3 Sanitary Wastes

Wastes characterized as domestic sanitary sewage.

1.3.4 Rubbish

Combustible and noncombustible wastes such as non-recyclable paper and cardboard, crockery, and bones.

Recyclables includes: clean paper, cardboard, glass, plastics (No. 1 & 2), metal, and cans.

Non-recyclable paper and cardboard are defined as material that has become wet or contaminated with food or other residue that render it un-acceptable for recycling.

Treated wood/lumber is defined as wood that has been stained or treated to prevent rot, or composite wood products such as OSB, pressboard furniture, etc.

Untreated wood is defined as lumber, trees, stumps, limbs, tops, and shrubs.

1.3.5 Debris

Combustible and noncombustible wastes such as ashes and waste materials resulting from construction or maintenance and repair work, (excluding organic matter) leaves, pine straw, grass and shrub clippings.

1.3.6 Chemical Wastes

This includes salts, acids, alkalies, herbicides, pesticides, and organic chemicals.
1.3.7 Garbage
Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.3.8 Hazardous Waste
Hazardous substances as defined in 40 CFR 261 or as defined by applicable State and local regulations.

1.3.9 Hazardous Materials
Hazardous materials as defined in 49 CFR 171 and listed in 49 CFR 172.

1.3.10 Landscape Features
Trees, plants, shrubs, and ground cover.

1.3.11 Lead Acid Battery Electrolyte
The electrolyte substance (liquid medium) within a battery cell.

1.3.12 Oily Waste
Petroleum products and bituminous materials.

1.3.13 Class I Ozone Depleting Substance (ODS)
Class I and Class II ODS are defined in Sections 602 (a and b) of The Clean Air Act.

1.4 SUBMITTALS
Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-01 Preconstruction Submittals

SD-11 Closeout Submittals
Solid waste disposal permit
Disposal permit for hazardous waste
Environmental training documentation
Permit to transport hazardous waste
Hazardous waste certification

1.4.1 Solid Waste Disposal Permit
Submit one copy of a State and local permit or license for the solid waste disposal facility.

1.4.2 Disposal Permit for Hazardous Waste
Submit a copy of the applicable EPA and State permits, manifests, or
licenses for transportation, treatment, storage, and disposal of hazardous waste by permitted facilities.

1.4.3 Permit to Transport Hazardous Waste

Submit one copy of the EPA or State permit license, or regulation for the transporter who will ship the hazardous waste to the permitted Treatment, Storage, and Disposal (TSD) facility.

1.4.4 Hazardous Waste Certification

Submit written certification that hazardous waste turned in for disposal was generated on Government property and is identified, packaged, and labeled in accordance with 40 CFR 261, 40 CFR 262, and 40 CFR 263.

1.5 ENVIRONMENTAL PROTECTION REGULATORY REQUIREMENTS

Provide and maintain, during the life of the contract, environmental protection as defined in this Section. Plan for and provide environmental protective measures to control pollution that develops during normal construction practice. Plan for and provide environmental protective measures required to correct conditions that develop during the construction of permanent or temporary environmental features associated with the project. Comply with Federal, State, and local regulations pertaining to the environment, including but not limited to water, air, solid waste, and noise pollution.

1.6 ADMINISTRATIVE REQUIREMENTS

1.6.1 Licenses and Permits

Obtain licenses and permits pursuant to "FAR 52.236-7, Permits and Responsibilities" except for those permits which will be obtained by the Contracting Officer.

For permits obtained by the Contracting Officer, whether or not required by the permit, perform inspections of the work in progress, and submit certifications to the applicable regulatory agency, via the Contracting Officer, that the work conforms to the contract and permit requirements. The inspections and certifications shall be provided through the services of a Professional Engineer, registered in the State where the work is being performed. As a part of the quality control plan, which is required to be submitted for approval by the quality control section, provide a subitem containing the name, P.E. registration number, address, and telephone number of the professional engineer(s) who will be performing the inspections and certifications for each permit listed above.

1.7 GENERAL ENVIRONMENTAL MANAGEMENT SYSTEM AND ENVIRONMENTAL AWARENESS

The Contractor shall familiarize himself with requirements of the attached "Marine Corps Base (MCB), Camp Lejeune, Contractor Environmental Guide."

1.8 CAMP LEJEUNE SANITARY LANDFILL INFORMATION

1. Contractors may ONLY use the Camp Lejeune Sanitary Landfill for the disposal of asbestos containing materials, building products with tightly adhered lead containing paint, non-contaminated clean
dirt and clean gravel. The hours of operation are 0730-1530.

2. Delivery of acceptable materials (identified above) shall be by appointment only. Appointments made by phone at 910-451-5011 or 910-451-2946. ALL other contractor generated material shall be weighed through the Base Landfill scales before being removed from the Base. Contractors utilizing the base scales will require Contracting Officer assisted pre-registration with the Landfill Manager.

3. The Contracting Officer will register the contract via E-mail, with the Base Landfill. All haul vehicles will maintain a secure vehicle placard as a condition to utilize the scale. E-mail the contract information to the Landfill Clerk, including the name on the Prime Contractor, contract number, job name/description, completion date and whether or not any of the above materials will be delivered to the Landfill.

4. As of May 01 2014 the above supersedes any other statements/specifications pertaining to the delivery of materials to the Base Landfill.

PART 3 EXECUTION

2.1 PROTECTION OF NATURAL RESOURCES

Preserve the natural resources within the project boundaries and outside the limits of permanent work. Restore to an equivalent or improved condition upon completion of work. Confine construction activities to within the limits of the work indicated or specified.

2.1.1 Land Resources

Except in areas to be cleared, do not remove, cut, deface, injure, or destroy trees or shrubs without Contracting Officer's permission. Do not fasten or attach ropes, cables, or guys to existing nearby trees for anchorages unless authorized by Contracting Officer. Where such use of attach ropes, cables, or guys is authorized, the Contractor shall be responsible for any resultant damage.

2.1.1.1 Protection of Trees

Protect existing trees which are to remain and which may be injured, bruised, defaced, or otherwise damaged by construction operations. Remove displaced rocks from uncleared areas. By approved excavation, remove trees with 30 percent or more of their root systems destroyed. Removal of trees and the procedure for removal requires approval of the Contracting Officer.

2.1.1.2 Landscape Replacement

Remove trees and other landscape features scarred or damaged by equipment operations, and replace with equivalent, undamaged trees and landscape features. Obtain Contracting Officer's approval before removal or replacement.
2.1.1.3 Temporary Construction

Remove traces of temporary construction facilities such as haul roads, work area, structures, foundations of temporary structures, stockpiles of excess or waste materials, and other signs of construction. Grade temporary roads, parking areas, and similar temporarily used areas to conform with surrounding contours.

2.1.2 Water Resources

2.1.2.1 Oily Wastes

Prevent oily or other hazardous substances from entering the ground, drainage areas, or local bodies of water. Surround all temporary fuel oil or petroleum storage tanks with a temporary earth berm of sufficient size and strength to contain the contents of the tanks in the event of leakage or spillage.

2.2 HISTORICAL AND ARCHAEOLOGICAL RESOURCES

Carefully protect in-place and report immediately to the Contracting Officer historical and archaeological items or human skeletal remains discovered in the course of work. Stop work in the immediate area of the discovery until directed by the Contracting Officer to resume work. The Government retains ownership and control over historical and archaeological resources.

2.3 NOISE

Make the maximum use of low-noise emission products, as certified by the EPA. Blasting or use of explosives will not be permitted without written permission from the Contracting Officer, and then only during designated times.

2.4 RESTRICTIONS ON EQUIPMENT

2.4.1 Electromagnetic Interference Suppression

a. Electric motors must comply with MIL-STD-461 relative to radiated and conducted electromagnetic interference. A test for electromagnetic interference will not be required for motors that are identical physically and electrically to those that have previously met the requirements of MIL-STD-461. An electromagnetic interference suppression test will not be required for electric motors without commutation or sliprings having no more than one starting contact and operated at 3,600 revolutions per minute or less.

b. Equipment used by the Contractor shall comply with MIL-S-16165 for internal combustion engines and MIL-STD-461 for other devices capable of producing radiated or conducted interference.

c. Conduct tests for electromagnetic interference on electric motors and Contractor's construction equipment in accordance with MIL-STD-461 and MIL-STD-462. Test location shall be reasonably
free from radiated and conducted interference. Furnish testing
equipment, instruments, and personnel for making the tests; a test
location; and other necessary facilities.

2.4.2 Radio Transmitter Restrictions

Conform to the restrictions and procedures for the use of radio
transmitting equipment, as directed. Do not use transmitters without prior
approval.

2.5 EROSION AND SEDIMENT CONTROL MEASURES

Erosion & Sediment control measures are to be in accordance with North
Carolina Department of Environmental and Natural Resources. Erosion &
Sediment Control measures include the installation of sediment fence, see
construction drawings for sediment fence location and details.

2.6 CONTROL AND DISPOSAL OF SOLID WASTES

Pick up and separate solid wastes, and place in covered containers which
are regularly emptied. Do not prepare or cook food on the project site.
Prevent contamination of the site or other areas when handling and
disposing of wastes. At project completion, leave the areas clean.

2.6.1 Disposal of Metal Paint Cans

All metal paint cans shall be taken to Building 962 for recycling. The
cans shall be empty and completely dry. The cans shall be triple rinsed
and stenciled "Triple Rinsed" prior to turn in. The Contractor shall give
the Government 72 hours advance notice prior to turn-in. Contractor is
responsible for rinsing, stenciling, crushing, and depositing in Government
owned receptacle, located at Building 962.

2.6.2 Disposal of Rubbish and Debris

Rubbish and debris shall be taken off-base for disposal, unless
specifically directed otherwise.

Metals shall be taken to the DRMO disposal area at Lot 203, as specified.

2.6.3 Disposal Off-Base

a. Provide 24-hour advance written notice to the Contracting Office
 of Contractor's intention to dispose of off base.

b. Disposal at sites or landfills not holding a valid State of North
 Carolina permit is specifically prohibited. The prohibition also
 applies to sites where a permit may have been applied for but not
 yet obtained.

c. Off-base disposal of construction debris outside the parameters of
 this paragraph at site without State permits and/or not in
 accordance with regulatory requirements shall require the
 Contractor at his own expense to remove, transport and relocate
 the debris to a State approved site. The Contractor shall also be
 required to pay any fines, penalties, or fees related to the
2.7 CONTROL AND DISPOSAL OF HAZARDOUS WASTE

2.7.1 Hazardous Waste Generation

Handle generated hazardous waste in accordance with 40 CFR 262.

2.7.2 Hazardous Waste Disposal

Dispose of hazardous waste in accordance with Federal, State, and local regulations, especially 40 CFR 263, 40 CFR 264, and 40 CFR 265. Removal of hazardous waste from Government property shall not occur without prior notification and coordination with the Contracting officer. Transport hazardous waste by a permitted, licensed, or registered hazardous waste transporter to a TSD facility. Hazardous waste shall be properly identified, packaged, and labeled in accordance with 49 CFR 172. Provide completed manifest for hazardous waste disposed of off-site to the Contracting Officer within 7 days of disposal. Hazardous waste shall not be brought onto the station.

2.7.3 Hazardous Waste Storage

Store hazardous waste in containers in accordance with 49 CFR 178. Identify hazardous waste in accordance with 40 CFR 261 and 40 CFR 262. Identify hazardous waste generated within the confines of the station by the station's EPA generator identification number.

2.7.4 Spills of Oil and Hazardous Materials

Take precautions to prevent spills of oil and hazardous material. In the event of a spill, immediately notify the Contracting Officer. Spill response shall be in accordance with 40 CFR 300 and applicable State regulations.

2.7.5 Lead-Acid Batteries

Dispose of lead-acid batteries that are not damaged or leaking at a State-approved battery recycle or at a permitted or interim status hazardous waste TSD facility. For lead-acid batteries that are leaking or have cracked casings, dispose of the electrolyte solution using one of the following alternatives:

a. An industrial waste water treatment plant, if available and approved by the Contracting Officer for disposing of lead-acid battery electrolyte.

b. Dispose of the lead-acid battery electrolyte at a permitted or interim status hazardous waste TSD facility.

The management and disposal of waste lead-acid batteries and electrolyte shall comply with requirements for management and disposal of hazardous wastes.

2.7.6 Mercury Control

Prior to starting work, remove thermostats, switches, and other components that contain mercury. Upon removal, place items containing mercury in doubled polyethylene bags, label, and turn over to the Contracting Officer.
2.7.7 Petroleum Products

Protect against spills and evaporation during fueling and lubrication of equipment and motor vehicles. Dispose of lubricants to be discarded and excess oil.

2.7.8 Ozone Depleting Substances (ODS)

Remove ODS as specified in Section 02 41 00, "Demolition."

2.8 DUST CONTROL

Keep dust down at all times, including nonworking periods. Sprinkle or treat, with dust suppressants, the soil at the site, haul roads, and other areas disturbed by operations. Dry power brooming will not be permitted. Instead, use vacuuming, wet mopping, wet sweeping, or wet power brooming. Air blowing will be permitted only for cleaning nonparticulate debris such as steel reinforcing bars. Only wet cutting will be permitted for cutting concrete blocks, concrete, and bituminous concrete. Do not shake bags of cement, concrete mortar, or plaster unnecessarily.

2.8.1 Abrasive Blasting

2.8.1.1 Blasting Operations

The use of silica sand is prohibited in abrasive blasting.

Provide tarpaulin drop cloths and windscreens to enclose abrasive blasting operations to confine and collect dust, abrasive agent, paint chips, and other debris.

2.8.1.2 Disposal Requirements

Collect dust, abrasive, paint, and other debris resulting from abrasive blasting operations and store in 55 gallon drums with watertight lids. Take a representative sample of this material, and test for EP toxicity with respect to lead, chromium, and cadmium content. The sampling and testing shall be performed in accordance with 40 CFR 261.

2.9 SOIL

No dirt from construction sites shall leave Marine Corps Base Camp Lejeune or Marine Corps Air Station property (with the exception of environmental remedial activities). Any excess soil that cannot be reused on its originating site shall be transported to one of the following locations:

Areas managed by G-3/5 for re-use on training areas for various maintenance activities:

1. 3.1 acre storage east of OP-4 on Sneads Ferry Road (figure 1)
2. 3.5 acre storage within TLZ Condor off Verona Loop Road (figure 2)

Prior to delivering soil to these stockpile locations, the following must be conducted:
1. Coordinate with G-3/5 (Mr. Dave Lynch or Mr. Bill VanPelt, MCIEAST-MCB CAMLEJ, 910-451-5772/8799) to determine capacity available (i.e., how much soil can be stored)

2. All soils will be clear of organic material such as roots and timber.

3. Contact POCs listed above 7-10 days in advance to coordinate delivery of material at the storage locations

NOTE: Soil contaminated with debris or chemicals cannot be disposed at the stockpile locations. If contaminated soils are suspected or confirmed through presence of UXO, odors or visual staining, affected soils must be properly tested, manifested and disposed of in accordance with RCRA regulations. Contact Base EMD (ER Program Manager) for more information.

2.10 QUARANTINE FOR IMPORTED FIRE ANT (4/82)

Onslow, Jones, and Cartaret Counties and portions of Duplin and Craven Counties have been declared a generally infested area by the United States Department of Agriculture (USDA) for the imported fire ant. Compliance with the quarantine regulations established by this authority as set forth in USDA Publication 301.81 of 31 December 1992, is required for operations hereunder. Pertinent requirements of the quarantine for materials originating on the Camp Lejeune reservation, the Marine Corps Air Station (Helicopter), New River and the Marine Corps Air Station, Cherry Point, which are to be transported outside Onslow County or adjacent suppression areas, include the following:

a. Certification is required for the following articles and they shall not be moved from the reservation to any point outside Onslow County and adjacent designated areas unless accompanied by a valid inspection certificate issued by an Officer of the Plant Protection and Quarantine Program (PPQ) of the U.S. Department of Agriculture.

(1) Bulk soil

(2) Used mechanized soil-moving equipment. (Used mechanized soil-moving equipment is exempt if cleaned of loose noncompacted soil).

(3) Other products, articles, or means of conveyances, if it is determined by an inspector that they present a hazard of transporting spread of the imported fire ant and the person in possession thereof has been so notified.

b. Authorization for movement of equipment outside the imported fire and regulated area shall be obtained from USDA, Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Box 28, Goldsboro, North Carolina, 27533-0028, Attn: Mr. William Scroggins or Mr. Frank Best, telephone (919) 735-1941. If Mr. Scroggins or Mr. Best are not available, contact Mr. Jim Kelley at (910) 815-4667, the supervisor's office in
Requests for inspection shall be made sufficiently in advance of the date of movement to permit arrangements for the services of authorized inspectors. The equipment shall be prepared and assembled so that it may be readily inspected. Soil on or attached to equipment, supplies, and materials shall be removed by washing with water or such other means as necessary to accomplish complete removal. Resulting spoil shall be wasted as necessary and as directed.
Contractor shall submit data annually (By 1 December) for the following products used during the previous fiscal year (1 October – 30 September) as required by 6002 of the Solid Waste Disposal Act as amended by Resource Conservation and Recovery Act (RCRA):

<table>
<thead>
<tr>
<th>Contract Number:</th>
<th>Fiscal Year:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>UNIT</th>
<th>QUANTITY (CRM)</th>
<th>TOTAL QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Loose fill</td>
<td>Ft3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Blanket or batt</td>
<td>Ft2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Board</td>
<td>Ft2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Spray-in-place</td>
<td>m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Cement and Concrete</td>
<td>yd3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Paper and Paper Products</td>
<td>Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Copy Paper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Printing/Writing Paper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Corrugated and fiberboard boxes</td>
<td>Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Folding boxboard and cartons</td>
<td>Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Stationary, office papers, envelopes, and computer paper</td>
<td>$Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Toilet tissue, paper towels, facial tissue, paper napkins, doilies and industrial wipes</td>
<td>$Amt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Brown papers and coarse papers</td>
<td>Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX A
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quantity (CRM)</td>
<td>Quantity used containing recovered materials.</td>
</tr>
<tr>
<td>2. Total Quantity</td>
<td>Quantity used containing recovered materials plus quantity used not containing recovered materials.</td>
</tr>
<tr>
<td>3. Unit</td>
<td>Ft3 (cubic feet), Ft2 (square feet), m3 (cubic meters), yd3 (cubic yards), box (number of boxes used), $ Amt (dollar value of material used)</td>
</tr>
<tr>
<td>4. Loose-Fill Insulation</td>
<td>Includes, but is not limited to... "cellulose fiber, mineral fibers (fiberglass and rock wool), vermiculite, and perlite.</td>
</tr>
<tr>
<td>5. Blanket or Batt Insulation</td>
<td>Includes, but is not limited to... "mineral fibers (fiberglass and rock wool)."</td>
</tr>
<tr>
<td>6. Board Insulation</td>
<td>This category refers to sheathing, roof decking, and wood panel insulation. It includes, but is not limited to... "cellulose fiber fiberboard, perlite composite board, polyurethane, polyisocyanurate, polystyrene, phenolics, and composites."</td>
</tr>
<tr>
<td>7. Spray-in-place Insulation</td>
<td>Includes, but is not limited to... "foam-in-place polyurethane and polyisocyanurate, and spray-on cellulose."</td>
</tr>
<tr>
<td>8. Cement or Concrete Containing Recovered Materials, Cement, or Concrete Containing Fly Ash</td>
<td></td>
</tr>
<tr>
<td>9. Copy Paper</td>
<td>This item refers to... "any grade of paper suitable for copying by the xerographic method."</td>
</tr>
<tr>
<td>10. Printing & Writing Paper</td>
<td>This item refers to... "paper designed for printing, other than newsprint, such as offset or book paper," and... "paper suitable for pen and ink, pencil, typewriter or printing."</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>11. Corrugated & Fiberboard Boxes</td>
<td>Corrugated boxes refer to... "boxes made of corrugated paperboard, which, in turn, is made from a fluted corrugating medium pasted to two flat sheets of paperboard (linerboard)." Fiber or fiberboard boxes refer to... "boxes made from containerboard, either solid fiber or corrugated paperboard (general term); or boxes made from solid paperboard of the same material throughout."</td>
</tr>
<tr>
<td>12. Folding Boxes and Cartons</td>
<td>This item refers to... "a paperboard suitable for the manufacture of folding cartons."</td>
</tr>
<tr>
<td>13. Stationery, Office Papers, Envelopes, and Manifold Business Forms</td>
<td>This item is considered self-explanatory, however, if questions arise refer to 40 CFR 250.4 for definitions of any of these items.</td>
</tr>
<tr>
<td>14. Toilet Tissue, Paper Towels, Facial Tissue, Paper Napkins, Doilies, and Industrial Wipes</td>
<td>This item is considered self-explanatory, however, if questions arise refer to 40 CFR 250.4 for definitions of any of these items.</td>
</tr>
<tr>
<td>15. Brown Papers, and Coarse Papers</td>
<td>Brown papers refer to... "papers usually made from unbleached kraft pulp and used for bags, sacks, wrapping paper, and so forth." Coarse papers refer to... "papers used for industrial purposes, as distinguished from those used for cultural or sanitary purposes."</td>
</tr>
<tr>
<td>16. Other</td>
<td>Any other type of paper not included in any of the above categories.</td>
</tr>
</tbody>
</table>
APPENDIX A

-- End of Section --
PART 1 GENERAL

1.1 PROJECT SIGN

Within 15 days after the commencement of work, provide one project identification sign at the location designated. Construct the sign using exterior grade plywood, preservative-treated lumber, and galvanized hardware. Maintain sign throughout the life of the project. Upon completion of the project, remove the sign from the site.

1.2 PROJECT IDENTIFICATION SIGNBOARD

A project identification signboard shall be provided. The Signboard shall be provided at a conspicuous location on the job site where directed by the Contracting Officer. Construct signboard in accordance with Project Identification Signboard Plates 1 and 2.

a. The field of the sign shall consist of one 4 by 8 foot sheet of grade B-B, medium density overlaid exterior plywood.

b. Lumber shall be B or Better Southern pine, pressure-preservative treated with penetachlorophenol. Nails shall be aluminum or galvanized steel.

c. The entire signboard and supports shall be given one coat of exterior alkyd primer and two coats of exterior alkyd enamel paint. The lettering and sign work shall be performed by a skilled sign painter using paint known in the trade as bulletin colors. The colors, lettering sizes and lettering styles shall be as indicated.

d. The high gloss acrylic gold enamel paint used as background for the Department of the Navy - Naval Facilities Engineering Command Activity logo shall be spray applied automotive quality paint. The 18 inch diameter logo shall be as supplied or approved by the Activity.

e. Sign Paint Colors (Numbers listed below for color identification only).

(1) Blue = Benjamin Moore Paint No. 826.
(2) White = Benjamin Moore Paint No. 873.

(3) Gold = Dupont No. B8014, Metallic Gold.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-07 Certificates
Certificate of North Carolina Licensed Applicator
SD-11 Closeout Submittals
Completed Field Pesticide/Herbicide Management Record Form

1.2 QUALITY ASSURANCE

1.2.1 Certificate of North Carolina Licensed Applicator

A North Carolina licensed applicator is required. Submit a copy of the certificate(s) to the Base Pest Management Coordinator (PMC) through the Contracting Officer.

PART 2 PRODUCTS

2.1 PESTICIDE/HERBICIDE LIST FOR CAMP LEJEUNE

The Contractor shall comply with Base Regulations and use only approved pesticides listed on the current "Approved Pesticide List for Camp Lejeune, NC". The attached document is current as of the date indicated but may be revised at any time. The approved list that is current at the time of application must be utilized. Contact the Contract Officer to obtain the current approved list.

PART 3 EXECUTION

3.1 COORDINATION WITH BASE PEST MANAGEMENT COORDINATOR (PMC)

Contractor shall coordinate with the PMC before proceeding with any pesticide/herbicide application.

3.2 FIELD PESTICIDE/HERBICIDE MANAGEMENT RECORD FORM

Following the pesticide/herbicide application, the Contractor shall complete the attached Field Pesticide/Herbicide Management Record Form and submit to the Base Pest Management Coordinator (PMC) through the Contracting Officer. The completed form(s) shall be submitted within 15 days after application.
PART 1 GENERAL

1.1 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-10, Operation and Maintenance Data

 Equipment/product warranty list

 Submit Data Package 1 in accordance with Section 01 78 23, "Operation and Maintenance Data."

SD-11 Closeout Submittals

 As-built drawings

 Record of materials

 Maximo requirements

 Complete Submittal Package 2 CD/DVD's

 Equipment/product warranty tag

1.2 PROJECT RECORD DOCUMENTS

As-Built Drawings will be submitted as specified in 1.2.1 along with GIS Deliverables which will be created and submitted as specified in Section 01 78 30, DIGITAL DATA DELIVERABLES (GIS).

1.2.1 As-Built Drawings

"FAC 5252.236-9310, Record Drawings." As-built drawings will be submitted in redline mark-up format.

1.2.2 As-Built Record of Materials

Furnish a record of materials.

Where several manufacturers' brands, types, or classes of the item listed have been used in the project, designate specific areas where each item was used. Designations shall be keyed to the areas and spaces depicted on the contract drawing. Furnish the record of materials used in the following format:
1.3 MAXIMO REQUIREMENTS

Submit maximo requirements as specified in Section 23 03 00.00 20 and 26 00 00.

1.4 EQUIPMENT/PRODUCT WARRANTIES

1.4.1 Equipment/Product Warranty List

Furnish to the Contracting Officer a bound and indexed notebook containing written warranties for equipment/products that have extended warranties (warranty periods exceeding the standard one-year warranty) furnished under the contract, and prepare a complete listing of such equipment/products. The equipment/products list shall state the specification section applicable to the equipment/product, duration of the warranty therefor, start date of the warranty, ending date of the warranty, and the point of contact for fulfillment of the warranty. The warranty period shall begin on the same date as project acceptance and shall continue for the full product warranty period. Execute the full list and deliver to the Contracting Officer prior to final acceptance of the facility.

1.4.2 Equipment Warranty Tags and Guarantor's Local Representative

Furnish with each warranty the name, address, and telephone number of the guarantor's representative nearest to the location where the equipment and appliances are installed. The guarantor's representative, upon request of the station representative, shall honor the warranty during the warranty period, and shall provide the services prescribed by the terms of the warranty. At the time of installation, tag each item of warranted equipment with a durable, oil- and water-resistant tag approved by the Contracting Officer. Attach tag with copper wire and spray with a clear silicone waterproof coating. Leave the date of acceptance and QC's signature blank until project is accepted for beneficial occupancy. Tag shall show the following information:

EQUIPMENT/PRODUCT WARRANTY TAG

Type of Equipment/Product ____________________
Warranty Period __________ From __________ To __________
Contract No. ____________________
Inspector's Signature ____________________ Date Accepted __________

Construction Contractor:
Name: ____________________
Address: ____________________
Telephone: ____________________

Warranty Contact: ____________________
Name: ____________________
Address: ____________________
Telephone: ____________________
1.5 MECHANICAL TESTING AND BALANCING

All contract requirements of Section 23 09 23.13, "Direct Digital Control Systems," shall be fully completed, including all testing, prior to contract completion date. In addition, all contract requirements of Section 23 05 93, "TESTING, ADJUSTING, AND BALANCING FOR HVAC" shall be fully completed, including testing and inspection, prior to contract completion date.

1.6 COMPLETE SUBMITTAL PACKAGE

Contractor shall make electronic copies of all submittals, including the approved transmittal sheets, and provide two (2) CD/DVD's containing all submittals for the project.

The CD/DVD's shall be marked "Complete Submittal Package - Contract #______ ."

1.7 CLEANUP

Leave premises "broom clean." Clean interior and exterior glass surfaces exposed to view; remove temporary labels, stains and foreign substances; polish transparent and glossy surfaces; vacuum carpeted and soft surfaces. Clean equipment and fixtures to a sanitary condition. Clean filters of operating equipment. Clean debris from roofs, gutters, downspouts and drainage systems. Sweep paved areas and rake clean landscaped areas. Remove waste and surplus materials, rubbish and construction facilities from the site.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-10 Operation and Maintenance Data
O&M Database
Training Plan
Training Outline
Training Content

SD-11 Closeout Submittals
Training Video Recording
Validation of Training Completion

1.2 OPERATION AND MAINTENANCE DATA

Submit Operation and Maintenance (O&M) Data for the provided equipment, product, or system, defining the importance of system interactions, troubleshooting, and long-term preventive operation and maintenance. Compile, prepare, and aggregate O&M data to include clarifying and updating the original sequences of operation to as-built conditions. Organize and present information in sufficient detail to clearly explain O&M requirements at the system, equipment, component, and subassembly level. Include an index preceding each submittal. Submit in accordance with this section and Section 01 33 00 SUBMITTAL PROCEDURES.

1.2.1 Package Quality

Documents must be fully legible. Operation and Maintenance data must be consistent with the manufacturer's standard brochures, schematics, printed instructions, general operating procedures, and safety precautions.

1.2.2 Package Content

Provide data package content in accordance with paragraph SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES. Comply with the data package requirements specified in the individual technical sections, including the content of the packages and addressing each product, component, and system designated for data package submission, except as follows. When items without a specified data package are required, consult the ROICC for data package direction.
1.2.3 Changes to Submittals

Provide manufacturer-originated changes or revisions to submitted data if a component of an item is so affected subsequent to acceptance of the O&M Data. Submit changes, additions, or revisions required by the Contracting Officer for final acceptance of submitted data within 30 calendar days of the notification of this change requirement.

1.3 O&M DATABASE

Develop an editable, electronic spreadsheet based on the equipment in the Operation and Maintenance Manuals that contains the information required to start a preventive maintenance program. As a minimum, provide list of system equipment, location installed, warranty expiration date, manufacturer, model, and serial number.

1.4 OPERATION AND MAINTENANCE MANUAL FILE FORMAT

Assemble data packages into electronic Operation and Maintenance Manuals. Assemble each manual into a composite electronically indexed file using the most current version of Adobe Acrobat or similar software capable of producing PDF file format. Provide compact disks (CD) or data digital versatile disk (DVD) as appropriate, so that each one contains operation, maintenance and record files, project record documents, and training videos. Include a complete electronically linked operation and maintenance directory.

1.4.1 Organization

Bookmark Product and Drawing Information documents using the current version of CSI Masterformat numbering system, and arrange submittals using the specification sections as a structure. Use CSI Masterformat and UFGS numbers along with descriptive bookmarked titles that explain the content of the information that is being bookmarked.

1.4.2 CD or DVD Label and Disk Holder or Case

Provide the following information on the disk label and disk holder or case:

a. Building Number
b. Project Title
c. Activity and Location
d. Construction Contract Number
e. Prepared For: (Contracting Agency)
f. Prepared By: (Name, title, phone number and email address)
g. Include the disk content on the disk label
h. Date
i. Virus scanning program used
1.5 TYPES OF INFORMATION REQUIRED IN O&M DATA PACKAGES

The following are a detailed description of the data package items listed in paragraph SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES.

1.5.1 Operating Instructions

Provide specific instructions, procedures, and illustrations for the following phases of operation for the installed model and features of each system:

1.5.1.1 Safety Precautions and Hazards

List personnel hazards and equipment or product safety precautions for operating conditions. List all residual hazards identified in the Activity Hazard Analysis provided under Section 01 35 29 GOVERNMENT SAFETY REQUIREMENTS. Provide recommended safeguards for each identified hazard.

1.5.1.2 Operator Prestart

Provide procedures required to install, set up, and prepare each system for use.

1.5.1.3 Startup, Shutdown, and Post-Shutdown Procedures

Provide narrative description for Startup, Shutdown and Post-shutdown operating procedures including the control sequence for each procedure.

1.5.1.4 Normal Operations

Provide Control Diagrams with data to explain operation and control of systems and specific equipment. Provide narrative description of Normal Operating Procedures.

1.5.1.5 Emergency Operations

Provide Emergency Procedures for equipment malfunctions to permit a short period of continued operation or to shut down the equipment to prevent further damage to systems and equipment. Provide Emergency Shutdown Instructions for fire, explosion, spills, or other foreseeable contingencies. Provide guidance and procedures for emergency operation of utility systems including required valve positions, valve locations and zones or portions of systems controlled.

1.5.1.6 Operator Service Requirements

Provide instructions for services to be performed by the operator such as lubrication, adjustment, inspection, and recording gauge readings.

1.5.1.7 Environmental Conditions

Provide a list of Environmental Conditions (temperature, humidity, and other relevant data) that are best suited for the operation of each product, component or system. Describe conditions under which the item equipment should not be allowed to run.

1.5.1.8 Operating Log

Provide forms, sample logs, and instructions for maintaining necessary
operating records.

1.5.1.9 Additional Requirements for HVAC Control Systems

Provide Data Package 5 and the following for control systems:

a. Narrative description on how to perform and apply functions, features, modes, and other operations, including unoccupied operation, seasonal changeover, manual operation, and alarms. Include detailed technical manual for programming and customizing control loops and algorithms.

b. Full as-built sequence of operations.

c. Copies of checkout tests and calibrations performed by the Contractor (not Cx tests).

d. Full points list. Provide a listing of rooms with the following information for each room:

 (1) Floor
 (2) Room number
 (3) Room name
 (4) Air handler unit ID
 (5) Reference drawing number
 (6) Air terminal unit tag ID
 (7) Heating or cooling valve tag ID
 (8) Minimum cfm
 (9) Maximum cfm

e. Full print out of all schedules and set points after testing and acceptance of the system.

f. Full as-built print out of software program.

g. Marking of system sensors and thermostats on the as-built floor plan and mechanical drawings with their control system designations.

1.5.2 Preventive Maintenance

Provide the following information for preventive and scheduled maintenance to minimize repairs for the installed model and features of each system. Include potential environmental and indoor air quality impacts of recommended maintenance procedures and materials.

1.5.2.1 Lubrication Data

Include the following preventive maintenance lubrication data, in addition to instructions for lubrication required under paragraph OPERATOR SERVICE REQUIREMENTS:

a. A table showing recommended lubricants for specific temperature ranges
and applications.

b. Charts with a schematic diagram of the equipment showing lubrication points, recommended types and grades of lubricants, and capacities.

c. A Lubrication Schedule showing service interval frequency.

1.5.2.2 Preventive Maintenance Plan, Schedule, and Procedures

Provide manufacturer's schedule for routine preventive maintenance, inspections, condition monitoring (predictive tests) and adjustments required to ensure proper and economical operation and to minimize repairs. Provide instructions stating when the systems should be retested. Provide manufacturer's projection of preventive maintenance work-hours on a daily, weekly, monthly, and annual basis including craft requirements by type of craft. For periodic calibrations, provide manufacturer's specified frequency and procedures for each separate operation.

a. Define the anticipated time required to perform each of each test (work-hours), test apparatus, number of personnel identified by responsibility, and a testing validation procedure permitting the record operation capability requirements within the schedule. Provide a remarks column for the testing validation procedure referencing operating limits of time, pressure, temperature, volume, voltage, current, acceleration, velocity, alignment, calibration, adjustments, cleaning, or special system notes. Delineate procedures for preventive maintenance, inspection, adjustment, lubrication and cleaning necessary to minimize repairs.

b. Repair requirements must inform operators how to check out, troubleshoot, repair, and replace components of the system. Include electrical and mechanical schematics and diagrams and diagnostic techniques necessary to enable operation and troubleshooting of the system after acceptance.

1.5.3 Repair

Provide manufacturer's recommended procedures and instructions for correcting problems and making repairs.

1.5.3.1 Troubleshooting Guides and Diagnostic Techniques

Provide step-by-step procedures to promptly isolate the cause of typical malfunctions. Describe clearly why the checkout is performed and what conditions are to be sought. Identify tests or inspections and test equipment required to determine whether parts and equipment may be reused or require replacement.

1.5.3.2 Wiring Diagrams and Control Diagrams

Provide point-to-point drawings of wiring and control circuits including factory-field interfaces. Provide a complete and accurate depiction of the actual job specific wiring and control work. On diagrams, number electrical and electronic wiring and pneumatic control tubing and the terminals for each type, identically to actual installation configuration and numbering.
1.5.3.3 Repair Procedures

Provide instructions and a list of tools required to repair or restore the product or equipment to proper condition or operating standards.

1.5.3.4 Removal and Replacement Instructions

Provide step-by-step procedures and a list of required tools and supplies for removal, replacement, disassembly, and assembly of components, assemblies, subassemblies, accessories, and attachments. Provide tolerances, dimensions, settings and adjustments required. Use a combination of text and illustrations.

1.5.3.5 Spare Parts and Supply Lists

Provide lists of spare parts and supplies required for repair to ensure continued service or operation without unreasonable delays. Special consideration is required for facilities at remote locations. List spare parts and supplies that have a long lead-time to obtain.

1.5.3.6 Repair Work-Hours

Provide manufacturer's projection of repair work-hours including requirements by type of craft. Identify, and tabulate separately, repair that requires the equipment manufacturer to complete or to participate.

1.5.4 Appendices

Provide information required below and information not specified in the preceding paragraphs but pertinent to the maintenance or operation of the product or equipment. Include the following:

1.5.4.1 Product Submittal Data

Provide a copy of SD-03 Product Data submittals documented with the required approval.

1.5.4.2 Manufacturer's Instructions

Provide a copy of SD-08 Manufacturer's Instructions submittals documented with the required approval.

1.5.4.3 O&M Submittal Data

Provide a copy of SD-10 Operation and Maintenance Data submittals documented with the required approval.

1.5.4.4 Parts Identification

Provide identification and coverage for the parts of each component, assembly, subassembly, and accessory of the end items subject to replacement. Include special hardware requirements, such as requirement to use high-strength bolts and nuts. Identify parts by make, model, serial number, and source of supply to allow reordering without further identification. Provide clear and legible illustrations, drawings, and exploded views to enable easy identification of the items. When illustrations omit the part numbers and description, both the illustrations and separate listing must show the index, reference, or key number that will cross-reference the illustrated part to the listed part. Group the
parts shown in the listings by components, assemblies, and subassemblies in accordance with the manufacturer's standard practice. Parts data may cover more than one model or series of equipment, components, assemblies, subassemblies, attachments, or accessories, such as typically shown in a master parts catalog.

1.5.4.5 Warranty Information

List and explain the various warranties and clearly identify the servicing and technical precautions prescribed by the manufacturers or contract documents in order to keep warranties in force. Include warranty information for primary components of the system. Provide copies of warranties required by Section 01 78 00 CLOSEOUT SUBMITTALS.

1.5.4.6 Extended Warranty Information

List all warranties for products, equipment, components, and sub-components whose duration exceeds one year. For each warranty listed, indicate the applicable specification section, duration, start date, end date, and the point of contact for warranty fulfillment. Also, list or reference the specific operation and maintenance procedures that must be performed to keep the warranty valid. Provide copies of warranties required by Section 01 78 00 CLOSEOUT SUBMITTALS.

1.5.4.7 Personnel Training Requirements

Provide information available from the manufacturers that is needed for use in training designated personnel to properly operate and maintain the equipment and systems.

1.5.4.8 Testing Equipment and Special Tool Information

Include information on test equipment required to perform specified tests and on special tools needed for the operation, maintenance, and repair of components. Provide final set points.

1.5.4.9 Testing and Performance Data

Include completed prefunctional checklists, functional performance test forms, and monitoring reports. Include recommended schedule for retesting and blank test forms. Provide final set points.

1.5.4.10 Field Test Reports

Provide a copy of Field Test Reports (SD-06) submittals documented with the required approval.

1.5.4.11 Contractor Information

Provide a list that includes the name, address, and telephone number of the General Contractor and each Subcontractor who installed the product or equipment, or system. For each item, also provide the name address and telephone number of the manufacturer's representative and service organization that can provide replacements most convenient to the project site. Provide the name, address, and telephone number of the product, equipment, and system manufacturers.
1.6 SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES

Provide the O&M data packages specified in individual technical sections. The information required in each type of data package follows:

1.6.1 Data Package 1

a. Safety precautions and hazards
b. Cleaning recommendations
c. Maintenance and repair procedures
d. Warranty information
e. Extended warranty information
f. Contractor information
g. Spare parts and supply list

1.6.2 Data Package 2

a. Safety precautions and hazards
b. Normal operations
c. Environmental conditions
d. Lubrication data
e. Preventive maintenance plan, schedule, and procedures
f. Cleaning recommendations
g. Maintenance and repair procedures
h. Removal and replacement instructions
i. Spare parts and supply list
j. Parts identification
k. Warranty information
l. Extended warranty information
m. Contractor information

1.6.3 Data Package 3

a. Safety precautions and hazards
b. Operator prestart
c. Startup, shutdown, and post-shutdown procedures
d. Normal operations
e. Emergency operations
f. Environmental conditions
g. Operating log
h. Lubrication data
i. Preventive maintenance plan, schedule, and procedures
j. Cleaning recommendations
k. Troubleshooting guides and diagnostic techniques
l. Wiring diagrams and control diagrams
m. Maintenance and repair procedures
n. Removal and replacement instructions
o. Spare parts and supply list
p. Product submittal data
q. O&M submittal data
r. Parts identification
s. Warranty information
t. Extended warranty information
u. Testing equipment and special tool information
v. Testing and performance data
w. Contractor information
x. Field test reports

1.6.4 Data Package 4

a. Safety precautions and hazards
b. Operator prestart
c. Startup, shutdown, and post-shutdown procedures
d. Normal operations
e. Emergency operations
f. Operator service requirements
g. Environmental conditions
h. Operating log
i. Lubrication data
j. Preventive maintenance plan, schedule, and procedures
k. Cleaning recommendations
l. Troubleshooting guides and diagnostic techniques
m. Wiring diagrams and control diagrams
n. Repair procedures
o. Removal and replacement instructions
p. Spare parts and supply list
q. Repair work-hours
r. Product submittal data
s. O&M submittal data
t. Parts identification
u. Warranty information
v. Extended warranty information
w. Personnel training requirements
x. Testing equipment and special tool information
y. Testing and performance data
z. Contractor information
aa. Field test reports

1.6.5 Data Package 5
a. Safety precautions and hazards
b. Operator prestart
c. Start-up, shutdown, and post-shutdown procedures
d. Normal operations
e. Environmental conditions
f. Preventive maintenance plan, schedule, and procedures
g. Troubleshooting guides and diagnostic techniques
h. Wiring and control diagrams
i. Maintenance and repair procedures
j. Removal and replacement instructions
k. Spare parts and supply list
l. Product submittal data
m. Manufacturer's instructions
n. O&M submittal data
o. Parts identification
p. Testing equipment and special tool information
q. Warranty information
r. Extended warranty information
s. Testing and performance data
t. Contractor information
u. Field test reports
v. Additional requirements for HVAC control systems

PART 2 PRODUCTS
Not Used

PART 3 EXECUTION

3.1 TRAINING

Prior to acceptance of the facility by the Contracting Officer for Beneficial Occupancy, provide comprehensive training for the systems and equipment specified in the technical specifications. The training must be targeted for the building maintenance personnel, and applicable building occupants. Instructors must be well-versed in the particular systems that they are presenting. Address aspects of the Operation and Maintenance Manual submitted in accordance with Section 01 78 00 CLOSEOUT SUBMITTALS. Training must include classroom or field lectures based on the system operating requirements. The location of classroom training requires approval by the Contracting Officer.

3.1.1 Training Plan

Submit a written training plan to the Contracting Officer for approval at least 60 calendar days prior to the scheduled training. Training plan must be approved by the Quality Control Manager (QC) prior to forwarding to the Contracting Officer. Also, coordinate the training schedule with the Contracting Officer and QC. Include within the plan the following elements:

a. Equipment included in training
b. Intended audience
c. Location of training
d. Dates of training
e. Objectives

f. Outline of the information to be presented and subjects covered including description

g. Start and finish times and duration of training on each subject

h. Methods (e.g. classroom lecture, video, site walk-through, actual operational demonstrations, written handouts)

i. Instructor names and instructor qualifications for each subject

j. List of texts and other materials to be furnished by the Contractor that are required to support training

k. Description of proposed software to be used for video recording of training sessions.

3.1.2 Training Content

The core of this training must be based on manufacturer's recommendations and the operation and maintenance information. The QC is responsible for overseeing and approving the content and adequacy of the training. Spend 95 percent of the instruction time during the presentation on the OPERATION AND MAINTENANCE DATA. Include the following for each system training presentation:

a. Start-up, normal operation, shutdown, unoccupied operation, seasonal changeover, manual operation, controls set-up and programming, troubleshooting, and alarms.

b. Relevant health and safety issues.

c. Discussion of how the feature or system is environmentally responsive. Advise adjustments and optimizing methods for energy conservation.

d. Design intent.

e. Use of O&M Manual Files.

f. Review of control drawings and schematics.

g. Interactions with other systems.

h. Special maintenance and replacement sources.

i. Tenant interaction issues.

3.1.3 Training Outline

Provide the Operation and Maintenance Manual Files (Bookmarked PDF) and a written course outline listing the major and minor topics to be discussed by the instructor on each day of the course to each trainee in the course. Provide the course outline 14 calendar days prior to the training.

3.1.4 Training Video Recording

Record classroom training session(s) on video. Provide to the Contracting Officer two copies of the training session(s) in DVD video recording.
format. Capture within the recording, in video and audio, the instructors' training presentations including question and answer periods with the attendees. The recording camera(s) must be attended by a person during the recording sessions to assure proper size of exhibits and projections during the recording are visible and readable when viewed as training.

3.1.5 Unresolved Questions from Attendees

If, at the end of the training course, there are questions from attendees that remain unresolved, the instructor must send the answers, in writing, to the Contracting Officer for transmittal to the attendees, and the training video must be modified to include the appropriate clarifications.

3.1.6 Validation of Training Completion

Ensure that each attendee at each training session signs a class roster daily to confirm Government participation in the training. At the completion of training, submit a signed validation letter that includes a sample record of training for reporting what systems were included in the training, who provided the training, when and where the training was performed, and copies of the signed class rosters. Provide two copies of the validation to the Contracting Officer, and one copy to the Operation and Maintenance Manual Preparer for inclusion into the Manual's documentation.

3.1.7 Quality Control Coordination

Coordinate this training with the QC in accordance with .
PART 1 GENERAL

1.1 OBJECTIVE

The primary objective of this section is to provide detailed specifications for collection and delivery of geospatial data commonly referred to as Geographic Information System (GIS) data. Additionally, this section shall provide guidance to ensure that all GIS data delivered is compatible and will add value to the.

Failure to comply with the specifications outlined in this document will result in non-acceptance of data deliverables.

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

 SD-11 Closeout Submittals
 GIS Data Deliverables

1.3 GOVERNMENT GEOSPATIAL DATA AND SCHEMA

1. The IGI&S repository model schema is based on the Spatial Data Standards for Facilities, Infrastructure and Environment (SDSFIE) GEOFidelis Data Model with recurring business driven modifications and or adaptations.

 a. Data will be created and delivered by developing an ARCGIS Personal GEODatabase using ArcGIS 10.1 or higher if a higher version is being utilized by the Government at the time the deliverable is being developed.

 b. The Contractor shall verify the ArcGIS and schema version, via the CM or PM, at the commencement of this contract. All GIS DATA DELIVERABLES will be created in accordance with the current version and these specifications.

 c. The Contractor is responsible for requesting the existing GIS Data, Schema and Domain Properties by means of a Data Request Package (DRP). Receipt of request will include Geospatial Database table structure, schema, Domain configuration, Attribute text format, i.e., case size as well as Meta Data information.

 d. The DRP should be submitted prior to the start of data collection
efforts and again on an as needed basis. The Contractor shall ensure that all GIS data has been created and delivered utilizing the most up to date IGI&S GEODatabase schema.

2. The Contractor shall submit a request for a Geospatial DRP to the CM or the PM.
 a. Request shall be completely filled out and include all information as instructed on the data request form.
 b. Request only GIS data and or schema for feature classes that are relevant to the contract and within the boundary of project area.
 c. Utilize associated Government modified domain structure(s).
 d. Attach Scope of Work, which is defined by this GIS DATA DELIVERABLES section for each project request.
 e. Return the DRP to the CM or PM for sponsorship and submittal to the Installation Geospatial Information & Services (IGI&S) Office.
 f. Incomplete forms may delay receipt of the requested GIS data and Schema.

The following Spatial Data Standards for Facilities, Infrastructure, and Environment (SDSFIE) website may offer definitions for Feature data sets; Feature Classes and other applicable information. However, please note that specific Schema or Domain modifications are not available via this resource:

http://www.sdsfieonline.org/

1.3.1 Global Positioning System (GPS) and Spatial Reference Properties

GPS data shall be completed in accordance with the GPS Data Collection and Documentation Standards, Version 3 (or higher version if available at the time of this project) as prepared by Geographic Information Coordinating Council (GICC) Statewide Mapping Advisory Committee (SMAC) and adopted by the North Carolina Geographic Information Coordinating Council.

1. Prior to GPS efforts, ALL underground utilities shall be located utilizing a utility locating service in order to verify and obtain accurate feature locations.

2. Only bench marks included in the North Carolina Geodetic Survey Base Station Network shall be used for GPS data collection.

3. Mission planning is essential and Contractor shall utilize the best Position Dilution of Precision (PDOP) values for data accuracy.

4. Utility data, as identified in paragraph "ATTRIBUTE DATA COLLECTION AND GPS REQUIREMENTS FOR SPECIFIC FEATURES" will be collected utilizing Survey Grade GPS data collection methods.

5. Infrastructure data, as identified in paragraph "ATTRIBUTE DATA COLLECTION AND GPS REQUIREMENTS FOR SPECIFIC FEATURES" shall be collected utilizing Sub-Foot or better GPS data collection methods.
 a. Spatial accuracy requirements for Survey and Sub-Foot grade data
collection are as follows:

i. Sub-Foot requirements
 1) All points shall be within + 12 inches
 2) 95% accuracy rate for all points.

ii. Survey Grade requirements
 1) All points shall be within + 1 centimeter
 2) 98% accuracy rate for all points

6. Every effort shall be made to capture feature locations without using offsets. All Offsets will be noted in the Final Report for each feature.

7. Excessive offsets included in the Final Data, which shall be referenced in the Final Report, shall be reviewed for quality control.
 a. Resubmittal of data will be required if PDOP planning was not observed per this specification.

1.3.2 Demolished and Abandoned in Place (AIP) features

The Contractor shall reference all Demolished and or AIP features in the data delivered. Should the current feature data class attributes and or domains not reference AIP or demolished features, the Contractor shall be responsible for appropriately delivering these features by creating an associated "Demolished" or AIP feature class, i.e., CLJN.CL.WastewaterUtilitySegment.

The Contractor shall:

1. Utilize a blank schema for the associated feature class.

2. Rename associated feature class and add DEMO or AIP as a prefix, i.e., DEMO.CLJN.CL.WastewaterUtilitySegment, AIP.CLJN.CL.WastewaterUtilitySegment.

3. All demolished and or AIP features should provide existing spatial and non-spatial data which may be copied from existing data.

4. The Contractor will update attributes appropriately to include the following:
 a. Contract Number
 b. Drawing Number
 c. isDemolished
 d. dateDemolished or dateAIP
 e. Status
1.3.3 Creating a New Feature Class

Should a new feature class be required that is not readily available in the current GIS schema provided by the Government; the Contractor shall develop the feature class utilizing the schema consistent with the most current version of SDSFIE and document in the Final Report.

1. The Contractor shall include the following modifications (fields) to the schema structure and shall submit all information to the CM or PM for direction and final approval.
 a. Contract Number
 b. Drawing Number

1.3.4 GIS Topology Rules

All data must be created using GIS topology rules for polygons, points and lines, such as, but not limited to the following examples:

2. Polygons must not have slivers.

3. All utility or infrastructure system data, which is, but is not limited to, transportation system and electrical, water, steam distribution, and wastewater collection, etc., will be created using GIS spatial connectivity rules which specify that vertex, edge and endpoints be snapped to features within the system.

4. Features will be snapped to the appropriate item.

5. Data will be created to represent the real world, for example, water, sewer and transportations systems, etc. will be drawn and or created in the direction of flow.

6. Utility and transportation systems will be created from source to sink, etc.

7. Abandoned In Place (AIP) utility lines will be located and updated in the current feature data set and identified as AIP in the attribute table.

1.3.5 Creation of Geographic Data Documentation (METADATA)

For each digital file delivered containing geographic information the Contractor shall provide documentation consistent with the Federal Geographic Data Committee (FGDC) Content Standards for Digital Geospatial Metadata (CSDGM). Both 'GEOFidelis Mandatory' and 'FGDC Mandatory' fields shall be completed for each geographic data set.

The Geospatial Information & Services (IGI&S) Metadata Authoring Guide is included in the DRP package.

Metadata generation tools included in the ArcGIS suite of software (or equivalent technology) shall be used in the production of the required metadata in XML format. Regardless of the tools used for metadata creation, the Contractor must ensure that the metadata is delivered in XML format.
format and can be easily imported into the IGI&S GEODatabase. A copy of the FGDC metadata standard can be obtained on the internet at http://www.fgdc.gov or by contacting:

Federal Geographic Data Committee
590 National Center
Reston, Virginia 20192
Email: fgdc@fgdc.gov

(NOTE: The metadata should be formatted from the Government perspective, not the Contractor project perspective. Therefore such items as Point of Contact (POC) should be the POC currently associated with the data and NOT the Contractor's Project Manager. The Contractor shall use language and format consistent with existing metadata.)

1.3.6 New Feature Class Requirements

When developing a new feature class, the Contractor shall develop the initial structure consistent with the most current version of SDSFIE.

a. If further modifications to the database structure are required, the Contractor shall consult with the Government Project Manager for direction and final approval.

b. All new feature data classes shall be created in compliance with SDSFIE noted on the final report.

1.3.7 GIS Submittals Guidelines

All GIS Submittals will be submitted to the CM or PM and then analyzed by Government GIS personnel prior to final approval. Failure to comply with the specifications outlined in this document will result in non-acceptance of data deliverables.

1. Prior to any database development, the Contractor shall provide the Government with a technical approach document for review and approval. The Technical Approach document will describe in detail the Contractor's technical approach to designing and developing the database.

2. All attributes shall be populated in accordance with the "ATTRIBUTE DATA COLLECTION AND GPS REQUIREMENTS FOR SPECIFIC FEATURES" and shall be obtained via contract specifications, plans and record drawings.

3. The Contractor may be required to conduct research, collect data and make copies of reports and studies as necessary to verify existing and/or record drawing data. Record drawing data and closed contracts can be located in the Technical Records Section in the Public Works Department.

4. Raw GPS data and collection data files shall be included with every phase of delivery.

5. Actual spatial and non-spatial conditions in the field always supersede drawings. It is the Contractor's responsibility to locate and field verify all features to ensure attribute data and location is correctly recorded.

6. The Contractor shall submit a preliminary review of data at 15 to 25
percent contract completion to ensure specifications compliance.

7. The Contractor shall deliver digital geographic maps, GPS collection files and related data. All working text and documents and personal geodatabase shall be included for review in the draft and final delivery of data.

 a. All maps of GIS DATA DELIVERABLES will be ANSI C size and include a project title, contract number, scale, legend, standard symbology, attributes, i.e., building numbers, road names, segment diameters, etc.

8. The Contractor may be required to provide a technical consultant to meet on site.

9. The Contractor shall not deliver blank unused schema or feature class data with no attributes. Deliver only data pertinent to the contract that adds value to the GEODatabase per this section.

10. The Contractor shall deliver GIS Data at the end of each phase for all Phased Projects and Construction projects.

11. The Contractor accepts the responsibility to perform quality assurance for all data and related materials required in the section prior to submitting product to the Government.

12. The data will be analyzed for discrepancies in subject content, correct format in accordance with this statement of work, and compatibility with the existing GIS system as well as all other specifications in this section.

1.3.8 Formats, Versions and Guidelines

All data deliverables will be in the following formats and/or versions.

1. GIS data will be provided in an ArcGIS 10.1 or higher if a higher version is being used by the Government at the time of this project. The Contractor shall verify the ArcGIS version, via the CM or PM at the commencement of this contract.

3. Microsoft Windows 7 operating system, unless otherwise approved by the Government.

4. All reports and maps will be delivered as a hard copy and in a searchable Adobe Portable Document Format (PDF).

5. All text, spreadsheet, and database files, reports and maps shall be delivered on Compact Disc read-only memory (CD-ROM) or Digital Versatile Disc read-only memory (DVD-ROM).

6. The Contractor shall verify required version(s) of software and schema, via the CM or PM.

7. Map submittals shall accompany each geospatial deliverable.

 a. Include ANSI C map for each project/area.
b. Data should be labeled and attributed per specification.

c. All maps should include the date, a legend, scale, contract title and number.

1.3.9 Final Report Requirements with additional Guidelines

The Contractor shall follow the following:

1. Specific procedures and list of equipment, software and versions that were utilized for the GPS data collection and creation of geospatial data.

2. Submit all GPS data files.

3. Provide the date(s) the IGI&S schema and geospatial data was received.

4. Provide steps taken to create the GEODatabase.

5. Provide details on any offsets to include justification as to why offsets were utilized and on which features and or points offsets were used.

6. Describe all modifications to the geodatabase to include the name of all new features classes, i.e., new, demolished or AIP.

7. Provide the source that was utilized for required attributes.

 a. Include an ANSI C size copy of all design drawings that were referenced in the attribute data. This information should be included in all phases of delivery to include draft and final reviews.

 b. Provide the overall utility site plan drawing(s) with each submittal.

8. Specify Deliverable "Draft #" or "Final Submittal" when data is submitted to the CM or PM for review.

9. Provide the name and contact information for the GIS Technical Point of Contact who can answer questions regarding the data deliverable.

10. GIS DATA DELIVERABLES must be provided in a format that does not require translation or pre/post processing prior to being loaded into the IGI&S GEODatabase.

11. Provide any miscellaneous information that the Contractor deems significant.

12. Provide the current version of the GIS DATA DELIVERABLES specification utilized for this contract submittal.

1.3.10 Ownership

All digital files, final hardcopy products, GPS raw data, source data acquired for this project, and related materials, including that furnished by the Government, shall become the property of the Government and will not be issued, posted, distributed, or published by the Contractor.
Note: No endorsement of software or hardware is implied.

1.4 ATTRIBUTE DATA COLLECTION AND GPS REQUIREMENTS FOR SPECIFIC FEATURES

1.4.1 Non-Compliance

Failure to follow the specification outlined in this document will result in non-acceptance of data deliverable.

Note: Geospatial data delivery does not replace record drawing requirements.

PART 2 PRODUCTS

Not Used.

PART 3 EXECUTION

Not Used.

-- End of Section --
SECTION 01 91 13
GENERAL COMMISSIONING REQUIREMENTS
12/15

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE Guideline 0 (2005) The Commissioning Process

ASSOCIATED AIR BALANCE COUNCIL (AABC)

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)

SHEET METAL AND AIR CONDITIONING CONTRACTORS’ NATIONAL ASSOCIATION (SMACNA)

U.S. GREEN BUILDING COUNCIL (USGBC)

1.2 SUMMARY

Commissioning consists of systematically documenting that specified components and systems have been installed and started up properly and then functionally tested to verify and document proper operation through all sequences of operation and conditions. In addition, if enhanced commissioning is implemented, training of the Government’s Operations Personnel will be verified and final project O&M Documents will be reviewed for completeness.

1.2.1 Systems for Commissioning

The following systems are scheduled to be commissioned as applicable to project design:

 a. Mechanical Systems:
(1) Air distribution systems (All equipment of the heating, ventilating and air conditioning system)

(a) Air Handling Units
(b) VRV systems
(c) Exhaust Fans
(d) Energy recovery systems
(e) Air cooled chillers
(f) Pumps
(g) Boilers

(2) Building Automation Systems (BAS), including linkages to remote monitoring and control sites (excluding any security-related control interlocks)

b. Plumbing Systems

(1) Domestic Hot Water Heater
(2) Domestic Hot Water Recirculation Pump and associated control

1.2.2 Related Documents

1.3 DEFINITIONS

Basis of Design Document: A document that records the concepts, calculations, decisions, and product selections used to meet the Government's Project Requirements and to satisfy applicable regulatory requirements, standards, and guidelines. The document includes both narrative descriptions and lists of individual items that support the design process.

Commissioning Authority: An entity identified by the Government who plans, schedules, and coordinates the Commissioning Team to implement the Commissioning Process.

Commissioning Plan: Prepared and updated by the Commissioning Authority, the Commissioning Plan outlines the organization, schedule, allocation of resources, and documentation requirements of the Commissioning Process.

Commissioning Process: A quality-focused process for enhancing the delivery of a project. The Process focuses on verifying and documenting that the facility and all of its systems and assemblies are planned, designed, installed, tested, operated, and maintained to meet the Government's Project Requirements. Commissioning is typically abbreviated by "Cx". Commissioning and Cx have the exact same meaning and will be used interchangeably throughout the Contract documents.

Commissioning Team: The individuals who through coordinated actions are responsible for implementing the Commissioning Process.

Construction Checklist: Documents prepared by the Cx Authority and issued to the Contractor early in the Construction Phase. The purpose of the Checklist is to verify that appropriate components are on site, correctly installed and functional and ready for Functional Performance Testing.

Corrective Issue Report: A report generated by the Cx Authority during
Functional Performance Testing documenting deficiencies found during the testing procedures.

Functional Performance Testing: The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Government's Project Requirements.

Government's Project Requirements: A written document that details the functional requirements of a project and the expectations of how it will be used and operated. This includes project and design goals, measurable performance criteria, budgets, schedules, success criteria, and supporting information.

1.4 COMMISSIONING TEAM

The Commissioning Team shall consist of a minimum of one (1) Representative for each of the following:

a. Government.
b. Architect.
c. Engineer.
d. Contractor.
e. Sub-contractors.
f. Commissioning Authority.

Each Commissioning Team Representative shall have appropriate experience in construction administration along with a thorough understanding of construction project administrative procedures.

Each Cx Team Representative shall be familiar with ASHRAE Guideline 0 - The Commissioning Process.

1.5 SUBMITTALS

Submittals related to equipment and systems to be commissioned shall be provided to the Commissioning Authority for reference. The Commissioning Authority will coordinate required submittals with the contractor. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-06 Test Reports
Completed Pre-Functional Performance Test Checklists

SD-11 Closeout Submittals
Training Attendance Roster
Training Plan
Training Questionaire

The following submittals shall be provided electronically to the commissioning authority if not included in specific Division 01 or 23
specifications:
 Equipment Start up Plan
 DALT Plan
 TAB Deficiency Report
 TAB Plan
 Pre-PVT Checklists

1.6 QUALITY ASSURANCE

1.6.1 Qualifications

1.6.1.1 Commissioning Firm

Government will provide a Commissioning Firm that is either a member of ACG or certified by the NEBB or the TABB and certified in all categories and functions where measurements or performance are specified on the plans and specifications. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, immediately notify the Contracting Officer and submit another Commissioning Firm for approval. Any firm that has been the subject of disciplinary action by the ACG, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including Commissioning. All work specified in this Section and in other related Sections to be performed by the Commissioning Firm shall be considered invalid if the Commissioning Firm loses its certification prior to Contract completion and must be performed by an approved successor. These Commissioning services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The Commissioning Firm shall be independent of the work of design and construction. The Commissioning Firm shall not be employed by, or contracted through, a Contractor or construction manager holding construction contracts. The Commissioning Firm shall be a consultant of the Government. The Commissioning Firm shall report results and recommendations directly to the Government.

1.6.1.2 Commissioning Authority

The Commissioning Authority shall be an ACG Certified Commissioning Agent, a NEBB Qualified Commissioning Administrator, or a TABB Certified Commissioning Supervisor and shall be an employee of the approved Commissioning Firm. The Commissioning Authority shall have documented commissioning authority experience in at least 2 building projects. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Commissioning Authority loses subject certification during this period, immediately notify the Contracting Officer and submit another Commissioning Authority for approval. Any individual that has been the subject of disciplinary action by the ACG, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including Commissioning. All work specified in this Section and in other related Sections performed by the Commissioning Authority shall be considered invalid if the Commissioning Authority loses his certification prior to Contract completion and must be performed by the approved successor.

Duties of the Commissioning Authority include the following:
a. Assist In Responding To Bidder RFI's

(1) During the Pre-Bid phase, the Commissioning Authority shall review all commissioning related Requests for Information (RFI) in effort to clearly define the unique requirements of the Commissioning Process to the prospective bidders. The Commissioning Authority shall provide responses to any RFI's that specifically address commissioning process issues.

b. Development of Commissioning Plan

c. Commissioning Specific Requirements

(1) The Commissioning Authority will perform the enhanced commissioning requirements as listed in LEED.

(2) A minimum of one commissioning review of the Government's project requirements, basis of design, and design documents will be performed prior to the mid construction documents phase. The subsequent submitted documents will be back-checked against the comments.

(3) A review of the Contractor submittals for the applicable systems being commissioned will be performed. The review will verify compliance with the Government's project requirements and basis of design.

(4) Coordinate commissioning related meetings with the contractor and owner. Verify required commissioning related activities are included in the master construction schedule.

(5) Perform Construction Phase Commissioning site observations, maintain a commissioning issues log, and verify completion of Pre-Functional Construction Checklists.

(6) Witness select equipment start-ups, QC testing (DALT) and verify TAB results.

(7) Witness and Document Functional Performance Testing on systems to be commissioned.

(8) A System Manual shall be development in conjunction with the Contractor. The Commissioning Plan will set the format to be followed and shall comply with ASHRAE Guideline 0.

(9) Verification of the required training for the building's operating staff and occupants will be provided. The Commissioning Plan shall provide a listing of equipment and systems that will require training, along with the training requirements.

(10) The Commissioning Authority will be involved in the review of building operations 10 months after substantial completion. The review will be performed in conjunction with the Operations and Maintenance staff and occupants. Any outstanding commissioning-related issues shall be resolved during this period, which may include additional seasonal testing to be performed with the assistance of the contractor.
1.6.1.3 Contractor Commissioning Responsibilities

Perform and assist as required for all Commissioning work specified herein and in related sections under the direct guidance of the Commissioning Authority. In addition, the Contractor's commissioning representative shall fulfill the roles and responsibilities as specified in The Commissioning Plan. The Commissioning Authority shall prepare the Commissioning Plan. After approval of the Commissioning Plan, revise the Contract schedule to reflect the schedule requirements in the Commissioning Plan.

1.6.2 Regulatory Requirements

Commissioning shall be accomplished according to one or a combination of the following:

a. ASHRAE Guideline 0
b. NEBB Commissioning Standard
c. SMACNA 1429
d. ACG Commissioning Guideline
e. LEED

1.7 SEQUENCING AND SCHEDULING

Work described in this Section shall be coordinated, sequenced and scheduled with all work required in related Sections and the construction schedule.

PART 2 PRODUCTS

2.1 VERIFICATION TESTING EQUIPMENT AND INSTRUMENTS

Contractor shall provide all tools, instruments, laptop computers, PDA's, software programs and services required to perform system Verification Testing procedures. This includes providing the connection to systems to be tested, operation of the test equipment and instrumentation and generating test results as required.

PART 3 EXECUTION

3.1 PROJECT SCHEDULE

The Commissioning Authority will provide to the Contractor, within four (4) weeks after notification of award, a Schedule in CPM format identifying the Cx Activities and durations for the Project. The Contractor shall then incorporate these Cx Activities into the Master Construction Schedule. Some activities include but are not limited to:

a. Establishment of Permanent Power
c. TAB air and water.
d. TAB review meeting.
e. Pre-PVTs are performed.

g. Two-day Trending is performed.

h. Trend Review meeting is held.

i. Phase I control training is held with PW.

j. PVTs are performed.

k. Phase 2 control training and other building system training is performed.

The Cx Authority will review and update Cx Activities to coordinate with the Contractor's Master Schedule Update.

3.2 PREPARATION

Upon Contracting Officer's acceptance of the Submittal Schedule as required, the Cx Authority will indicate which submittals are "Commissioning Related".

Contractor shall submit one (1) copy of each Commissioning Related submittal to the Cx Authority at the time of submission to the Contracting Officer.

Commissioning Authority will review Product Submittals and Shop Drawings within the same review period as the Contracting Officer. The Cx Authority will review the Submittals and Shop Drawings for Cx Process related information and issue review comments directly to the Contracting Officer.

Contracting Officer will incorporate the Commissioning comments along with their comments on the "stamped" copy returned to the Contractor.

3.3 REQUEST FOR INFORMATION (INTERPRETATION)

Contractor shall submit one (1) copy of each RFI related to the equipment and systems to be commissioned to the Commissioning Authority at the time of submission to the Contracting Officer.

Commissioning Authority will review each RFI for Commissioning related information and issue comments directly to the Contracting Officer.

3.4 COMMISSIONING PROGRESS MEETINGS

The Commissioning Authority will conduct periodic Cx Progress Meetings throughout the construction phase of the project. Commissioning Team Members are required to attend these meetings. When feasible the commissioning meeting will coincide with other review and construction meetings. A scoping meeting will be held to identify responsibilities of the commissioning team members. Commissioning Progress Meetings will be held as needed. Additional meetings may become necessary if Commissioning requirements are not being completed on schedule.

In addition to Commissioning Progress meetings, the contractor shall arrange for the following commissioning related meetings as coordinated
with the commissioning authority and PWD:

1. Commissioning Kick-off meeting with subcontractors
2. Pre-DALT/TAB Scheduling and Coordination Meeting
3. Controls Integration Meeting

3.5 QUALITY ASSURANCE TESTING

3.5.1 Contractor Field Testing

Contractor shall issue one (1) copy of ALL Test Reports to the Commissioning Authority for recording into the Commissioning Systems Manual.

3.5.2 Independent Testing

Contractor shall issue one (1) copy of ALL Independent Testing Reports to the Commissioning Authority for recording into the Commissioning Systems Manual.

3.5.3 Witnessing of Testing by Cx Authority

Contractor shall notify the Commissioning Authority in advance of ALL Field or Independent Testing being performed. The Cx Authority will witness a random sampling of Field and Independent Testing.

3.6 SUBSTANTIATING SYSTEM STATUS

The Commissioning Authority will prepare and issue to the Contractor a Pre-Functional Construction Checklist Form for each system or major piece of equipment to be Commissioned. Reference sample Pre-Functional Construction Checklist at the end of this Section. The contractor shall be responsible for completion and submission of the forms.

The Commissioning Authority will monitor and track the completion of the Construction Checklist Forms during period construction site observation visits.

The Contractor shall complete the Pre-Functional Construction Checklist Forms, provided by the Cx Authority, as follows:

a. Complete Section 01 "Equipment Delivery" of the Construction Checklist and forward to the Cx Authority within seven (7) calendar days after equipment delivery to the site.

b. Complete Section 02 "Equipment Installation" of the Construction Checklist and forward to the Cx Authority within seven (7) calendar days after the equipment installation is completed.

c. Complete Section 03 "Equipment Start-up" of the Construction Checklist and forward to the Cx Authority within seven (7) calendar days after the equipment has been successfully started.

d. Complete Section 04 "DDC/EMCS Control & Integration" of the Construction Checklist and forward to the Cx Authority within seven (7) calendar days after the equipment is fully operational and ready for Functional Performance Testing.

e. Complete Section 05 "Completion and Notification for Testing" of the Construction Checklist and forward to the Cx Authority within seven (7)
calendar days after the equipment is fully operational and ready for Functional Performance Testing.

3.7 OPERATION AND MAINTENANCE DATA

The Enhanced Commissioning Process has special requirements on compiling and submitting Operation and Maintenance Data.

Upon receipt of the "stamped" submittal from the Contracting Officer, the Contractor shall submit one (1) electronic copy of the respective Operations and Maintenance Data to the Commissioning Authority.

The Cx Authority will compile this information into the Project "Systems Manual" which will be used during Training Sessions, and finally turned over to the Physical Plant Personnel.

3.8 FUNCTIONAL PERFORMANCE TESTING

The Commissioning Authority will develop the Functional Performance Test Procedures to be used on the systems being Commissioned. The Test Procedures will be submitted to the Contractor in advance of scheduled Functional Performance Testing to give the Contractor and Subcontractor's time to review the Procedures and make comments or suggest revisions. Reference sample Functional Performance Test Procedure Form at the end of this Section.

The Commissioning Authority will oversee and document results of all Functional Performance Testing Procedures required for equipment and systems to be Commissioned.

The Contractor is required to provide all testing instruments and all skilled labor required to conduct the Functional Test Procedures. The Commissioning Authority will attend all Functional Test Procedures and record all results of the Testing on the Functional Test Procedure Form.

3.9 CORRECTIVE ISSUE REPORT

The Commissioning Authority will document deficiencies discovered during the construction phase and Functional Performance Testing of systems on a Corrective Issue Report. The Cx Authority will then forward this form to the Contractor for action in correcting the deficiency.

When the deficiency has been corrected, the Contractor shall note action taken and return the Corrective Issue Report to the Commissioning Authority. Reference sample Corrective Issue Report at the end of this Section.

Corrective Issue Reports must be completed as a pre-requisite for Substantial Completion.

3.10 TRAINING GOVERNMENT EMPLOYEES

All training sessions shall be coordinated with the Commissioning Authority. The Cx Authority will prepare a template Training Form to be used for each Training Session required by the Contract Documents and issue to the Contractor. The Training Plan and completed Training Forms shall be
used to schedule, perform and document the required training sessions. The contractor shall submit the Training Plan and Forms for review prior to scheduling training. Reference sample form at the end of this Section.

Training Instructors shall be a Manufacturer's Representative or Applications Engineer fully qualified in the operation, troubleshooting and maintenance procedures for the equipment or systems being covered. Sales Representatives or others possessing only general knowledge of the equipment or systems will not be acceptable.

The following format shall be used to schedule, perform, document and evaluate the required training sessions:

a. Contractor shall submit a separate Training Form for each training session required by the Contract Documents to the Commissioning Authority. This form shall be submitted a minimum of fourteen (14) calendar days in advance of the proposed training session.

b. Contractor shall complete the first section of the form including the proposed training session date, name of instructor(s), and proposed length (time) of the session(s). Also, attach an Agenda indicating the format of the training session and listing any handouts that will be provided.

c. Commissioning Authority will then review the proposed training information with the Government. If the submitted information is complete and the proposed dates meet the Government's Operations Personnel schedule, the Government will respond to the Contractor to proceed with scheduling the subject training session.

d. During the training session, the Contractor shall have all in attendance sign in the third section of the Training Form. Attach additional pages if necessary. The Contractor shall then forward the Training Form to the Commissioning Authority.

Upon receipt of the Training Form, the Commissioning Authority will have each of the attendees complete the Evaluation Form to gain feedback on the value of the session. Reference sample form at the end of this Section.

a. If the session meets the objectives and intent of the Contract Documents, the Commissioning Authority will approve the training form and return to the Contractor for Project Records.

b. If negative feedback is received, the Evaluation Forms will be reviewed with the Commissioning Team and if necessary, re-scheduling of the training may be required.

Operations & Maintenance Manuals and accurate As-built Drawings shall be submitted and approved by the Contracting Officer BEFORE training sessions will be held. The As-built Drawings and O&M information will be reviewed and used as reference during training instructions.

3.11 SECOND SEASON TAB VERIFICATION

Second Season TAB Verification as required by Division 23 of this specification shall be performed during the occupancy phase. The contractor shall notify the commissioning Authority 14 days prior to performing second season (opposite season) TAB verification.
3.12 DEFERRED FUNCTIONAL TESTING

Deferred Testing shall be performed prior to the end of warranty no later than 10 months after building acceptance (BOD). Deferred testing will be required on equipment and systems that could not be completed or that failed due to defective parts or unacceptable installation. Deferred testing will only applicable to equipment and systems not required for occupancy at the time of BOD, subject to Governmental approval.

The Commissioning Authority will oversee and document results of all Deferred Functional Performance Testing Procedures required for equipment and systems to be Commissioned.

The Contractor is required to provide all testing instruments and all skilled labor required to conduct the Functional Test Procedures. The Commissioning Authority will attend all Functional Test Procedures and record all results of the Testing on the Functional Test Procedure Form.

3.13 SEASONAL TESTING

Seasonal Testing shall be performed prior to the end of warranty no later than 10 months after building acceptance (BOD). Seasonal testing will be required on equipment and systems that could not be tested due to seasonal ambient conditions.

The Commissioning Authority will oversee and document results of all Seasonal Functional Performance Testing Procedures required for equipment and systems to be Commissioned.

The Contractor is required to provide all testing instruments and all skilled labor required to conduct the Functional Test Procedures. The Commissioning Authority will attend all Functional Test Procedures and record all results of the Testing on the Functional Test Procedure Form.

3.14 OCCUPANCY PHASE REVIEW

The commissioning authority will assist in scheduling warranty review meeting with the facilities O/M staff, Users and PWD. Warranty review will consist of reviewing outstanding warranty items, outstanding commissioning issues and walk down of the commissioned systems to identify any additional warranty related items. Any outstanding or new items will be submitted to the contractor for resolution prior to the contractors warranty expiring.

The controls contactor shall provide trend data within 10 days of notification to the Commissioning Authority. Trend data shall consist of the identified points determined by the Commissioning Authority illustrating system operation for 5 consecutive days in each operational season.

3.15 COMMISSIONING FORMS

The following forms are provided for the commissioning process:

a. Commissioning Progress Meeting Agenda.

b. Construction Checklist.

c. Functional Performance Test Procedure.
e. Operation Training Form.
f. Training Evaluation Form.
g. Commissioning Schedule.

-- End of Section --
Test ID: FPT-M01-01
Related Systems: Air Handling Unit
System Description: Exhaust fan serving ventilation system to provide exhaust to specified rooms. Fan is either constant volume or variable volume controlled by the BAS.
Test Purpose: Verify system provides required functional operation according to the sequence of operation; operates to the intended set points (minimum and maximum); all stated safeties and alarms function and the operation meets the Owners Project Requirements

<table>
<thead>
<tr>
<th>Initial Test</th>
<th>Retest</th>
<th>Retest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rev001

Issued By: Jacobs

:

1
Functional Performance Test

Facility Sustainment, Restoration and Modernization (FSRM)

Projects at Camp Lejeune, North Carolina

Jacobs Project # F9W98914

TOOLS AND SUPPLIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Calibration Status</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM OPERATION

PREREQUISITIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Pass Y/N</th>
<th>CIR#</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pre-functional Testing has been completed and Pre-Functional Test Forms have been provided as verification system is ready for Functional Testing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Commissioning Authority has Reviewed completed Pre-Functional Test and Issues Log.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Commissioning Authority has reviewed supportive documentation of equipment/system identified in Pre-Functional Test.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Pre-Test meeting has been held with NAVFAC, CM and required Contractors to review the testing parameters and pass/fail criteria.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Any deviations from design have been identified, discussed and accommodated for Functional Testing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Functional Testing has been coordinated with other On-Site Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Appropriate Base personnel have been contacted and scheduled to attend testing as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Base Emergency Response (Police and Fire) have been notified of Testing as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Participant Sign-In Sheet has been completed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Required tools and supplies have been identified and provided.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Functional Performance Test

FACILITY SUSTAINMENT, RESTORATION AND MODERNIZATION (FSRM)
PROJECTS AT CAMP LEJEUNE, NORTH CAROLINA

Jacobs Project # F9W98914

Functional Test Procedures:

<table>
<thead>
<tr>
<th>Action</th>
<th>Expected Results</th>
<th>Pass</th>
<th>CIR#</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set the Keypad-remote Switch to the “remote” position.</td>
<td>a. Supply Fan is now controlled by the DDC Controller.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Command the Supply Fan on with the DDC controller.</td>
<td>a. Supply Fan starts running.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Command the Supply Fan off with the DDC Controller</td>
<td>a. Supply Fan stops running.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Set the Keypad-remote Switch to the “Keypad” position.</td>
<td>a. Supply Fan is now controlled by the manual speed adjustment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Command the Supply Fan on through the manual speed adjustment.</td>
<td>a. Supply Fan starts running.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Return Switch to original position.</td>
<td>a. Supply Fan resumes normal operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes and Issues shall be logged in the Commissioning Issues Report and assigned a CIR number.
VERIFICATION OF UNOCCUPIED/OCCUPIED MODES

Override set points, sensor values or modes of operation to facilitate testing. After verification of the safety operation, reset safety, re-energize unit and allow unit to return to a stable operation. Return all set points, sensor values and modes to initial parameters.

<table>
<thead>
<tr>
<th>Action</th>
<th>Expected Results</th>
<th>Pass</th>
<th>CIR#</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Override BAS Schedule to switch to unoccupied mode. Command the Supply Fan off.</td>
<td>a. Supply Fan turns off.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Outside Air Damper closes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Fan will cycle on and off to maintain thermostatic setpoint.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Observed Thermostatic Setpoint _______ °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Outside Air Damper Remains closed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Override BAS Schedule to switch to occupied mode. Command the Supply Fan On.</td>
<td>a. VFD engages the Supply Fan.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Supply Fan starts and runs continuously.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Outside Air Damper opens.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. AHUs are receiving specified minimum outside air quantity.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes and Issues shall be logged in the Commissioning Issues Report and assigned a CIR number.

VERIFICATION OF SUPPLY DUCT STATIC PRESSURE CONTROL OPERATION

For the following, AHU shall be in a normal mode of operation. Override set points, sensor values or modes of operation to facilitate testing. At the end of the test, return all set points, sensor values and modes to initial parameters.

<table>
<thead>
<tr>
<th>Action</th>
<th>Expected Results</th>
<th>Pass Y/N</th>
<th>CIR#</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear all alarms and notifications in the BAS</td>
<td>a. BAS shows system in normal operation, with no alarms or notifications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Observe the Supply Fan speed modulated to maintain the Static Pressure setpoint.</td>
<td>b. Supply Fan is modulating.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Record Static Pressure setpoint _______ ins.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Actual Static Pressure _______ ins.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Jacobs Project # F9W98914

2. Lower Static Pressure Setpoint to the minimum and observe the VAV box air flow.
 a. Record minimum static Pressure setpoint __________ ins.
 b. VAV box air flow is maintained.

3. Return set point to initial values, allow unit to return to normal stable operation.
 a. Unit returns to normal stable operation within a reasonable timeframe

4. Lower the Static Pressure 25% over the setpoint.
 a. Supply Fan speed decreases.
 b. Static Pressure drops to the setpoint value and is maintained.

5. Raise the Static Pressure 25% under the setpoint.
 a. Supply fan speed increases.
 b. Static Pressure rises to the setpoint value and is maintained.

6. Return set point to initial values, allow unit to return to normal stable operation.
 a. Unit returns to normal stable operation within a reasonable timeframe

Notes and Issues shall be logged in the Commissioning Issues Report and assigned a CIR number

VERIFICATION OF ROOM TEMPERATURE CONTROL OPERATION

For the following, AHU shall be in a normal mode of operation. Override set points, sensor values or modes of operation to facilitate testing. At the end of the test, return all set points, sensor values and modes to initial parameters.

<table>
<thead>
<tr>
<th>Action</th>
<th>Expected Results</th>
<th>Pass Y/N</th>
<th>CIR#</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Clear all alarms and notifications in the BAS</td>
<td>a. BAS shows system in normal operation, with no alarms or notifications.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 3. Energize Fan and allow unit to establish a minimum stable operation. | a. Unit starts and settles to a stable minimum operational point.
b. Outside air IAQ Damper opens.
c. Record Air Temperature setpoint ______ ℉
d. Record the AHU Discharge Air Temperature __________ ℉. | | | |
Functional Performance Test

Jacobs Project # F9W98914

4. Change the temperature set point downward by 5°F of the normal set point value.
 - a. Chilled water coil control valve will open, pre-heat hot water coil control valve remains closed
 - b. Record AHU Discharge Air temperature ________ °F.

5. Change the temperature set point back to the original set point value.
 - a. Unit returns to normal stable operation within a reasonable time frame

6. Change the temperature set point upward by 5°F of the normal set point value.
 - a. Pre-heat hot water coil control valve will open, chilled water coil control valve remains closed
 - b. Record AHU Discharge Air temperature ________ °F.

7. Return set point(s) to initial values, allow unit to return to normal stable operation.
 - a. Unit returns to normal stable operation within a reasonable timeframe

Notes and Issues shall be logged in the Commissioning Issues Report and assigned a CIR number

VERIFICATION OF ALARMS & SAFETIES

For the following, AHU shall be in a normal mode of operation. Override set points, sensor values or modes of operation to facilitate testing. At the end of the test, return all set points, sensor values and modes to initial parameters.

<table>
<thead>
<tr>
<th>Action</th>
<th>Expected Results</th>
<th>Pass Y/N</th>
<th>CIR#</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear all alarms and notifications in the BAS</td>
<td>a. BAS shows system in normal operation, with no alarms or notifications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Supply Fan Failure Alarm</td>
<td>a. The supply fan stops.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With the unit running, manually interrupt power to the supply fan.</td>
<td>b. An alarm is registered in the BAS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Release the test condition.</td>
<td>a. The fan starts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Alarm is cleared from the BAS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Smoke Detector Alarm</td>
<td>a. The supply fan is de-energized.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With the system ON, stimulated a smoke detector associated with the unit.</td>
<td>b. An alarm is registered in the fire alarm panel.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Release the test condition.
 a. The fan is energized.
 b. Alarm is cleared from the BAS.

6. **Freezestat Alarm**
 With the system ON, use an appropriate method to create a low temperature condition at the freezestat sensor to go below 40°F.
 a. Supply fan stops.
 b. OA Damper closes.
 c. The hot water control valve opens.
 d. An alarm is registered at the BAS

7. Release the test condition.
 a. The alarm clears.
 b. The system requires manual reset of the freezestat to start.

Notes and Issues shall be logged in the Commissioning Issues Report and assigned a CIR number

RECORD OF OPERATION (TRENDING OR LOGGING REQUIREMENTS)

Return system to normal operation, check to make sure all overrides, alarms, etc… have been removed or cleared and allow the system to settle into a stable operation.

<table>
<thead>
<tr>
<th>Action</th>
<th>Expected Results</th>
<th>Pass Y/N</th>
<th>CIR#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Create a trend logs for the following to record data on hourly intervals for 72 hours:</td>
<td>The trend log data shows the system to be functioning normally over the 72 hour period.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Record current set points and parameters for comparison to trend data</td>
<td>Parameter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set-point</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes and Issues shall be logged in the Commissioning Issues Report and assigned a CIR number
Functional Performance Test

Facility Sustainment, Restoration and Modernization (FSRM)

Projects at Camp Lejeune, North Carolina

Jacobs Project # F9W98914

Notes and Issues Summary:

Summary of Test Results:
This test is accepted by the parties identified below. Any Corrective Issues noted above do not adversely impact the overall performance of the system.

Acceptance of Test:

Organization Signature Date

Mechanical Contractor

Control Contractor

Commissioning Authority

END OF TEST
This Pre-Functional Checklist is used during the Commissioning Process to insure the correct equipment is delivered, installed and properly started in preparation for Functional Performance Testing of related building systems. This Checklist does not take the place of the manufacturer's recommended checkout and startup procedures.

This Checklist is divided into 5 Sections and is to be completed by the Contractor in 5 separate phases. As each Section is completed, the Contractor shall update the binder of Checklists that resides at the site. Upon completion of the Checklist, the Contractor shall forward the completed Checklist to the Government, in the same manner as that specified for other submittals. The Resident Office shall distribute to the Commissioning Authority and - if required - to other agencies/offices.

Unless otherwise directed by the Contracting Officer or Contracting Officer's Representative, the Contractor shall provide electronic copies of the form per contract documents sections 01 30 00 ADMINISTRATIVE REQUIREMENTS paragraph 1.3 ELECTRONIC MAIL (E-MAIL), and 01 33 00 SUBMITTAL PROCEDURES.

When completing each Section, be sure to check and initial EACH line item as being completed. The Contractor shall complete and initial ALL of each Section's items before sending the form to the Government. The Contractor should contact the Contracting Officer should there be any questions regarding completion of information on this form.
DESIGN INFORMATION: Energy Recovery Ventilator

PARAMETERS:

<table>
<thead>
<tr>
<th></th>
<th>Design</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY RECOVERY VENTILATOR UNIT (ERV-1, ERV-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Greenheck</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>ERCH-20-30L</td>
<td></td>
</tr>
<tr>
<td>Electrical volts/Φ/Hz</td>
<td>208/3/60</td>
<td></td>
</tr>
<tr>
<td>Controls:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated</td>
<td>Factory installed manufacturer</td>
<td>Y / N</td>
</tr>
<tr>
<td>Communication</td>
<td>BACnet on MS/TP bus</td>
<td>Y / N</td>
</tr>
<tr>
<td>Air Flow Measuring Station</td>
<td>Furnished installed</td>
<td>Y / N</td>
</tr>
<tr>
<td>Heat Recovery Wheel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Total Enthalpy Desiccant</td>
<td></td>
</tr>
<tr>
<td>Dampers</td>
<td>Backdraft Dampers present</td>
<td>Y / N</td>
</tr>
<tr>
<td>Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFM / E.S.P. "W.C."</td>
<td>2160 / 0.75</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Centrifugal Direct Drive</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>Inverter Duty</td>
<td></td>
</tr>
<tr>
<td>Speed control</td>
<td>VFD</td>
<td></td>
</tr>
<tr>
<td>Supply Fan Size H.P.</td>
<td>2.0</td>
<td>---</td>
</tr>
<tr>
<td>Exhaust Fan Size H.P.</td>
<td>3.0</td>
<td>---</td>
</tr>
<tr>
<td>Filters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>1-Inch</td>
<td></td>
</tr>
<tr>
<td>Filter classification</td>
<td>Pleated throw-away</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:

SECTION 1 – EQUIPMENT DELIVERY:
The Contractor shall complete Section 1 when the equipment is delivered to the site. The purpose is to record the actual design parameters listed, along with the checklist items as indicated. Should there be any discrepancy between the Actual and the Submitted information, or any item be indicated as incomplete, the Contractor shall provide explanation, and immediately notify the Resident Office.

SECTION 2 – EQUIPMENT INSTALLATION:
The Contractor shall complete Section 2 when the installation of the equipment is being performed. The purpose of this Section is to ensure the equipment is installed to the Project Design and the Manufacturer’s recommendations. Provide explanation, and notify the Resident Office should any item be indicated as incomplete.

SECTION 3 – EQUIPMENT START-UP:
The Contractor shall complete Section 3 during the Start-up procedures for the equipment. The purpose of this Section is to document that proper start-up and check-out procedures were completed and documented.

SECTION 4 – DDC/EMCS CONTROL & INTEGRATION:
The Contractor shall complete Section 4 during the DDC/EMCS configuration and integration process for the system. The purpose of this Section is to document the full control and monitoring capabilities of the DDC/EMCS system including alarms, trends and full range of the sequence of operations.

SECTION 5 – COMPLETION & NOTIFICATION FOR TESTING:
The Contractor shall complete Section 5 to confirm that the equipment is properly installed, has been properly started up, is operational, and ready for functional performance testing to be witnessed by the Government.
CHECKLIST ITEMS: Energy Recovery Ventilator

<table>
<thead>
<tr>
<th>Sect.</th>
<th>ID</th>
<th>Initial</th>
<th>Complete</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Y / N</td>
<td>All related submittals approved by A/E.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Y / N</td>
<td>Equipment received is per project specifications and approved submittal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Y / N</td>
<td>Equipment thoroughly inspected for physical damage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Y / N</td>
<td>Equipment and control devices have been protected from moisture, dirt and other contaminates prior to installation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Y / N</td>
<td>Installation / Maintenance Manuals received and submitted for review.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Y / N</td>
<td>Factory QA/QC Test Reports received and submitted for review.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Y / N</td>
<td>Equipment installed at location specified in approved project documentation and drawings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Y / N</td>
<td>Equipment is accessible for future maintenance & repair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Y / N</td>
<td>All shipping materials and supports removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Y / N</td>
<td>Equipment is clean and free construction debris.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Y / N</td>
<td>Verify the ERV is secure on mountings and supporting devices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Y / N</td>
<td>Ductwork and piping including drain lines are properly installed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Y / N</td>
<td>All piping and duct insulation installed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Y / N</td>
<td>Electrical power conduit, wiring and components are installed and labeled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Y / N</td>
<td>Electrical power wiring including grounded is properly terminated. All connections have been torqued to proper specifications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Y / N</td>
<td>Proper motor overload protection provided.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Y / N</td>
<td>All electrical safety devices and guards are installed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Y / N</td>
<td>Equipment labels are permanently attached.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Y / N</td>
<td>Verify bearings are properly lubricated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Y / N</td>
<td>Fan has free rotation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Y / N</td>
<td>Verify that all setscrews and fasteners on the fan assemblies are still tight.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Y / N</td>
<td>Verify fan spring adjustment and that the fan assembly is level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>Y / N</td>
<td>Protective guards properly installed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>Y / N</td>
<td>Filters installed and clean.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>Y / N</td>
<td>All Contractors’ installation documentation is completed and submitted to Government for review.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td>Y / N</td>
<td>Equipment is ready for Start-Up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sect. ID</td>
<td>Initial</td>
<td>Complete</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Manufacturers Rep on site for start-up.</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Y / N</td>
<td>Y / N</td>
<td>All dust and construction debris removed from all sections.</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Y / N</td>
<td>Y / N</td>
<td>All quality assurance testing completed and reports submitted.</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Dampers operate full stroke without binding.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Power supply energized and properly identified for ERV.</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Motor voltages balanced and within normal limit.</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Motor amperages balanced and within normal limits.</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Y / N</td>
<td>Y / N</td>
<td>For 3 phase motors, fan rotations are correct.</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Y / N</td>
<td>Y / N</td>
<td>All Contractors’ start-up documentation is completed and submitted for review.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Sequence of operations including all interlocks, safeties and alarms are functional per Basis of Design and Construction Documents.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Point-to-point verifications have been completed.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Y / N</td>
<td>Y / N</td>
<td>DDC/EMCS monitoring points installed and functional</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Graphics are completed and submitted to Government for approval.</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Y / N</td>
<td>Y / N</td>
<td>All safety devices installed and checked</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Trend data of control variables show stable operation.</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Y / N</td>
<td>Y / N</td>
<td>All installation, testing, maintenance and warranty documentation has been submitted for review by CxA.</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Y / N</td>
<td>Y / N</td>
<td>New filters have been installed.</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Test and balance activities are complete and reports submitted for review.</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Y / N</td>
<td>Y / N</td>
<td>Specified extra materials turned over to Government.</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Y / N</td>
<td>Y / N</td>
<td>System is operational and ready for CxA Functional Testing.</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:
General Contractor / Subcontractor Completion:

The following contractors have verified all items associated with this system are complete and ready for functional performance testing to be witnessed by the Government and the Government’s Commissioning Authority.

Mechanical Contractor: ______________________ Date: _________
Electrical Contractor: ______________________ Date: _________
Test & Balance Contractor: ______________________ Date: _________
Controls Contractor: ______________________ Date: _________
Construction Manager: ______________________ Date: _________

COMMENTS:
PROJECT: [name]

PROJECT NUMBER:

Training Session: __

Session Date: ____________________________

Name (optional): __

This form is to be completed by each person that attended this Training Session.

<table>
<thead>
<tr>
<th>General</th>
<th>5 = Strongly Agree</th>
<th>1 = Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Training provided was a good use of your time</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>2. The Training provided met your expectations</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>3. The Training provided was useful and relevant to perform your job</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>4. The Training provided increased knowledge of the subject matter</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>5. The Training utilized appropriate amount of hands on instruction</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction</th>
<th>5 = Strongly Agree</th>
<th>1 = Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Instructor(s) were clear and understandable</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>2. The Instructor(s) had strong knowledge of the material being presented</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>3. The topics and objectives of the training were well defined</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>4. Interaction and discussion of the subject matter was encouraged</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>5. The instructor(s) provided reasonable responses to questions</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>5 = Strongly Agree</th>
<th>1 = Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Training material was appropriate and complete for the subject matter</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>2. The Training provided appropriate level of understanding of the subject matter</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>3. The Training allowed adequate time for questions and discussion</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>4. The Training material provided adequate detail of the subject matter</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
<tr>
<td>5. The material provided was organized and relevant to the subject matter covered</td>
<td>5 4 3 2 1 N/A</td>
<td></td>
</tr>
</tbody>
</table>
Provide any additional comments:
Contractor Training Requirements:
Contractors are required to provide training on equipment and systems as identified in the contract documents. The contractor is to provide to the Owner and the Commissioning Authority (CxA) the following documentation:

- Instructor Qualifications / Resume
- Training Agenda / Outline
- Copies of all handouts / documents that will be provided during the instruction

The Contractor is to complete the Contractor Training Plan Submittal Form, as a checklist to ensure the above items are provided, to the Commissioning Authority for review and comment by both the Owners Representative and the Commissioning Authority.

The Contractor’s Instructor is responsible, during the delivery of the training, to ensure that all attendees sign into the training on the Class Attendance Roster. Once completed, the sign in sheet will be forwarded to the Cx Authority (CxA) and owner for their records.

Contractor Training Plan Submittal Form:

<table>
<thead>
<tr>
<th>Training Plan (Contractor Provides) Includes:</th>
<th>Training Conducted by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗ Instructor Qualifications/Resume</td>
<td>Instructor Name:</td>
</tr>
<tr>
<td>✗ Agenda / Training Outline</td>
<td>Title:</td>
</tr>
<tr>
<td>✗ Handouts / Documents</td>
<td>Phone:</td>
</tr>
<tr>
<td></td>
<td>FAX:</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
</tr>
</tbody>
</table>

Equipment Included in Training:

[List each piece of equipment (AHU-1, AHU-2…..)]
Agenda Topics:
The following syllabi points shall be included as a minimum:

[EDIT THE FOLLOWING USING EXAMPLES GIVEN:]

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>LOCATION</th>
<th>TIME</th>
<th>PRESENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Overall Design Intent</td>
<td>Classroom</td>
<td>8 am – 10:30 am</td>
<td>Karpinski Engineers</td>
</tr>
<tr>
<td>Air Handling Systems</td>
<td></td>
<td>11 am- Noon</td>
<td></td>
</tr>
<tr>
<td>II Break</td>
<td>Classroom</td>
<td>10:30 – 11:00</td>
<td>Custom Air Handling Provider</td>
</tr>
<tr>
<td>III Custom Air Handling Units</td>
<td>Classroom</td>
<td>Lunch</td>
<td>(Factory Trainer)</td>
</tr>
<tr>
<td>(AHU-3 – AHU-8)</td>
<td></td>
<td>1:00pm – 4:30</td>
<td>BAS Provider</td>
</tr>
</tbody>
</table>

A. Review General Unit Operation / Components / Performance including fans, motors, coils, filters, dampers, airflow stations, VFC’s, humidifiers, and other components operation with load and methods of control
B. Describe supply and return fans and required monitoring, maintenance and service including replacement of belts and sheaves, motors, and regular monthly maintenance
C. Review all coil installations and ongoing cleaning and maintenance
D. Review all Electrical Components including wiring diagrams, all safety interlocks, VFC’S wiring, performance and regular monitoring and maintenance
E. Describe unit Operator Interface and Controls, Control Points, Interface with main Operator Work Station. Describe use of the Operator Interface Panel. Describe use of VFC operator interface panels
F. Review procedures for filter replacement
G. Review all Alarms and Troubleshooting of alarms
 a. Types of Alarms and Meaning of alarm and actions required by maintenance depending upon the alarm
 b. Responses to different types of alarms
H. Review operation and maintenance of AHU humidifiers
I. Review operation and maintenance of damper actuators and control valve actuators and dampers and control valves
J. Review Daily, Monthly, and Annual Maintenance
Contractor Training Class Attendance Roster &
Owner / Commissioning Authority Training Evaluation Form:

<table>
<thead>
<tr>
<th>Training Plan [M-01]</th>
<th>[Equipment Type]</th>
<th>Specifications [XXXXXX]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Instructor Name:</th>
<th>Date & Time of Training:</th>
</tr>
</thead>
</table>

Each Attendee to print name and title:

<table>
<thead>
<tr>
<th>Printed Name:</th>
<th>Job Title:</th>
</tr>
</thead>
</table>

Comments:
SECTION 02 41 00

DEMOLITION

05/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI Guideline K
(2009) Guideline for Containers for Recovered Non-Flammable Fluorocarbon Refrigerants

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 145

AASHTO T 180
(2015) Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)

ASSE/SAFE A10.6
(2006) Safety Requirements for Demolition Operations

U.S. ARMY CORPS OF ENGINEERS (USACE)

EM 385-1-1

U.S. DEFENSE LOGISTICS AGENCY (DLA)

DLA 4145.25
(Jun 2000; Reaffirmed Oct 2010) Storage and Handling of Liquefied and Gaseous Compressed Gases and Their Full and Empty Cylinders
http://www.aviation.dla.mil/UserWeb/aviationengineerin

U.S. DEPARTMENT OF DEFENSE (DOD)

DOD 4000.25-1-M

MIL-STD-129
(2014; Rev R) Military Marking for Shipment and Storage
1.2 PROJECT DESCRIPTION

1.2.1 Demolition/Deconstruction Plan

Prepare a Demolition Plan and submit proposed demolition, and removal procedures for approval before work is started. Include in the plan procedures for careful removal and disposition of materials specified to be salvaged, coordination with other work in progress, a disconnection schedule of utility services, a detailed description of methods and equipment to be used for each operation and of the sequence of operations. Identify components and materials to be salvaged for reuse or recycling with reference to paragraph Existing Facilities to be Removed. Append tracking forms for all removed materials indicating type, quantities, condition, destination, and end use. Coordinate with Waste Management Plan. Include statements affirming Contractor inspection of the existing roof deck and its suitability to perform as a safe working platform or if inspection reveals a safety hazard to workers, state provisions for securing the safety of the workers throughout the performance of the work. Provide procedures for safe conduct of the work in accordance with EM 385-1-1. Plan shall be approved by Contracting Officer prior to work beginning.

1.2.2 General Requirements

Do not begin demolition or deconstruction until authorization is received from the Contracting Officer. The work of this section is to be performed in a manner that maximizes the value derived from the salvage and recycling of materials. Remove rubbish and debris from the project site; do not allow accumulations inside or outside the building. In the interest of occupational safety and health, perform the work in accordance with EM 385-1-1, Section 23, Demolition, and other applicable Sections.

1.3 ITEMS TO REMAIN IN PLACE

Take necessary precautions to avoid damage to existing items to remain in place, to be reused, or to remain the property of the Government. Repair or replace damaged items as approved by the Contracting Officer. Coordinate the work of this section with all other work indicated. Construct and maintain shoring, bracing, and supports as required. Ensure that structural elements are not overloaded. Increase structural supports or add new supports as may be required as a result of any cutting, removal, deconstruction, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition, deconstruction, or removal work. Repairs, reinforcement, or structural replacement require approval by the Contracting Officer prior to performing such work.
1.3.1 Existing Construction Limits and Protection

Do not disturb existing construction beyond the extent indicated or necessary for installation of new construction. Provide temporary shoring and bracing for support of building components to prevent settlement or other movement. Provide protective measures to control accumulation and migration of dust and dirt in all work areas. Remove dust, dirt, and debris from work areas daily.

1.3.2 Weather Protection

For portions of the building to remain, protect building interior and materials and equipment from the weather at all times. Where removal of existing roofing is necessary to accomplish work, have materials and workmen ready to provide adequate and temporary covering of exposed areas.

1.3.3 Trees

Protect trees within the project site which might be damaged during demolition or deconstruction, and which are indicated to be left in place, by a 6 foot high fence. Erect and secure fence a minimum of 5 feet from the trunk of individual trees or follow the outer perimeter of branches or clumps of trees. Replace any tree designated to remain that is damaged during the work under this contract with like-kind or as approved by the Contracting Officer.

1.3.4 Utility Service

Maintain existing utilities indicated to stay in service and protect against damage during demolition and deconstruction operations. Prior to start of work, utilities serving each area of alteration or removal will be shut off by the Government and disconnected and sealed by the Contractor.

1.3.5 Facilities

Protect electrical and mechanical services and utilities. Where removal of existing utilities and pavement is specified or indicated, provide approved barricades, temporary covering of exposed areas, and temporary services or connections for electrical and mechanical utilities. Floors, roofs, walls, columns, pilasters, and other structural components that are designed and constructed to stand without lateral support or shoring, and are determined to be in stable condition, must remain standing without additional bracing, shoring, or lateral support until demolished or deconstructed, unless directed otherwise by the Contracting Officer. Ensure that no elements determined to be unstable are left unsupported and place and secure bracing, shoring, or lateral supports as may be required as a result of any cutting, removal, deconstruction, or demolition work performed under this contract.

1.4 BURNING

The use of burning at the project site for the disposal of refuse and debris will not be permitted. Where burning is permitted, adhere to federal, state, and local regulations.

1.5 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
1.6 QUALITY ASSURANCE

Submit timely notification of demolition and renovation projects to Federal, State, regional, and local authorities in accordance with 40 CFR 61, Subpart M. Notify the Regional Office of the United States Environmental Protection Agency (USEPA) State's environmental protection agency and the Contracting Officer in writing 10 working days prior to the commencement of work in accordance with 40 CFR 61, Subpart M. Comply with federal, state, and local hauling and disposal regulations. In addition to the requirements of the "Contract Clauses," conform to the safety requirements contained in ASSE/SAFE A10.6. Comply with the Environmental Protection Agency requirements specified. Use of explosives will not be permitted.

1.6.1 Dust and Debris Control

Prevent the spread of dust and debris and avoid the creation of a nuisance or hazard in the surrounding area. Do not use water if it results in hazardous or objectionable conditions such as, but not limited to, ice, flooding, or pollution.

1.7 PROTECTION

1.7.1 Traffic Control Signs

a. Where pedestrian and driver safety is endangered in the area of removal work, use traffic barricades with flashing lights. Notify the Contracting Officer prior to beginning such work.

1.7.2 Protection of Personnel

Before, during and after the demolition work continuously evaluate the condition of the structure being demolished and take immediate action to protect all personnel working in and around the project site. No area, section, or component of floors, roofs, walls, columns, pilasters, or other structural element will be allowed to be left standing without sufficient bracing, shoring, or lateral support to prevent collapse or failure while workmen remove debris or perform other work in the immediate area.

1.8 FOREIGN OBJECT DAMAGE (FOD)

Aircraft and aircraft engines are subject to FOD from debris and waste material lying on airfield pavements. Remove all such materials that may appear on operational aircraft pavements due to the Contractor's
operations. If necessary, the Contracting Officer may require the Contractor to install a temporary barricade at the Contractor's expense to control the spread of FOD potential debris. The barricade shall include a fence covered with a fabric designed to stop the spread of debris. Anchor the fence and fabric to prevent displacement by winds or jet/prop blasts. Remove barricade when no longer required.

1.9 RELOCATIONS

Perform the removal and reinstallation of relocated items as indicated with workmen skilled in the trades involved. Repair or replace items to be relocated which are damaged by the Contractor with new undamaged items as approved by the Contracting Officer.

1.10 EXISTING CONDITIONS

Before beginning any demolition or deconstruction work, survey the site and examine the drawings and specifications to determine the extent of the work. Record existing conditions in the presence of the Contracting Officer showing the condition of structures and other facilities adjacent to areas of alteration or removal. Photographs sized 4 inch will be acceptable as a record of existing conditions. Include in the record the elevation of the top of foundation walls, finish floor elevations, possible conflicting electrical conduits, plumbing lines, alarms systems, the location and extent of existing cracks and other damage and description of surface conditions that exist prior to before starting work. It is the Contractor's responsibility to verify and document all required outages which will be required during the course of work, and to note these outages on the record document. Submit survey results.

PART 2 PRODUCTS

2.1 FILL MATERIAL

a. Comply with excavating, backfilling, and compacting procedures for soils used as backfill material to fill basements, voids, depressions or excavations resulting from demolition or deconstruction of structures. Fill material shall be waste products from demolition or deconstruction until all waste appropriate for this purpose is consumed.

b. Fill material shall conform to the definition of satisfactory soil material as defined in AASHTO M 145, Soil Classification Groups A-1, A-2-4, A-2-5 and A-3. In addition, fill material shall be free from roots and other organic matter, trash, debris, frozen materials, and stones larger than 2 inches in any dimension.

c. Proposed fill material must be sampled and tested by an approved soil testing laboratory, as follows:

<table>
<thead>
<tr>
<th>Soil classification</th>
<th>AASHTO M 145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture-density relations</td>
<td>AASHTO T 180, Method B or D</td>
</tr>
</tbody>
</table>

PART 3 EXECUTION

3.1 EXISTING FACILITIES TO BE REMOVED

Inspect and evaluate existing structures onsite for reuse. Existing
construction scheduled to be removed for reuse shall be disassembled. Dismantled and removed materials are to be separated, set aside, and prepared as specified, and stored or delivered to a collection point for reuse, remanufacture, recycling, or other disposal, as specified. Materials shall be designated for reuse onsite whenever possible.

3.1.1 Utilities and Related Equipment

3.1.1.1 General Requirements

Do not interrupt existing utilities serving occupied or used facilities, except when authorized in writing by the Contracting Officer. Do not interrupt existing utilities serving facilities occupied and used by the Government except when approved in writing and then only after temporary utility services have been approved and provided. Do not begin demolition or deconstruction work until all utility disconnections have been made. Shut off and cap utilities for future use, as indicated.

3.1.1.2 Disconnecting Existing Utilities

Remove existing utilities, as indicated and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Contracting Officer. When utility lines are encountered but are not indicated on the drawings, notify the Contracting Officer prior to further work in that area. Remove meters and related equipment and deliver to a location in accordance with instructions of the Contracting Officer.

3.1.2 Paving and Slabs

Remove concrete and asphaltic concrete paving and slabs including aggregate baseas indicated to a depth of 16 inches below new finish grade. Pavement and slabs designated to be recycled and utilized in this project shall be moved, ground and stored as directed by the Contracting Officer. Pavement and slabs not to be used in this project shall be removed from the Installation at Contractor's expense.

3.1.3 Roofing

Remove existing roof system and associated components in their entirety down to existing roof deck. Sequence work to minimize building exposure between demolition or deconstruction and new roof materials installation.

3.1.3.1 Temporary Roofing

Install temporary roofing and flashing as necessary to maintain a watertight condition throughout the course of the work. Remove temporary work prior to installation of permanent roof system materials unless approved otherwise by the Contracting Officer.

3.1.3.2 Reroofing

When removing the existing roofing system from the roof deck, remove only as much roofing as can be recovered by the end of the work day, unless approved otherwise by the Contracting Officer. Do not attempt to open the roof covering system in threatening weather. Reseat all openings prior to suspension of work the same day.
3.1.4 Masonry
Sawcut and remove masonry so as to prevent damage to surfaces to remain and to facilitate the installation of new work. Where new masonry adjoins existing, the new work shall abut or tie into the existing construction as specified for the new work. Provide square, straight edges and corners where existing masonry adjoins new work and other locations. Masonry removed in whole blocks shall be salvaged and stored for reuse.

3.1.5 Concrete
Saw concrete along straight lines to a depth of a minimum 2 inch. Make each cut in walls perpendicular to the face and in alignment with the cut in the opposite face. Break out the remainder of the concrete provided that the broken area is concealed in the finished work, and the remaining concrete is sound. At locations where the broken face cannot be concealed, grind smooth or saw cut entirely through the concrete.

3.1.6 Structural Steel
Dismantle structural steel at field connections and in a manner that will prevent bending or damage. Salvage for recycle structural steel, steel joists, girders, angles, plates, columns and shapes. Do not use flame-cutting torches. Transport steel joists and girders as whole units and not dismantled. Transport structural steel shapes to a designated recycling facility, stacked according to size, type of member and length, and stored off the ground, protected from the weather.

3.1.7 Miscellaneous Metal
Salvage shop-fabricated items such as access doors and frames, steel gratings, metal ladders, wire mesh partitions, metal railings, metal windows and similar items as whole units. Salvage light-gage and cold-formed metal framing, such as steel studs, steel trusses, metal gutters, roofing and siding, metal toilet partitions, toilet accessories and similar items. Scrap metal shall become the Contractor's property. Recycle scrap metal as part of demolition and deconstruction operations. Provide separate containers to collect scrap metal and transport to a scrap metal collection or recycling facility, in accordance with the Waste Management Plan.

3.1.8 Carpentry
Salvage for recycle lumber, millwork items, and finished boards, and sort by type and size. Chip or shred and recycle salvaged wood unfit for reuse, except stained, painted, or treated wood. windows, doors, frames, and cabinets, and similar items as whole units, complete with trim and accessories. Salvage hardware attached to units for reuse. Brace the open end of door frames to prevent damage.

3.1.9 Acoustic Ceiling Tile
Remove, neatly stack, and recycle acoustic ceiling tiles. Recycling may be available with manufacturer. Otherwise, priority shall be given to a local recycling organization. Recycling is not required if the tiles contain or may have been exposed to asbestos material.
3.1.10 Patching

Where removals leave holes and damaged surfaces exposed in the finished work, patch and repair these holes and damaged surfaces to match adjacent finished surfaces, using on-site materials when available. Where new work is to be applied to existing surfaces, perform removals and patching in a manner to produce surfaces suitable for receiving new work. Finished surfaces of patched area shall be flush with the adjacent existing surface and shall match the existing adjacent surface as closely as possible as to texture and finish. Patching shall be as specified and indicated, and shall include:

a. Concrete and Masonry: Completely fill holes and depressions, caused by previous physical damage or left as a result of removals in existing masonry walls to remain, with an approved masonry patching material, applied in accordance with the manufacturer's printed instructions.

b. Where existing partitions have been removed leaving damaged or missing resilient tile flooring, patch to match the existing floor tile.

c. Patch acoustic lay-in ceiling where partitions have been removed. The transition between the different ceiling heights shall be effected by continuing the higher ceiling level over to the first runner on the lower ceiling and closing the vertical opening with a painted sheet metal strip.

3.1.11 Air Conditioning Equipment

Remove air conditioning, refrigeration, and other equipment containing refrigerants without releasing chlorofluorocarbon refrigerants to the atmosphere in accordance with the Clean Air Act Amendment of 1990.

3.1.12 Locksets on Swinging Doors

Remove all locksets from all swinging doors indicated to be removed and disposed of. Deliver the locksets and related items to a designated location for receipt by the Contracting Officer after removal.

3.1.13 Mechanical Equipment and Fixtures

Disconnect mechanical hardware at the nearest connection to existing services to remain, unless otherwise noted. Disconnect mechanical equipment and fixtures at fittings. Remove service valves attached to the unit. Salvage each item of equipment and fixtures as a whole unit; listed, indexed, tagged, and stored. Salvage each unit with its normal operating auxiliary equipment. Transport salvaged equipment and fixtures, including motors and machines, to a designated storage area as directed by the Contracting Officer. Do not remove equipment until approved. Do not offer low-efficiency equipment for reuse; provide to recycling service for disassembly and recycling of parts.

3.1.13.1 Preparation for Storage

Remove water, dirt, dust, and foreign matter from units; tanks, piping and fixtures shall be drained; interiors, if previously used to store flammable, explosive, or other dangerous liquids, shall be steam cleaned. Seal openings with caps, plates, or plugs. Secure motors attached by flexible connections to the unit. Change lubricating systems with the proper oil or grease.
3.1.13.2 Piping

Disconnect piping at unions, flanges and valves, and fittings as required to reduce the pipe into straight lengths for practical storage. Store salvaged piping according to size and type. If the piping that remains can become pressurized due to upstream valve failure, end caps, blind flanges, or other types of plugs or fittings with a pressure gage and bleed valve shall be attached to the open end of the pipe to ensure positive leak control. Carefully dismantle piping that previously contained gas, gasoline, oil, or other dangerous fluids, with precautions taken to prevent injury to persons and property. Store piping outdoors until all fumes and residues are removed. Box prefabricated supports, hangers, plates, valves, and specialty items according to size and type. Wrap sprinkler heads individually in plastic bags before boxing. Classify piping not designated for salvage, or not reusable, as scrap metal.

3.1.13.3 Ducts

Classify removed duct work as scrap metal.

3.1.13.4 Fixtures, Motors and Machines

Remove and salvage fixtures, motors and machines associated with plumbing, heating, air conditioning, refrigeration, and other mechanical system installations. Salvage, box and store auxiliary units and accessories with the main motor and machines. Tag salvaged items for identification, storage, and protection from damage. Classify non-porcelain broken, damaged, or otherwise unserviceable units and not caused to be broken, damaged, or otherwise unserviceable as debris to be disposed of by the Contractor. Salvage and crush porcelain plumbing fixtures unsuitable for reuse.

3.1.14 Electrical Equipment and Fixtures

Salvage motors, motor controllers, and operating and control equipment that are attached to the driven equipment. Salvage wiring systems and components. Box loose items and tag for identification. Disconnect primary, secondary, control, communication, and signal circuits at the point of attachment to their distribution system.

3.1.14.1 Fixtures

Remove and salvage electrical fixtures. Salvage unprotected glassware from the fixture and salvage separately. Salvage incandescent, mercury-vapor, and fluorescent lamps and fluorescent ballasts manufactured prior to 1978, boxed and tagged for identification, and protected from breakage.

3.1.14.2 Electrical Devices

Remove and salvage switches, switchgear, transformers, conductors including wire and nonmetallic sheathed and flexible armored cable, regulators, meters, instruments, plates, circuit breakers, panelboards, outlet boxes, and similar items. Box and tag these items for identification according to type and size.

3.1.14.3 Wiring Ducts or Troughs

Remove and salvage wiring ducts or troughs. Dismantle plug-in ducts and
wiring troughs into unit lengths. Remove plug-in or disconnecting devices from the busway and store separately.

3.1.14.4 Conduit and Miscellaneous Items

Salvage conduit except where embedded in concrete or masonry. Consider corroded, bent, or damaged conduit as scrap metal. Sort straight and undamaged lengths of conduit according to size and type. Classify supports, knobs, tubes, cleats, and straps as debris to be removed and disposed.

3.1.15 Items With Unique/Regulated Disposal Requirements

Remove and dispose of items with unique or regulated disposal requirements in the manner dictated by law or in the most environmentally responsible manner.

3.2 CONCURRENT EARTH-MOVING OPERATIONS

Do not begin excavation, filling, and other earth-moving operations that are sequential to demolition or deconstruction work in areas occupied by structures to be demolished or deconstructed until all demolition and deconstruction in the area has been completed and debris removed. Fill holes, open basements and other hazardous openings.

3.3 DISPOSITION OF MATERIAL

3.3.1 Title to Materials

Except for salvaged items specified in related Sections, and for materials or equipment scheduled for salvage, all materials and equipment removed and not reused or salvaged, shall become the property of the Contractor and shall be removed from Government property. Title to materials resulting from demolition and deconstruction, and materials and equipment to be removed, is vested in the Contractor upon approval by the Contracting Officer of the Contractor's demolition, deconstruction, and removal procedures, and authorization by the Contracting Officer to begin demolition and deconstruction. The Government will not be responsible for the condition or loss of, or damage to, such property after contract award. Showing for sale or selling materials and equipment on site is prohibited.

3.3.2 Reuse of Materials and Equipment

Remove and store materials and equipment listed in the Deconstruction Plan to be reused or relocated to prevent damage, and reinstall as the work progresses.

3.3.3 Salvaged Materials and Equipment

Remove materials and equipment that are indicated and specified to be removed by the Contractor and that are to remain the property of the Government, and deliver to a storage site.

a. Salvage items and material to the maximum extent possible.

b. Store all materials salvaged for the Contractor as approved by the Contracting Officer and remove from Government property before completion of the contract. On site sales of salvaged material is
c. Remove salvaged items to remain the property of the Government in a manner to prevent damage, and packed or crated to protect the items from damage while in storage or during shipment. Items damaged during removal or storage must be repaired or replaced to match existing items.

e. Remove historical items in a manner to prevent damage. Deliver the following historical items to the Government for disposition: Corner stones, contents of corner stones, and document boxes wherever located on the site.

f. Remove and capture all Class I ODS refrigerants in accordance with the Clean Air Act Amendment of 1990, and turn in to the Navy as directed by the Commanding Officer.

3.3.4 Disposal of Ozone Depleting Substance (ODS)

Class I and Class II ODS are defined in Section, 602(a) and (b), of The Clean Air Act. Prevent discharge of Class I and Class II ODS to the atmosphere. Place recovered ODS in cylinders meeting AHRI Guideline K suitable for the type ODS (filled to no more than 80 percent capacity) and provide appropriate labeling. Recovered ODS shall be removed from Government property and disposed of in accordance with 40 CFR 82. Products, equipment and appliances containing ODS in a sealed, self-contained system (e.g. residential refrigerators and window air conditioners) shall be disposed of in accordance with 40 CFR 82. Submit Receipts or bills of lading, as specified. Submit a shipping receipt or bill of lading for all containers of ozone depleting substance (ODS) shipped to the Defense Depot, Richmond, Virginia.

3.3.4.1 Special Instructions

No more than one type of ODS is permitted in each container. A warning/hazardous label shall be applied to the containers in accordance with Department of Transportation regulations. All cylinders including but not limited to fire extinguishers, spheres, or canisters containing an ODS shall have a tag with the following information:

a. Activity name and unit identification code

b. Activity point of contact and phone number

c. Type of ODS and pounds of ODS contained

d. Date of shipment

e. National stock number (for information, call (804) 279-4525).

3.3.4.2 Fire Suppression Containers

Deactivate fire suppression system cylinders and canisters with electrical charges or initiators prior to shipment. Also, safety caps must be used to cover exposed actuation mechanisms and discharge ports on these special cylinders.

3.3.5 Transportation Guidance

Ship all ODS containers in accordance with MIL-STD-129, DLA 4145.25 (also
referenced one of the following: Army Regulation 700-68, Naval Supply Instruction 4440.128C, Marine Corps Order 10330.2C, and Air Force Regulation 67-12), 49 CFR 173.301, and DOD 4000.25-1-M.

3.3.6 Unsalvageable and Non-Recyclable Material

Dispose of unsalvageable and non-recyclable noncombustible material in the disposal area located at the Camp Lejeune Base Landfill. The fill in the disposal area shall remain below elevation of disposal and after disposal is completed, the disposal area shall be uniformly graded to drain. Dispose of unsalvageable and non-recyclable combustible material in the sanitary fill area located on Piney Green Road.

3.4 CLEANUP

Remove debris and rubbish from basement and similar excavations. Remove and transport the debris in a manner that prevents spillage on streets or adjacent areas. Apply local regulations regarding hauling and disposal.

3.5 DISPOSAL OF REMOVED MATERIALS

3.5.1 Regulation of Removed Materials

Dispose of debris, rubbish, scrap, and other nonsalvageable materials resulting from removal operations with all applicable federal, state and local regulations as contractually specified in the Waste Management Plan.

3.5.2 Burning on Government Property

Burning of materials removed from demolished and deconstructed structures will not be permitted on Government property.

3.5.3 Removal to Spoil Areas on Government Property

Transport noncombustible materials removed from demolition and deconstruction structures to designated spoil areas on Government property.

3.5.4 Removal from Government Property

Transport waste materials removed from demolished and deconstructed structures, except waste soil, from Government property for legal disposal. Dispose of waste soil as directed.

3.6 REUSE OF SALVAGED ITEMS

Recondition salvaged materials and equipment designated for reuse before installation. Replace items damaged during removal and salvage operations or restore them as necessary to usable condition.

-- End of Section --
SECTION 02 82 16

REMOVAL AND DISPOSAL OF ASBESTOS MATERIALS
(CAMP LEJEUNE COMPLEX)

03/10
PART 1 GENERAL

1.1 APPLICABLE NORTH CAROLINA LAW

North Carolina State General Statues 130A, Article 19-444-452 and 10A North Carolina Administrative Chapter (NCAC) 41C .0600 through .0611.

1.1.1 N.C. (DHHS-HHCU) Asbestos Accreditation

All personnel involved in asbestos removal shall be currently accredited for asbestos removal by N.C. (DHHS-HHCU). An application for accreditation may be requested from the State of North Carolina, Health Hazards Control Unit, Department of Health and Human Services, Division of Public Health; 1912 Mail Service Center, Raleigh, NC 27699-1912; (919) 707-5950. Out of State accreditation will not be accepted.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI Z88.2 (1992) Respiratory Protection

ASTM INTERNATIONAL (ASTM)

ASTM D 1331 (1989; R 1995) Surface and Interfacial Tension of Solutions of Surface-Active Agents
ASTM E 96 (1997; Rev A) Water Vapor Transmission of Materials
1.3 DEFINITIONS

1.3.1 Asbestos Containing Material (ACM)

All building materials that have more than 1% of chrysotile, amosite, crocidolite, tremolite, anthophyllite, or any other form of asbestos in the serpentine or anthobole class.

1.3.2 Action Level/Permissive Exposure Limit (PEL)

An airborne concentration of asbestos fibers, in the breathing zone of a worker equaling 0.1 fibers per cubic centimeter of air calculated as an 8-hour time weighted average.

1.3.3 Amended Water

Water containing a wetting agent or surfactant with a surface tension of 29 dynes per square centimeter when tested in accordance with ASTM D 1331 shall be utilized. In the event where wetting operations are suspended due to freezing temperatures, the operator or abatement contractor shall record the temperature on Form DHHS 3787.

1.3.4 Area Sampling

Sampling of asbestos fiber concentrations within the asbestos control area and outside the asbestos control area which approximates the concentrations of asbestos in the theoretical breathing zone but is not actually collected in the breathing zone of an employee.
1.3.5 Asbestos

The term asbestos includes chrysotile, amosite, crocidolite, tremolite, anthophyllite, and actinolite and any of these minerals that has been chemically treated or altered. Materials are considered to contain asbestos if the asbestos content is more than 1% of the material by area.

1.3.6 Asbestos Control Area

That area where asbestos removal operations are performed which is isolated by physical boundaries which assist in the prevention of the uncontrolled release of asbestos dust, fibers, or debris. Two examples of an asbestos control area are: a full containment and a "glovebag."

1.3.7 Asbestos Fibers

Those fibers having an aspect ratio of at least 3:1 and longer than 5 micrometers as determined by National Institute for Occupational Safety and Health (NIOSH) Method 7400.

1.3.8 Asbestos Permissible Exposure Limit

0.1 fibers per cubic centimeter of air as an 8-hour time weighted average as defined by 29 CFR 1926.1101 or other federal legislation having legal jurisdiction for the protection of workers health.

1.3.9 Background

Normal airborne asbestos concentration in an area similar to the asbestos abatement area but in an uncontaminated (with asbestos) state.

1.3.10 Contractor

The Contractor is that individual, or entity under contract to the Navy to perform the herein listed work.

1.3.11 Encapsulants

Specific materials in various forms used to chemically entrap asbestos fibers in various configurations to prevent these fibers from becoming airborne. There are four types of encapsulants as follows which must comply with performance requirements as specified herein.

a. Removal Encapsulant (can be used as a wetting agent)

b. Bridging Encapsulant (used to provide a tough, durable surface coating to asbestos containing material)

c. Penetrating Encapsulant (used to penetrate the asbestos containing material down to substrate, encapsulating all asbestos fibers)

d. Lock-Down Encapsulant (used to seal off or "lock-down" minute asbestos fibers left on surfaces from which asbestos containing material has been removed)

1.3.12 Friable Asbestos Material

Material that contains more than 1% asbestos by area and that can be crumbled, pulverized, or reduced to powder by hand pressure when dry.
1.3.13 Full Containment

Those engineering control techniques described in 29 CFR 1926.1101 for major asbestos removal, renovation and demolition operations.

1.3.14 Glovebag Technique

1.3.15 HEPA Filter Equipment

High efficiency particulate air (HEPA) filtered vacuum and/or exhaust ventilation equipment with a filter system capable of collecting and retaining asbestos fibers. Filters shall retain 99.97 percent of particles 0.3 microns or larger as indicated in UL 586.

1.3.16 Navy Industrial Hygienist (NIH)

That industrial hygienist employed by the Navy to monitor, sample, and/or inspect the work separate from the original construction contract. The NIH can be either a Federal civil servant or a private consultant as determined by the Navy. In some instances the NIH shall perform assigned duties vicariously through a trained subordinate but only with the specific consent of the Contracting Officer.

1.3.17 Nonfriable Asbestos Material

Material that contains asbestos in which the fibers have been temporarily locked in by a bonding agent, coating, binder, or other material so that the asbestos is well bound and will not normally release asbestos fibers during any appropriate use, handling, storage or transportation. It is understood that asbestos fibers will be released under other conditions such as demolition or removal.

1.3.18 PCM - Phased Contrast Microscopy

A method of analyzing air samples for fibers using a light microscope.

1.3.19 PLM - Polarized Light Microscopy

A method of analyzing bulk samples for asbestos in which the sample is illuminated with polarized light (light which vibrates in only one plane) and viewed under a light microscope.

1.3.20 Personal Sampling

Air sampling to determine asbestos fiber concentrations within the breathing zone of a specific employee, performed in accordance with 29 CFR 1926.1101.

1.3.21 Supervising Air Monitor (SAM)

That supervising air monitor hired by the Contractor to perform the herein listed industrial hygiene tasks. In some instances, the SAM can perform this role vicariously through a trained subordinate, but only with the specific consent of the Contracting Officer. Under N.C. Statue, the SAM must make a site visit on any project exceeding 10 days and once every 30 days thereafter.
1.3.22 TEM

Refers to Transmission Electron Microscopy (TEM). Technique whereby a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it passes through. An image is formed from the interaction of the electrons transmitted through the specimen; the image is magnified and focused onto an imaging device, such as a fluorescent screen, on a layer of photographic film, or to be detected by a sensor such as a CCB camera.

1.3.23 Time Weighted Average (TWA)

The TWA is an 8-hour time weighted average airborne concentration of asbestos fibers. At least three full shift samples per person are required to establish that person's TWA exposure.

1.3.24 Wetting Agent

That specific agent used to reduce airborne asbestos levels by physically bonding asbestos fibers to material to be removed. An equivalent wetting agent must have a surface tension of at least 29 dynes per square centimeter as tested in accordance with ASTM D 1331. In the event where wetting operations are suspended due to freezing temperatures, the operator or abatement contractor shall record the temperature on Form DHHS 3787.

1.4 REQUIREMENTS

1.4.1 Description of Work

The work covered by this section includes the handling of asbestos containing materials which are encountered during repair, construction and demolition projects and describes some of the resultant procedures and equipment required to protect workers and occupants of the building or area, or both, from contact with airborne asbestos fibers. The work also includes the disposal of the generated asbestos containing materials. The asbestos work includes the demolition and removal of non-friable ACM located in the EXISTING ATTIC FLOOR FORMER BUILT UP ROOFING ABANDONED IN PLACE WHERE DEMOLITION IS SCHEDULED. See attached Survey Report. Additional suspect ACM material NOT IDENTIFIED IN THE ATTACHED REPORT shall include SHOWER PAN MEMBRANE scheduled for demolition. Under normal conditions non-friable or chemically bound materials containing asbestos would not be considered hazardous; however, this material will release airborne asbestos fibers during demolition and removal and therefore must be handled in accordance with North Carolina Regulations.

1.4.2 N. C. (DHHS-HHCU) North Carolina Department of Health and Human Services - Health Hazards Control Unit

Obtain necessary permits in conjunction with asbestos removal, hauling, and disposition, and furnish timely notification of such actions required by federal, state, regional, and local authorities. A permit is only required when you will be abating more than 260 linear feet, 160 square feet, or 35 cubic feet of an asbestos-containing building material. Also, if mechanical means of removing non-friable asbestos is utilized the contractor will need to provide permit. Notify the N.C. (DHHS-HHCU) and the Contracting Officer in writing 10 days prior to the commencement of
work. Submit a copy of the permit to the Contracting Officer.

1.4.2.1 N.C. (DHHS-HHCU) mailing address is:

Health Hazards Control Unit
N.C. Department of Health and Human Services
Division of Public Health
1912 Mail Service Center
Raleigh, NC 27699-1912
Phone: (919) 733-0820

1.4.2.2 Changes in Work

Changes in Work which affect items on the attached form shall be covered by an amended form submitted to the same address.

1.4.3 Safety and Health Compliance

In addition to detailed requirements of this specification, comply with those applicable laws, ordinances, criteria, rules, and regulations of federal, state, regional, and local authorities regarding handling, storing, transporting, and disposing of asbestos waste materials. Comply with the applicable requirements of the current issue of 29 CFR 1926.1101, 40 CFR 61, SUBPART A, 40 CFR 61, SUBPART M. Submit matters of interpretation of standards to the appropriate administrative agency for resolution before starting the work. Where the requirements of this specification, applicable laws, rules, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirement as defined by the Contracting Officer shall apply.

1.4.4 Respiratory Protection Program

Establish and implement a respirator program as required by ANSI Z88.2 and 29 CFR 1910.103.

1.4.5 Supervising Air Monitor (SAM)

Conduct personal area/environmental air sampling and training under the direction of a North Carolina accredited supervising air monitor. For the purpose of this contract, the Contractor shall retain the services of a SAM to perform the Contractor's industrial hygiene tasks.

1.5 SUBMITTALS

Submit 4 copies of the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-06 Test Reports
Air sampling results
Pressure differential recordings for local exhaust system
Clearance sampling

SD-07 Certificates
1.5.1 Asbestos Hazard Abatement Plan (NC Abatement Design)

An asbestos abatement design shall be prepared by a N.C. accredited asbestos abatement designer for each individually permitted removal of more than 260 linear feet, 160 square feet, or 35 cubic feet of regulated asbestos containing materials. The plan shall be prepared, signed, and sealed, including accreditation number and date, by an accredited abatement designer. The respirator program and air monitoring strategies portion of this plan shall be prepared by the supervising air monitor. Such plan shall include but not be limited to the precise personal protective equipment to be used, the location of asbestos control areas including clean and dirty areas, buffer zones, showers, storage areas, change rooms, removal method, interface of trades involved in the construction, sequencing of asbestos related work, disposal plan, type of wetting agent and asbestos sealer to be used, locations of local exhaust equipment, planned air monitoring strategies, and a detailed description of the method to be employed in order to control pollution. The plan shall also include (both fire and medical emergency) response plans. The Contractor and designer shall meet with the Contracting Officer prior to beginning work, to discuss in detail the asbestos plan, including work procedures and safety precautions. The plan will be enforced as if an addition to the specification. Any changes required in the specification as a result of the plan shall be identified specifically in the plan. The plan shall comply with all federal and state requirements and this specification, and shall serve as the North Carolina Abatement Design. Submit a copy of plan to the Contracting Officer.

1.5.2 Air Sampling Results

Complete fiber counting and provide results to the SAM for review within 16 hours. Notify the Contracting Officer immediately of any airborne levels of asbestos fibers in excess of the acceptable limits. Submit sampling results to the Contracting Officer and the affected Contractor employees within 3 working days, signed by the employee performing air sampling, the employee that analyzed the sample, and the SAM.

1.5.3 Pressure Differential Recordings for Local Exhaust System

Provide a local exhaust system that creates a negative pressure of at least 0.02 inches of water relative to the pressure external of the enclosure and operate it continuously, 24 hours a day, until the enclosure of the asbestos control area is removed. Provide continuous 24-hour per day
monitoring of the pressure differential with a pressure differential automatic recording instrument. Submit pressure differential recordings for each work day to the SAM for review and to the Contracting Officer within 24 hours from the end of each work day. Notify the Contractor and the Contracting Officer immediately of any variance in the pressure differential which could cause adjacent unsealed areas to have asbestos fiber concentrations in excess of 0.01 fibers per cubic centimeter or background whichever is higher. In no circumstance shall levels exceed 0.1 fibers per cubic centimeter.

1.5.4 Asbestos Waste Shipment Record N.C. (DHHS-HHCU) Form 3787

Record and report, to the Contracting Officer, the amount of asbestos containing material removed and released for disposal. Deliver the report for the previous day at the beginning of each day shift with amounts of material removed during the previous day reported in linear feet or square feet as described initially in this specification and in cubic feet for the amount of asbestos containing material released for disposal. Use "Asbestos Waste Shipment Record N.C. (DHHS-HHCU) Form 3787 for this report. A copy of the (DHHS-HHCU) Form 3787 must accompany any asbestos waste shipment to the Base sanitary landfill.

1.5.5 Daily Log

A daily log documenting work practices, sample locations, and all other asbestos related job conditions shall be maintained, by the testing lab and be available for Government examination throughout the course of work. At the completion of testing, a copy of this log shall be immediately delivered to the Government.

1.5.6 North Carolina Permit

Submit one copy of the North Carolina Permit before beginning abatement activities to the Contracting Officer.

1.5.7 Modifications to the North Carolina Permit

Submit a copy of all permit modifications to the Contracting Officer. These must be received before they become effective. The Contractor is responsible for proper permit modification notification to the State. Modifications may be delivered to the Contracts Office or transmitted by facsimile to (910) 411-5899.

1.5.8 Asbestos Inspection Reporting Form

This Asbestos Inspection Reporting Form is included at the end of this section and shows the homogeneous areas involved with this project. The Contractor shall mark the line "confirmed ACM from this HA:" as either "Abated" or "Managed in Place." Abated shall be defined as removed. If an HA is partially abated, approximate the percentage of asbestos removed and mark in the comments area. Provide any other descriptive data, such as rooms/areas removed or rooms/areas where asbestos not removed. The intent of this requirement is to report "as built" conditions. The Contractor is not required to perform any additional asbestos surveys or inspections as a result of this paragraph. Include this report with drawing of abated areas with other closeout documentation.
1.6 PRE-ABATEMENT MEETING

The Contractor and designer shall meet with the Contracting Officer prior to beginning work, to discuss in detail the asbestos plan, including work procedures and safety precautions.

1.7 ASBESTOS INSPECTION REPORT

Limited Asbestos Survey Report, Building HP145, Marine Corps Base Camp Lejeune, NC dated June 8, 2017 is included at the end of this section for informational purposes. It does not define or modify the scope of work.

PART 2 PRODUCTS

2.1 ENCAPSULANTS

Shall conform to current USEPA requirements, shall contain no toxic or hazardous substances as defined in 29 CFR 1926.59, and shall conform to the following performance requirements. Use of encapsulants is generally restricted to the surface of the temporary enclosure and to areas that are not to be refinished such as attics and crawlsspaces. The proposed use of encapsulants shall be included in the abatement design.

2.1.1 Removal Encapsulants

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Test Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame Spread - 25, Smoke Emission - 50</td>
<td>ASTM E 84</td>
</tr>
<tr>
<td>Life Expectancy - 20 years</td>
<td>ASTM C 732, Accelerated Aging Test</td>
</tr>
<tr>
<td>Permeability - Minimum 0.4 perms</td>
<td>ASTM E 96</td>
</tr>
</tbody>
</table>

2.1.2 Lock-down Encapsulant

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Test Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame Spread - 25, Smoke Emission - 50</td>
<td>ASTM E 84</td>
</tr>
<tr>
<td>Life Expectancy - 20 years</td>
<td>ASTM C 732, Accelerated Aging Test</td>
</tr>
<tr>
<td>Permeability - Minimum 0.4 perms</td>
<td>ASTM E 96</td>
</tr>
<tr>
<td>Fire Resistance - Negligible affect on fire resistance rating over 3 hour test (Tested with fireproofing over encapsulant applied directly to steel member)</td>
<td>ASTM E 119</td>
</tr>
<tr>
<td>Bond Strength - 100 pounds of force/foot (Tests compatibility with cementitious and fibrous fire-proofing)</td>
<td>ASTM E 736</td>
</tr>
</tbody>
</table>
2.1.3 Plastic Sheet

Plastic sheet, polyethylene, 6 mil minimum thickness, unless otherwise specified, in sizes to minimize the frequency of joints. All asbestos material or debris will be at least double bagged or wrapped in two layers of 6 mil poly sheeting.

2.1.4 Tape

Capable of sealing joints of adjacent sheets or plastic sheets and for attachment of plastic sheet to finished or unfinished surfaces of dissimilar materials and capable of adhering under dry and wet conditions, including use of amended water.

2.1.5 Disposal Bags

Bags shall be a minimum of 6 mil thick polyethylene. Affix a warning and Department of Transportation (DOT) label to each bag or use bags with the approved warnings and DOT labeling preprinted on the bag.

2.1.6 Warning Labels

Provide labels conforming to 29 CFR 1926.1101 of sufficient size to be clearly legible, displaying the following legend:

DANGER
CONTAINS ASBESTOS FIBERS
AVOID CREATING DUST
CANCER AND LUNG DISEASE HAZARD
BREATHING ASBESTOS DUST MAY
CAUSE SERIOUS BODILY HARM

PART 3 EXECUTION

3.1 DISPOSAL SITE

CAMP LEJEUNE SANITARY LANDFILL
982 PINEY GREEN ROAD
CAMP LEJEUNE, NC 28542
(910) 451-5011

Base Sanitary Landfill shall be used for disposal of all asbestos waste. The Base Sanitary Landfill is approved and is available for use by the Contractor providing the following requirements are satisfied:

 a. The Contracting Officer must be informed at least five working days in advance of the anticipated delivery date of the asbestos material to the Landfill. On larger projects, the notification should be accompanied by a cubic yard estimate of the anticipated volume, updated weekly if the disposal period extends for more than one week. The Government will be responsible for digging the trenches and covering the debris at the end of the working day. Debris will not be accepted before 8:00 AM or after 10:00 AM, except in an emergency situation.

 b. Asbestos will be accepted only if adequately wet and double bagged in heavy-duty 6 mil plastic bags which are clearly marked.
"Asbestos." If a Contractor desires to handle the asbestos in a manner other than double-bagged, written application, along with a description of the proposed deviation, must be submitted to the OICC and Landfill Manager for approval.

c. Asbestos insulated piping with the asbestos insulation intact will be accepted if the following requirements are met:

1. The pipe is cut in eight foot or shorter lengths

2. Each section of pipe is double wrapped, sealed, and labeled as asbestos.

3. All pipe is palletized on a 7/8-inch, 4- by 8-foot sheet of plywood. The whole pallet is banded with a minimum of three 1-inch wide metal bands with the coupling on top and wrapped with 6-mil plastic. The pallet is not higher than 3-inches.

d. All asbestos, except palletized pipe will be off loaded and placed in the trench pipe hand.

e. Asbestos disposal is restricted to one designated location in the Landfill and the landfill operators must be informed of and direct each delivery. Asbestos shall be disposed of from 0800 to 1000 hours daily, except holidays and weekends. Trucks hauling asbestos must be properly covered with tarpaulins or equivalent. Trucks not covered properly must be parked until the Contracting Officer approves corrective actions.

f. The Contractor will ensure asbestos contaminated material delivered to the Base Sanitary Landfill contain no free liquids. Free liquids are defined as material which fails the EPA SW-846 free liquids test.

g. The Contractor will include all asbestos waste shipment records (DHHS-HHCU Form 3787) that are filled out completely with the correct information, to the project manager after abatement job is completed.

3.2 EQUIPMENT

Make available to the Contracting Officer or the Contracting Officer's Representative, two complete sets of personal protective equipment as required herein for entry to the asbestos control area at all times for inspection of the asbestos control area. Provide equivalent training to the Contracting Officer or a designated representative as provided to Contractor employees in the use of the required personal protective equipment. Provide manufacturer's certificate of compliance for all equipment required to contain airborne asbestos fibers.

3.2.1 Respirators

Comply with 29 CFR 1926.1101.

3.3 WORK PROCEDURE

Remove all friable and non-friable ACM in accordance with all Federal,
State, and local Marine Corps regulations. Ensure that the asbestos abatement plan is followed throughout all aspects of the abatement process.

3.3.1 Furnishings

Furniture and equipment will be removed from the area of work by the Government before asbestos work begins.

3.3.2 Pipe Insulation

Pipe may be removed with the asbestos insulation in place by wrapping the entire length of pipe and associated insulation with double thickness 6 mil plastic secured with duct tape. Mechanically cutting of asbestos containing insulation is prohibited. When using the "candy-stripe" method the abatement contractor must use glovebag operations to establish an "asbestos free" area to cut the pipe into appropriate lengths. Cut piping simultaneously into lengths suitable for transportation to disposal area, but no greater than 8 feet in length. Continuously wet the cutting site during the process. As soon as a length of pipe is completely cut loose, cover exposed ends with double thickness 6 mil plastic secured with duct tape. If the pipe is to remain in service, the removed pipe must be replaced in accordance with this Specification, with a pipe of the same size that is removed.

3.3.2.1 Non-Organic Bound (NOB) Asbestos Materials

These kind of materials include floor tile, mastic, caulking, roofing material, and other non-friable material. Materials are to be adequately wet before removal and double bagged with a 6 mil poly bag. Ensure that bags have been labeled properly before they are taken to the Base Landfill.

3.3.3 Air Sampling

Sampling of airborne concentrations of asbestos fibers shall be performed in accordance with 29 CFR 1926.1101 and as specified herein. Sampling performed in accordance with 29 CFR 1926.1101 shall be performed by the SAM. Sampling performed for environmental and quality control reasons shall be performed by the SAM. Unless otherwise specified, use NIOSH Method 7400 for sampling and analysis. Monitoring may be duplicated by the Government at the discretion of the Contracting Officer. If the air sampling results obtained by the Government differ from those results obtained by the Contractor, the Government results shall prevail.

3.3.3.1 Sampling During Asbestos Work

The SAM shall provide personal and area sampling as indicated in 29 CFR 1926.1101 and governing environmental regulations. Thereafter, provided the same type of work is being performed, provide area sampling at least once every work shift close to the work inside the containment, outside the clean room entrance to the containment, and at the exhaust opening of the local exhaust system. Also, where an enclosure is not provided, conduct area monitoring of airborne asbestos fibers during the work shift at the designated limits of the asbestos work area at such frequency as recommended by the SAM and conduct personal samples of each worker engaged in asbestos handling (removal, disposal, transport and other associated work). If the quantity of airborne asbestos fibers monitored at
the breathing zone of the workers or designated limits at any time exceeds background or 0.01 fibers per cubic centimeter whichever is lesser outside of the containment area, stop work, evacuate personnel in adjacent areas or provide personnel with approved protective equipment at the discretion of the Contracting Officer. This sampling may be duplicated by the government at the discretion of the Contracting Officer. If the air sampling results obtained by the government differ from those obtained by the Contractor, the government results shall prevail. If adjacent areas are contaminated as determined by the Contracting Officer, clean the contaminated areas, monitor, and visually inspect the area as specified herein. If sampling outside the containment shows airborne levels have exceeded background or 0.01 fibers per cubic centimeter, whichever is greater, stop all work, correct the condition(s) causing the increase, and notify the Contracting Officer immediately. In areas where the construction of a containment is not required, after initial TWA's are established and provided the same type of work is being performed, provide sampling at the designated limits of the asbestos work area at such frequency as recommended by the SAM. Where glovebag methods are used, perform personal and area air sampling at locations and frequencies that will accurately characterize the evolving airborne asbestos levels.

3.3.3.2 Sampling After Final Clean-Up (Clearance Sampling) For All Areas Unless Noted Otherwise

Provide area sampling of asbestos fibers using aggressive air sampling techniques as defined in the EPA 560/5-85-024 and establish an airborne asbestos concentration of less than 70 structures per square millimeter after final clean-up but before removal of the containment or the asbestos work control area. After final cleanup and the asbestos control area is dry but prior to clearance sampling, the SAM shall perform a visual inspection, in accordance with ASTM E 1368, to insure that the asbestos control and work area is free of any accumulations of dirt, dust, or debris. Use transmission electron microscopy (TEM) to analyze clearance samples and report the results in accordance with current NIOSH criteria. The asbestos fiber counts from these samples shall be less than 70 structures per square millimeter or be not greater than the background, whichever is greater. Should any of the final samples indicate a higher value, the Contractor shall take appropriate actions to re-clean the area and shall repeat the sampling and TEM analysis at the Contractor's expense.

3.3.3.3 Sampling After Final Clean-Up (Clearance Sampling) For the Following Areas

Provide area sampling of asbestos fibers and establish an airborne asbestos concentration of less than 0.01 fibers per cubic centimeter after final clean-up but before removal of the containment or the asbestos work control area. After final cleanup and the asbestos control area is dry but prior to clearance sampling, the SAM shall perform a visual inspection, in accordance with ASTM E 1368, to insure that the asbestos control and work area is free of any accumulations of dirt, dust, or debris. Should any of the final samples indicate a higher value, the Contractor shall take appropriate actions to re-clean the area and shall repeat the sampling and analysis at the Contractor's expense.

3.3.4 Lock Down

Prior to removal of plastic barriers and after pre-clearance clean up of
gross contamination, a visual inspection by the SAM, of all areas affected by the removal of the asbestos contaminated materials for any visible fibers, shall be conducted and approved by the SAM. A post removal (lock down) encapsulant shall then be spray applied to ceiling, walls, floors and other areas exposed in the removal area. The exposed area shall include but not be limited to plastic barriers, furnishings and articles to be discarded as well as dirty change room, air locks for bag removal and decon chambers.

3.3.5 Site Inspection

While performing asbestos removal work, the Contractor shall be subject to on-site inspection by the Contracting Officer who may be assisted by or represented by safety or industrial hygiene personnel. If the work is found to be in violation of this specification, the Contracting Officer or his representative will issue a stop work order to be in effect immediately and until the violation is resolved. Standby time required to resolve the violation shall be at the Contractor's expense.

3.4 CLEAN-UP AND DISPOSAL

3.4.1 Housekeeping

Essential parts of asbestos dust control are housekeeping and clean-up procedures. Maintain surfaces of the asbestos control area free of accumulations of asbestos fibers. Give meticulous attention to restricting the spread of dust and debris; keep waste from being distributed over the general area. Use HEPA filtered vacuum cleaners. Do not blow down the space with compressed air. When asbestos removal is complete, all asbestos waste is removed from the work-site, final clean-up is completed, and final air sampling results are reported, the SAM will certify the area as safe and the Contracting Officer will approve the abatement completion, before the signs can be removed. After final clean-up and acceptable airborne concentrations are attained but before the HEPA unit is turned off and the containment removed, remove all pre-filters on the building HVAC system and provide new pre-filters. Dispose of filters as asbestos-contaminated materials. Reestablish HVAC mechanical, and electrical systems in proper working order. The Contracting Officer will visually inspect all surfaces within the containment for residual material or accumulated dust or debris. The Contractor shall re-clean all areas showing dust or residual materials. If re-cleaning is required, air sample and establish an acceptable asbestos airborne concentration after re-cleaning. The SAM will provide written certification that the work area is safe within all standards as referenced within this contract before unrestricted entry is permitted. The Government shall have the option to perform monitoring to certify the areas are safe before entry is permitted.

3.4.2 Title to Materials

All materials resulting from demolition work, except as specified otherwise, shall become the property of the Contractor and shall be disposed of as specified in applicable local, state, and Federal regulations and herein. All building materials that are cross contaminated must be disposed of as an ACM at Base Landfill.
3.4.3 Disposal of Asbestos

3.4.3.1 Procedure for Disposal

Collect asbestos waste, asbestos contaminated water, scrap, debris, bags, containers, equipment, and asbestos contaminated clothing which may produce airborne concentrations of asbestos fibers and place in sealed fiberproof, waterproof, non-returnable containers (e.g. double plastic bags 6 mils thick, cartons, drums or cans). Wastes within the containers must be wetted to insure the security of the material in case of container breeching. Affix a warning and Department of Transportation (DOT) label to each bag or use at least 6 mil thick bags with the approved warnings and DOT labeling preprinted on the bag. For temporary storage, store sealed impermeable bags in asbestos waste drums or skids. An area for interim storage of asbestos waste-containing drums or skids will be assigned by the Contracting Officer or his authorized representative. Procedure for hauling and disposal shall comply with 40 CFR 61, SUBPART M, state, regional, and local standards.

3.4.3.2 Disposal Material Shall Contain No Free Liquid

The Contractor will ensure asbestos contaminated material delivered to the Base Sanitary Landfill contain no free liquids. Free liquids are defined as material which fails the EPA SW-846 Free Liquids Test.

-- End of Section --
CEMS Engineering

Limited Asbestos Survey Report

HP145 (HP146) - BEQ
Marine Corps Base
Camp Lejeune, North Carolina

June 8, 2017
Limited Asbestos Survey Report

HP145 (146)-BEQ
Marine Corps Base
Camp Lejeune, NC

Prepared for:
Mr. Randy Alvar

Prepared by:
Crystal Coast Environmental, Inc.
10302 Bristow Center Dr.
Suite 115
Bristow, VA 20136
Tel: 910.938.7998
Fax: 910.938.3441
www.cceinc.biz

Our Ref.:
17-5023

Date:
June 8, 2017

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law.
Table of Contents

1. Introduction 1
2. Methodology 1
3. Analytical Methods 2
4. Findings 2
5. Conclusions and Recommendations 2
6. Additional Survey Limitations 4

APPENDICES

A Limitations and Service Constraints
B Inspector Accreditations
C Homogeneous Applications
D Asbestos Sample Locations
E Laboratory Report (NVLAP) – Asbestos Bulk Sample Results
F Photograph Logs
1. Introduction

As requested by Mr. Randy Alvar, Crystal Coast Environmental, Inc. (CCEI) conducted a Limited Asbestos Survey of the above-referenced building/project. The survey consisted of visually observing the roof, then collecting a representative number of samples for subsequent laboratory analyses as described below. The objective of the survey was to identify and quantify asbestos-containing building materials (ACBMs) as well as verify previous findings for the purpose of future planned renovations or demolition activity.

As directed by the client, destructive testing was performed on roofing material to identify materials which may be hidden or obstructed by layers of wood substrate. Unless noted herein, no other destructive testing was conducted to expose other potentially hidden or obstructed material. Examples of other areas include, but are not limited to: interior wall cavities, pipe chases, spaces above fixed ceilings, grout/adhesive beneath ceramic tiles/marble tiles/granite, and adhesives behind wall mounted mirrors, etc.

The survey was conducted in accordance with CCEI's proposal. The survey was conducted on June 1, 2017 by Mr. Robert Elbertson. A copy of inspector's accreditation is provided in Appendix B.

2. Methodology

CCEI conducted the survey in general accordance with ASTM E2356-09 Standard Practice for Comprehensive Building Asbestos Surveys. ASTM E2356-09 meets the applicable requirements of current Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAP) Standard 40 CFR 61, Subpart M (Asbestos); EPA Asbestos Hazard Emergency Response Act (AHERA) Standard 40 CFR 763, Subpart E; and Occupational Safety and Health Administration (OSHA) asbestos survey and/or sampling regulations.

CCEI visually observed readily accessible areas for suspect ACBMs. Identified suspect materials were divided into "Homogeneous Applications" (HAs) - i.e., building materials which were determined by the inspector to be homogeneous based on their color, texture, and assumed date of installation.

Representative samples were then collected from selected HAs. The numbers of samples collected was based on CCEI's in-house sampling protocol, which is based in part on the U.S. Environmental Protection Agency (U.S. EPA) Asbestos Hazard Emergency Response Act (AHERA) regulations. Each sample was assigned its own
unique identification number, placed in 4 mil sealable plastic bags, and tightly sealed for subsequent shipment under a chain of custody protocol to Carolina Environmental, Inc. (CEI) located in Cary, North Carolina.

3. Analytical Methods

Material identification was performed by CEI using Polarized Light Microscopy with Dispersion Staining (PLM/DS) method in accordance with the U.S. EPA Method 600/R-93/116. Asbestos content in each sample was evaluated based on a visual examination of each sample using a stereoscope.

CEI is a member of the American Industrial Hygiene Association (AIHA) and accredited through the National Voluntary Laboratory Accreditation Program (NVLAP) administered by the National Institute of Standards and Technology (NIST). CEI accreditations are provided in Appendix B and laboratory analytical report is provided in Appendix E.

4. Findings

A total of 13 HAs was identified throughout the Site, and a total of 12 suspect ACBM bulk samples were collected and submitted for laboratory analysis. A listing of HAs identified along with each HA material description, location, condition, asbestos content and estimated quantity are presented in Appendix C. Approximate sampling locations are shown in the Appendix D.

Prior to commencement of the asbestos survey, CCEI conducted a review of the existing asbestos data (if available). If any previous data was available, it has been included into this report.

5. Conclusions and Recommendations

As presented in Appendix C and the laboratory data provided in Appendix E, the results of the asbestos survey did not identify ACBMs at the Site.

In accordance with current EPA National Emission Standards for Hazardous Pollutants (NESHAP) regulations, certain types of ACM must be removed prior to being disturbed by demolition or renovation activities. Current EPA NESHAP and Health Hazards Control Unit (HHC) of North Carolina Department of Health and Human Service (DHHS) regulations require that all Regulated ACMs (RACM) be removed prior to being disturbed. RACMs are defined as:

- Friable ACM.
- Non-Friable Category 1 ACM that has become friable.
- Non-Friable Category 1 ACM that has been or will be subjected to sanding, abrading, grinding, or cutting.
- Non-Friable Category 2 ACM that has a high probability of becoming friable or crumbled, pulverized, or otherwise reduced to powder by the demolition or renovation activities.

If other suspect materials that are not referenced in this report are identified during demolition and/or renovation activities, CCEI recommends that these materials be considered as ACBM until they are inspected by an appropriately licensed asbestos inspector and proven otherwise.

Due to the inability to effectively separate some types of multi-layered ACBMs (i.e., floor tile/mastic, mastic/wood subflooring, gypsum board/joint compound, etc.) from non-ACMs these materials are considered “asbestos-contaminated” for the purposes of removal, and should be managed as ACBM.

ACBMs identified at the Site that may be disturbed during demolition activities, must be removed by a licensed asbestos abatement contractor utilizing industry standard work procedures in accordance with all federal, state and local regulations governing asbestos.

Asbestos waste must be disposed at an asbestos waste receiving facility that is duly permitted by the state and/or local municipality in which it resides. The asbestos waste should be disposed in a landfill with a NESHAP condition in the facility’s air permit that allows acceptance of RACM.

6. Additional Survey Limitations

CCEI’s asbestos survey is subject to the following limitations in addition to those presented in Appendix A:

- Utilities/services, including electric were assumed to be active in the areas surveyed. Materials associated with electrical components and energized equipment, were not safely accessible and were not sampled.
- Subsurface investigations, including access to below grade structures, underground piping, conduits, building footings and extent of subsurface soil asbestos contamination if any was not accessible at the time of the survey. Should decide to remove/demolish below grade structures, an additional
investigation may be warranted to determine if the below grade structures contain or are coated with ACMs.
Limitations and Service Constraints

The opinions, conclusions and recommendations presented in this report are limited to the information obtained during the performance of the specific scope of service identified in the report. To the extent that Crystal Coast Environmental, Inc. (CCEI) relied upon any information prepared by other parties not under direct contract to CCEI, no representation as to the accuracy or completeness of such information is made. This report is an instrument of professional service and the services described in the report were performed in accordance with generally accepted standards and level of skill and care ordinarily exercised by members of the profession working under similar conditions including comparable budgetary and schedule constraints. No warranty, guarantee or certification express or implied, is intended or given with respect to CCEI’s services, opinions, conclusions or recommendations. This statement is in lieu of any other statement either expressed or implied.

CCEI’s observations, the results of testing and CCEI’s opinions, conclusions and recommendations apply solely to conditions existing at the specific times when and specific locations where CCEI’s investigative work was performed. Observation and testing activities such as those conducted by CCEI are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site, building or area may vary from conditions at the specific locations where observations were made and where testing was performed by CCEI. Additionally, other building material hazards which were not identified by CCEI, may also be present in the indoor air, un-accessed areas and in walls, ceilings, cavities and floors. Therefore, the extent of CCEI’s opinions, conclusions and recommendations are limited and 100% confidence in these opinions, conclusions and recommendations cannot reasonably be achieved. Nothing contained in this report shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards nor shall it be considered medical advice or consultation.

This report may document whether work conducted by CCEI or under CCEI’s observation was done so in accordance with applicable regulatory standards. In the absence of standards such as is often the case for microbial assessment and abatement, this report may not be construed as providing clearance, approval, or authorization for use or re-occupancy of a given structure. Actual site conditions and quantities should be field verified and unless expressly stated.

This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for and for the particular purpose outlined in the report. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user’s sole risk.
October 17, 2016

Robert L Elbertson
273 Hinson Lane
Richlands, NC 28574

Dear Mr. Elbertson:

Based upon the review of your accreditation application, the Health Hazards Control Unit (HHCU) has determined that you have fulfilled the requirements and are eligible for asbestos accreditation as a(n) INSPECTOR. Your assigned North Carolina accreditation number is 12591, which is reflected on your enclosed North Carolina Accreditation card. Please be sure to take this card with you to any asbestos work site where you are employed. The State requires that all persons conducting asbestos abatement or asbestos management activities be accredited and have their identification card on site.

Your North Carolina Inspector accreditation will expire on AUGUST 31, 2017. It is NOT the policy of the HHCU to issue renewal notices. If you wish to continue working as a(n) Inspector after this expiration date, you must successfully complete the required training and submit a completed application to this office prior to August 31, 2017. If you should continue to perform asbestos management activities as a(n) Inspector without a valid North Carolina accreditation, you will be in violation of State regulations and may be cited for noncompliance.

Sincerely,

Ed Norman
Program Manager
Health Hazards Control Unit

North Carolina Asbestos Accreditation

<table>
<thead>
<tr>
<th>EXPIRATION</th>
<th>DOB</th>
<th>SEX</th>
<th>HT</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-17</td>
<td>02-08-1968</td>
<td>M</td>
<td>6'2"</td>
<td>230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASS</th>
<th>#</th>
<th>EXP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR MONITOR</td>
<td>80800</td>
<td>09-17</td>
<td></td>
</tr>
<tr>
<td>DESIGNER</td>
<td>40482</td>
<td>01-17</td>
<td></td>
</tr>
<tr>
<td>INSPECTOR</td>
<td>12591</td>
<td>08-17</td>
<td></td>
</tr>
<tr>
<td>MGMT PLANNER</td>
<td>20988</td>
<td>01-17</td>
<td></td>
</tr>
<tr>
<td>HA No.</td>
<td>Material Type</td>
<td>Primary Color</td>
<td>Texture</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Blow-in Insulation</td>
<td>White</td>
<td>Smooth</td>
</tr>
<tr>
<td>2</td>
<td>Ceiling Texture</td>
<td>White</td>
<td>Rough</td>
</tr>
<tr>
<td>3</td>
<td>Ceiling Tile - 2' x 2'</td>
<td>White</td>
<td>Rough</td>
</tr>
<tr>
<td>4</td>
<td>Joint Compound (associated with wall/ceiling board/panels)</td>
<td>White</td>
<td>Rough</td>
</tr>
<tr>
<td>5</td>
<td>Floor Tile - 12" x 12"</td>
<td>Tan</td>
<td>Smooth</td>
</tr>
<tr>
<td>6</td>
<td>Floor Tile - Mastic/Adhesive</td>
<td>Yellow</td>
<td>Rough</td>
</tr>
<tr>
<td>7</td>
<td>Exterior - Door Caulk</td>
<td>Gray</td>
<td>Smooth</td>
</tr>
<tr>
<td>8</td>
<td>Roof - Paper - Felt</td>
<td>Black</td>
<td>Rough</td>
</tr>
<tr>
<td>9</td>
<td>Exterior - Expansion Joint Caulk</td>
<td>Red</td>
<td>Smooth</td>
</tr>
<tr>
<td>10</td>
<td>Mastic on Metal Duct Joints</td>
<td>Red</td>
<td>Smooth</td>
</tr>
<tr>
<td>11</td>
<td>Floor - Vinyl Sheet Flooring (e.g. Linoleum)</td>
<td>Not Visible</td>
<td>Not Visible</td>
</tr>
<tr>
<td>12</td>
<td>Pipe Insulation - Fiberglass</td>
<td>Yellow</td>
<td>Rough</td>
</tr>
</tbody>
</table>

- **T** = Thermal System Insulation (TSI) Material
- **S** = Surface Material
- **M** = Miscellaneous Material
<table>
<thead>
<tr>
<th>HA No.</th>
<th>Material Type</th>
<th>ID</th>
<th>Location</th>
<th>Content</th>
<th>Type</th>
<th>Sample Date</th>
<th>Consultant</th>
<th>Method</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M - Blown-in Insulation</td>
<td>5023-1-01</td>
<td>Attic</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>2</td>
<td>M - Ceiling Texture</td>
<td>5023-2-02</td>
<td>2nd Floor Lounge</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>3</td>
<td>M - Ceiling Tile - 2' x 2'</td>
<td>5023-3-04</td>
<td>1st Floor Breezeway</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>4</td>
<td>M - Joint Compound (associated with wall/ceiling board/panels)</td>
<td>5023-4-05</td>
<td>Room 217</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>5</td>
<td>M - Floor Tile - 12" x 12"</td>
<td>5023-5-06</td>
<td>Room 120</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>6</td>
<td>M - Floor Tile - 12" x 12"</td>
<td>5023-5-07</td>
<td>Room 310</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>7</td>
<td>M - Floor Tile - Mastic/Adhesive</td>
<td>5023-6-08</td>
<td>Room 120</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>8</td>
<td>M - Floor Tile - Mastic/Adhesive</td>
<td>5023-6-09</td>
<td>Room 310</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>9</td>
<td>M - Exterior - Door Caulk</td>
<td>5023-7-10</td>
<td>3rd Floor Breezeway</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>10</td>
<td>M - Roof - Paper - Felt</td>
<td>5023-8-11</td>
<td>Roof</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
<tr>
<td>11</td>
<td>M - Roof - Caulk</td>
<td>5023-9-12</td>
<td>Roof</td>
<td>ND</td>
<td></td>
<td>6/1/2017</td>
<td>CCEI</td>
<td>PLM</td>
<td>Carolina Environmental, Inc</td>
</tr>
</tbody>
</table>

T = Thermal System Insulation (TSI) Material
S = Surfacing Material
M = Miscellaneous Material
NOTE: FLOOR TILE CONFIRMED NON-ACM VIA PLM AND TEM TESTING.
NOTE: NEW PITCHED ROOF INSTALLED OVER BUILT-UP ROOFING. ACM FELTS AND TAR HAVE BEEN IDENTIFIED IN VARIOUS STRUCTURES OF THIS TYPE. ASSUME ACM WHEN DISTURBING ORIGINAL ROOFING MATERIALS.

BUILDING HP145
ATTIC

ACM LEGEND
- BUILT-UP ROOFING MATERIALS [HM17]
- VINYL THRESHOLD ADHESIVE, BROWN [HV18]
- ROOF FLASHING/SEALANT/TEL/TUNDERLAMENT MATERIALS [HM17, 20]
NOTE: NEW PITCHED ROOF INSTALLED OVER BUILT-UP ROOFING. ACM FELTS AND TAR HAVE BEEN IDENTIFIED IN VARIOUS STRUCTURES OF THIS TYPE. ASSUME ACM WHEN DISTURBING ORIGINAL ROOFING MATERIALS.

BUILDING HP145
ATTIC

ACM LEGEND
- BUILT-UP ROOFING MATERIALS [HM17]
- FELT PAPER MATERIAL [HM20]
June 6, 2017

Crystal Coast Environmental Inc.
104 Dundee Court
Jacksonville, NC 28540

CLIENT PROJECT: HP 145-Camp Lejeune; 17-5023
CEI LAB CODE: A17-7895

Dear Customer:

Enclosed are asbestos analysis results for PLM Bulk samples received at our laboratory on June 5, 2017. The samples were analyzed for asbestos using polarizing light microscopy (PLM) per the EPA 600 Method.

Sample results containing >1% asbestos are considered asbestos-containing materials (ACMs) per EPA regulatory requirements. The detection limit for the EPA 600 Method is <1% asbestos by weight as determined by visual estimation.

Thank you for your business and we look forward to continuing good relations. If you have any questions, please feel free to call our office at 919-481-1413.

Kind Regards,

Tianbao Bai, Ph.D., CIH
Laboratory Director
ASBESTOS ANALYTICAL REPORT
By: Polarized Light Microscopy

Prepared for

Crystal Coast Environmental Inc.

CLIENT PROJECT: HP 145-Camp Lejeune; 17-5023

CEI LAB CODE: A17-7895

TEST METHOD: EPA 600 / R93 / 116 and EPA 600 / M4-82 / 020

REPORT DATE: 06/06/17

TOTAL SAMPLES ANALYZED: 12

SAMPLES >1% ASBESTOS:
Asbestos Report Summary

By: POLARIZING LIGHT MICROSCOPY

PROJECT: HP 145-Camp Lejeune; 17-5023
CEI LAB CODE: A17-7895

METHOD: EPA 600 / R93 / 116 and EPA 600 / M4-82 / 020

<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID</th>
<th>Color</th>
<th>Sample Description</th>
<th>ASBESTOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5023-1-01</td>
<td>A2416134</td>
<td>White</td>
<td>Attic Insulation</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-1-02</td>
<td>A2416135</td>
<td>White</td>
<td>Attic Insulation</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-2-03</td>
<td>A2416136</td>
<td>White,Tan</td>
<td>Ceiling Texture</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-3-04</td>
<td>A2416137</td>
<td>White,Tan</td>
<td>Ceiling Tile</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-4-05</td>
<td>A2416138</td>
<td>White,Tan</td>
<td>Joint Compound</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-5-06</td>
<td>A2416139</td>
<td>Tan</td>
<td>Floor Tile</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-5-07</td>
<td>A2416140</td>
<td>Tan</td>
<td>Floor Tile</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-6-08</td>
<td>A2416141</td>
<td>Yellow</td>
<td>Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-6-09</td>
<td>A2416142</td>
<td>Yellow</td>
<td>Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-7-10</td>
<td>A2416143</td>
<td>Gray</td>
<td>Exterior Door Caulk</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-8-11</td>
<td>A2416144</td>
<td>Black</td>
<td>Roofing Felt Paper</td>
<td>None Detected</td>
</tr>
<tr>
<td>5023-9-12</td>
<td>A2416145</td>
<td>Black</td>
<td>Roofing Mastic</td>
<td>None Detected</td>
</tr>
</tbody>
</table>
Client: Crystal Coast Environmental Inc.
104 Dundee Court
Jacksonville, NC 28540

CEI Lab Code: A17-7895
Date Received: 06-05-17
Date Analyzed: 06-05-17
Date Reported: 06-06-17

Project: HP 145-Camp Lejeune; 17-5023

ASBESTOS BULK PLM, EPA 600 METHOD

<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab Description</th>
<th>Lab Attributes</th>
<th>Non-Asbestos Components</th>
<th>Asbestos %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5023-1-01</td>
<td>Attic Insulation</td>
<td>Heterogeneous</td>
<td>Fibrous: 100% Fiberglass</td>
<td>None Detected</td>
</tr>
<tr>
<td>A2416134</td>
<td></td>
<td>White Fibrous Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-1-02</td>
<td>Attic Insulation</td>
<td>Heterogeneous</td>
<td>Fibrous: 100% Fiberglass</td>
<td>None Detected</td>
</tr>
<tr>
<td>A2416135</td>
<td></td>
<td>White Fibrous Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-2-03</td>
<td>Ceiling Texture</td>
<td>Heterogeneous</td>
<td>Fibrous: 55% Binder 10% Paint 35% Vermiculite</td>
<td>None Detected</td>
</tr>
<tr>
<td>A2416136</td>
<td></td>
<td>White, Tan Fibrous Loose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-3-04</td>
<td>Ceiling Tile</td>
<td>Heterogeneous</td>
<td>Fibrous: 50% Cellulose 15% Fiberglass 25% Binder 25% Perlite</td>
<td>None Detected</td>
</tr>
<tr>
<td>A2416137</td>
<td></td>
<td>White, Tan Fibrous Loose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-4-05</td>
<td>Joint Compound</td>
<td>Heterogeneous</td>
<td>Fibrous: 25% Binder 10% Paint 65% Calc Carb</td>
<td>None Detected</td>
</tr>
<tr>
<td>A2416138</td>
<td></td>
<td>White, Tan Fibrous Loosely Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-5-06</td>
<td>Floor Tile</td>
<td>Heterogeneous</td>
<td>Fibrous: 25% Binder 75% Vinyl</td>
<td>None Detected</td>
</tr>
<tr>
<td>A2416139</td>
<td></td>
<td>Tan Non-fibrous Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-5-07</td>
<td>Floor Tile</td>
<td>Heterogeneous</td>
<td>Fibrous: 25% Binder 75% Vinyl</td>
<td>None Detected</td>
</tr>
<tr>
<td>A2416140</td>
<td></td>
<td>Tan Non-fibrous Bound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ASBESTOS BULK PLM, EPA 600 METHOD

<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab Description</th>
<th>Lab Attributes</th>
<th>Non-Asbestos Components</th>
<th>Asbestos %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5023-6-08</td>
<td>Mastic</td>
<td>Heterogeneous</td>
<td>100% Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-fibrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-6-09</td>
<td>Mastic</td>
<td>Heterogeneous</td>
<td>100% Mastic</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-fibrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-7-10</td>
<td>Exterior Door Caulk</td>
<td>Heterogeneous</td>
<td>100% Binder</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-fibrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-8-11</td>
<td>Roofing Felt Paper</td>
<td>Heterogeneous</td>
<td>65% Cellulose 35% Tar</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5023-9-12</td>
<td>Roofing Mastic</td>
<td>Heterogeneous</td>
<td>25% Cellulose 75% Tar</td>
<td>None Detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bound</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEGEND:
- Non-Anth = Non-Asbestiform Anthophyllite
- Non-Trem = Non-Asbestiform Tremolite
- Calc Carb = Calcium Carbonate

METHOD: EPA 600 / R93 / 116 and EPA 600 / M4-82 / 020

REPORTING LIMIT: <1% by visual estimation

REGULATORY LIMIT: >1% by weight

Due to the limitations of the EPA 600 method, nonfriable organically bound materials (NOBs) such as vinyl floor tiles can be difficult to analyze via polarized light microscopy (PLM). EPA recommends that all NOBs analyzed by PLM, and found not to contain asbestos, be further analyzed by Transmission Electron Microscopy (TEM). Please note that PLM analysis of dust and soil samples for asbestos is not covered under NVLAP accreditation. Estimated measurement of uncertainty is available on request.

This report relates only to the samples tested or analyzed and may not be reproduced, except in full, without written approval by CEI Labs, Inc. CEI Labs makes no warranty representation regarding the accuracy of client submitted information in preparing and presenting analytical results. Interpretation of the analytical results is the sole responsibility of the client. Samples were received in acceptable condition unless otherwise noted. This report may not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. Government.

ANALYST: Megan Rumble

APPROVED BY: Tianbao Bai, Ph.D., CIH
Laboratory Director
COMPANY INFORMATION

CEI CLIENT #: 23935

Company: Crystal Coast Environmental Inc.
Address: 104 Dundee Court
Jacksonville, NC 28546
Email: Tel: 910-938-7998

PROJECT INFORMATION

Job Contact: Robert Elbertson
Email / Tel: relbertson@ccinc.biz / 910.330.7410
Project Name: HP 145 - Camp Lejeune
Project ID# 17-5023

GENERAL INSTRUCTIONS

<table>
<thead>
<tr>
<th>POSITIVE STOP ANALYSIS</th>
<th>PLM DUE DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x]</td>
<td>/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYZE NOB’S BY TEM</th>
<th>TEM DUE DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>/</td>
</tr>
</tbody>
</table>

ASBESTOS

<table>
<thead>
<tr>
<th>Method</th>
<th>PLM BULK</th>
<th>PLM POINT COUNT (400)</th>
<th>PLM POINT COUNT (1000)</th>
<th>PLM GRAV w POINT COUNT</th>
<th>PCM AIR</th>
<th>TEM AIR AHERA</th>
<th>TEM AIR NIOSH</th>
<th>TEM BULK</th>
<th>TEM DUST WIPE</th>
<th>TEM DUST MICROVAC</th>
<th>TEM SOIL</th>
<th>TEM VERMICULITE</th>
<th>OTHER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>EPA 600</td>
<td>EPA 600</td>
<td>EPA 600</td>
<td>EPA 600</td>
<td>NIOSH 7400</td>
<td>EPA AHERA</td>
<td>NIOSH 7402</td>
<td>CHATFIELD</td>
<td>ASTM D6480-05</td>
<td>ASTM D5755-09</td>
<td>ASTM D7521-13</td>
<td>CINCINNATI METHOD</td>
<td></td>
</tr>
</tbody>
</table>

TURN AROUND TIME

<table>
<thead>
<tr>
<th>4 HR</th>
<th>8 HR</th>
<th>24 HR</th>
<th>2 DAY</th>
<th>3 DAY</th>
<th>5 DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x]</td>
<td>[x]</td>
<td></td>
<td>[x]</td>
<td>[x]</td>
<td>[x]</td>
</tr>
</tbody>
</table>

REMARKS:

Accept Samples
Reject Samples

<table>
<thead>
<tr>
<th>Relinquished By:</th>
<th>Date/Time</th>
<th>Received By:</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Elbertson</td>
<td>6-1-2017</td>
<td>KH</td>
<td>6-5-2017</td>
</tr>
</tbody>
</table>

Samples will be disposed of 30 days after analysis
ASBESTOS SAMPLING FORM

COMPANY CONTACT INFORMATION
- **Company:** Crystal Coast Environmental Inc.
- **Job Contact:** Robert Elbertson
- **Project Name:** HP 145 - Camp Lejeune, NC
- **Project ID:** 17-5023
- **Tel:** 910-938-7998

Sample Table

<table>
<thead>
<tr>
<th>SAMPLE ID#</th>
<th>DESCRIPTION / LOCATION</th>
<th>VOLUME/AREA</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>5023-1-01</td>
<td>Attic Insulation</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-1-02</td>
<td></td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-2-03</td>
<td>Ceiling Texture</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-3-04</td>
<td>2'x2' Ceiling Tile</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-4-05</td>
<td>Joint compound</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-5-06</td>
<td>1'x1' Vinyl Floor Tile</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-5-07</td>
<td></td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-6-08</td>
<td>Floor Mastic</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-6-09</td>
<td></td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-7-10</td>
<td>Exterior Door Caulk</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-8-11</td>
<td>Roofing Felt Paper</td>
<td></td>
<td>PLM</td>
</tr>
<tr>
<td>5023-9-12</td>
<td>Roofing Mastic</td>
<td></td>
<td>PLM</td>
</tr>
</tbody>
</table>

Page ____ of ____
View of the Front of the Building

HA-1: Blown-in Insulation

HA-2: Ceiling Texture

HA-3: 2’ x 2’ Cellulose Ceiling Tile

HA-4: Joint Compound

HA-5: 1’ x 1’ Vinyl Floor Tile
HA-6: Floor Mastic Associated with HA-5

HA-7: Exterior Door Caulk

HA-8: Roofing Felt Paper

HA-9: Roofing Mastic

HA-10: Expansion Joint Caulk

HA-11: HVAC Duct Mastic
Exterior Mechanical Building

HA-13: (NSM) Fiberglass Pipe Insulation
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INDUSTRIAL HYGIENE ASSOCIATION (AIHA)

U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT (HUD)

HUD 6780 (1995; Errata Aug 1996; Rev Ch. 7 - 1997) Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1926.103 Respiratory Protection
29 CFR 1926.21 Safety Training and Education
29 CFR 1926.33 Access to Employee Exposure and Medical Records
29 CFR 1926.55 Gases, Vapors, Fumes, Dusts, and Mists
29 CFR 1926.59 Hazard Communication
29 CFR 1926.62 Lead
29 CFR 1926.65 Hazardous Waste Operations and Emergency Response
40 CFR 260 Hazardous Waste Management System: General
40 CFR 261 Identification and Listing of Hazardous Waste
40 CFR 262 Standards Applicable to Generators of Hazardous Waste
40 CFR 263 Standards Applicable to Transporters of Hazardous Waste
40 CFR 264 Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities
40 CFR 265 Interim Status Standards for Owners and
1.2 DEFINITIONS

1.2.1 Action Level

Employee exposure, without regard to use of respirators, to an airborne concentration of lead of 30 micrograms per cubic meter of air averaged over an 8 hour period.

1.2.2 Area Sampling

Sampling of lead concentrations within the lead control area and inside the physical boundaries which is representative of the airborne lead concentrations but is not collected in the breathing zone of personnel (approximately 5 to 6 feet above the floor).

1.2.3 Competent Person (CP)

As used in this section, refers to a person employed by the Contractor who is trained in the recognition and control of lead hazards in accordance with current federal, State, and local regulations and has the authority to take prompt corrective actions to control the lead hazard. A Certified Industrial Hygienist (CIH) certified by the American Board of Industrial Hygiene or a Certified Safety Professional (CSP) certified by the Board of Certified Safety Professionals is the best choice.

1.2.4 Contaminated Room

Refers to a room for removal of contaminated personal protective equipment (PPE).

1.2.5 Decontamination Shower Facility

That facility that encompasses a clean clothing storage room, and a contaminated clothing storage and disposal rooms, with a shower facility in between.

1.2.6 High Efficiency Particulate Arrestor (HEPA) Filter Equipment

HEPA filtered vacuuming equipment with a UL 586 filter system capable of collecting and retaining lead-contaminated particulate. A high efficiency particulate filter demonstrates at least 99.97 percent efficiency against...
0.3 micron or larger size particles.

1.2.7 Lead

Metallic lead, inorganic lead compounds, and organic lead soaps. Excludes other forms of organic lead compounds.

1.2.8 Lead Control Area

A system of control methods to prevent the spread of lead dust, paint chips or debris to adjacent areas that may include temporary containment, floor or ground cover protection, physical boundaries, and warning signs to prevent unauthorized entry of personnel. HEPA filtered local exhaust equipment may be used as engineering controls to further reduce personnel exposures or building/outdoor environmental contamination.

1.2.9 Lead Permissible Exposure Limit (PEL)

Fifty micrograms per cubic meter of air as an 8 hour time weighted average as determined by 29 CFR 1926.62. If an employee is exposed for more than eight hours in a work day, the PEL shall be determined by the following formula:

\[
\text{PEL (micrograms/cubic meter of air)} = \frac{400}{\text{No. hrs worked per day}}
\]

1.2.10 Material Containing Lead/Paint with Lead (MCL/PWL)

Any material, including paint, which contains lead as determined by the testing laboratory using a valid test method. The requirements of this section does not apply if no detectable levels of lead are found using a quantitative method for analyzing paint or MCL using laboratory instruments with specified limits of detection (usually 0.01 percent). An X-Ray Fluorescence (XRF) instrument is not considered a valid test method.

1.2.11 Personal Sampling

Sampling of airborne lead concentrations within the breathing zone of an employee to determine the 8 hour time weighted average concentration in accordance with 29 CFR 1926.62. Samples shall be representative of the employees' work tasks. Breathing zone shall be considered an area within a hemisphere, forward of the shoulders, with a radius of 6 to 9 inches and centered at the nose or mouth of an employee.

1.2.12 Physical Boundary

Area physically roped or partitioned off around lead control area to limit unauthorized entry of personnel.

1.3 DESCRIPTION

1.3.1 Description of Work

Construction activities impacting PWL or material containing lead which are covered by this specification include the demolition and/or removal of material containing lead in good condition, located in glazed ceramic tiles, ceramic bath fixtures (sinks/ toilets), and limited area metal frames and as indicated on the drawings. Refer to the Hazardous Material Inspection Report, AH Environmental Consultants, May 2016 for detailed information.
1.3.2 Coordination with Other Work

The contractor shall coordinate with work being performed in adjacent areas. Coordination procedures shall be explained in the Plan and shall describe how the Contractor will prevent lead exposure to other contractors and/or Government personnel performing work unrelated to lead activities.

1.4 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Occupational and Environmental Assessment Data Report (if objective data is used to justify excluding the initial occupational exposure assessment)

Lead Compliance Plan including CP approval (signature, date, and certification number)

Competent Person qualifications

Training Certification of workers and supervisors

lead waste management plan;

written evidence that TSD is approved for lead disposal

Certification of Medical Examinations

SD-06 Test Reports

sampling results

Occupational and Environmental Assessment Data Report

SD-07 Certificates

Testing laboratory qualifications

Third party consultant qualifications

Clearance Certification

SD-11 Closeout Submittals

Completed and signed hazardous waste manifest from treatment or disposal facility

Waste turn-in documents or weight tickets for non-hazardous wastes that are disposed of at sanitary or construction and demolition landfills
1.5 QUALITY ASSURANCE

1.5.1 Qualifications

1.5.1.1 Competent Person (CP)

Submit name, address, and telephone number of the CP selected to perform responsibilities specified in paragraph entitled "Competent Person (CP) Responsibilities." Provide documented construction project-related experience with implementation of OSHA's Lead in Construction standard (29 CFR 1926.62) which shows ability to assess occupational and environmental exposure to lead, experience with the use of respirators, personal protective equipment and other exposure reduction methods to protect employee health. Submit proper documentation that the CP is trained in accordance with federal, State and local laws. The competent person shall be a licensed lead-based paint abatement Supervisor/Project Designer in the State of North Carolina.

1.5.1.2 Training Certification

Submit a certificate for each worker and supervisor, signed and dated by the training provider, stating that the employee has received the required lead training specified in 29 CFR 1926.62(1).

1.5.1.3 Testing Laboratory

Submit the name, address, and telephone number of the testing laboratory selected to perform the air and wipe analysis, testing, and reporting of airborne concentrations of lead. Use a laboratory participating in the EPA National Lead Laboratory Accreditation Program (NLLAP) by being accredited by either the American Association for Laboratory Accreditation (A2LA) or the American Industrial Hygiene Association (AIHA) and that is successfully participating in the Environmental Lead Proficiency Analytical Testing (ELPAT) program to perform sample analysis. Laboratories selected to perform blood lead analysis shall be OSHA approved.

1.5.1.4 Third Party Consultant Qualifications

Submit the name, address and telephone number of the third party consultant selected to perform the wipe sampling for determining concentrations of lead in dust. Submit proper documentation that the consultant is trained and certified as an inspector technician or inspector/risk assessor by the USEPA authorized State (or local) certification and accreditation program.

1.5.2 Requirements

1.5.2.1 Competent Person (CP) Responsibilities

a. Verify training meets all federal, State, and local requirements.

b. Review and approve Lead Compliance Plan for conformance to the applicable referenced standards.

c. Continuously inspect PWL or MCL work for conformance with the approved plan.

d. Perform (or oversee performance of) air sampling. Recommend upgrades or downgrades (whichever is appropriate based on exposure) on the use of
PPE (respirators included) and engineering controls.

e. Ensure work is performed in strict accordance with specifications at all times.

f. Control work to prevent hazardous exposure to human beings and to the environment at all times.

g. Supervise final cleaning of the lead control area, take clearance wipe samples if necessary; review clearance sample results and make recommendations for further cleaning.

h. Certify the conditions of the work as called for elsewhere in this specification.

1.5.2.2 Lead Compliance Plan

Submit a detailed job-specific plan of the work procedures to be used in the disturbance of PWL or MCL. The plan shall include a sketch showing the location, size, and details of lead control areas, critical barriers, physical boundaries, location and details of decontamination facilities, viewing ports, and mechanical ventilation system. Include a description of equipment and materials, work practices, controls and job responsibilities for each activity from which lead is emitted. Include in the plan, eating, drinking, smoking, hygiene facilities and sanitary procedures, interface of trades, sequencing of lead related work, collected waste water and dust containing lead and debris, air sampling, respirators, personal protective equipment, and a detailed description of the method of containment of the operation to ensure that lead is not released outside of the lead control area. Include site preparation, cleanup and clearance procedures. Include occupational and environmental sampling, training and strategy, sampling and analysis strategy and methodology, frequency of sampling, duration of sampling, and qualifications of sampling personnel in the air sampling portion of the plan. Include a description of arrangements made among contractors on multicontractor worksites to inform affected employees and to clarify responsibilities to control exposures.

The plan shall be developed by a certified planner/project designer in the State of North Carolina or a Certified Industrial Hygienist.

1.5.2.3 Occupational and Environmental Assessment Data Report

If initial monitoring is necessary, submit occupational and environmental sampling results to the Contracting Officer within three working days of collection, signed by the testing laboratory employee performing the analysis, the employee that performed the sampling, and the CP.

In order to reduce the full implementation of 29 CFR 1926.62, the Contractor shall provide documentation. Submit a report that supports the determination to reduce full implementation of the requirements of 29 CFR 1926.62 and supporting the Lead Compliance Plan.

a. The initial monitoring shall represent each job classification, or if working conditions are similar to previous jobs by the same employer, provide previously collected exposure data that can be used to estimate worker exposures per 29 CFR 1926.62. The data shall represent the worker's regular daily exposure to lead for stated work.

b. Submit worker exposure data gathered during the task based trigger
operations of 29 CFR 1926.62 with a complete process description. This includes manual demolition, manual scraping, manual sanding, heat gun, power tool cleaning, rivet busting, cleanup of dry expendable abrasives, abrasive blast enclosure removal, abrasive blasting, welding, cutting and torch burning where lead containing coatings are present.

c. The initial assessment shall determine the requirement for further monitoring and the need to fully implement the control and protective requirements including the lead compliance plan per 29 CFR 1926.62.

1.5.2.4 Medical Examinations

Initial medical surveillance as required by 29 CFR 1926.62 shall be made available to all employees exposed to lead at any time (1 day) above the action level. Full medical surveillance shall be made available to all employees on an annual basis who are or may be exposed to lead in excess of the action level for more than 30 days a year or as required by 29 CFR 1926.62. Adequate records shall show that employees meet the medical surveillance requirements of 29 CFR 1926.33, 29 CFR 1926.62 and 29 CFR 1926.103. Provide medical surveillance to all personnel exposed to lead as indicated in 29 CFR 1926.62. Maintain complete and accurate medical records of employees for the duration of employment plus 30 years.

1.5.2.5 Training

Train each employee performing work that disturbs lead, who performs MCL/PWL disposal, and air sampling operations prior to the time of initial job assignment and annually thereafter, in accordance with 29 CFR 1926.21, 29 CFR 1926.62, and State and local regulations where appropriate.

1.5.2.6 Respiratory Protection Program

a. Provide each employee required to wear a respirator a respirator fit test at the time of initial fitting and at least annually thereafter as required by 29 CFR 1926.62.

1.5.2.7 Hazard Communication Program

Establish and implement a Hazard Communication Program as required by 29 CFR 1926.59.

1.5.2.8 Lead Waste Management

The Lead Waste Management Plan shall comply with applicable requirements of federal, State, and local hazardous waste regulations and address:

a. Identification and classification of wastes associated with the work.

b. Estimated quantities of wastes to be generated and disposed of.

c. Names and qualifications of each contractor that will be transporting, storing, treating, and disposing of the wastes. Include the facility location and a 24-hour point of contact. Furnish two copies of USEPA
hazardous waste manifests and USEPA Identification numbers.

d. Names and qualifications (experience and training) of personnel who will be working on-site with hazardous wastes.

e. List of waste handling equipment to be used in performing the work, to include cleaning, volume reduction, and transport equipment.

f. Spill prevention, containment, and cleanup contingency measures including a health and safety plan to be implemented in accordance with 29 CFR 1926.65.

g. Work plan and schedule for waste containment, removal and disposal. Proper containment of the waste includes using acceptable waste containers (e.g., 55-gallon drums) as well as proper marking/labeling of the containers. Wastes shall be cleaned up and containerized daily.

h. Include any process that may alter or treat waste rendering a hazardous waste non hazardous.

i. Unit cost for hazardous waste disposal according to this plan.

1.5.2.9 Environmental, Safety and Health Compliance

In addition to the detailed requirements of this specification, comply with laws, ordinances, rules, and regulations of federal, State, and local authorities regarding lead. Comply with the applicable requirements of the current issue of 29 CFR 1926.62. Submit matters regarding interpretation of standards to the Contracting Officer for resolution before starting work. Where specification requirements and the referenced documents vary, the most stringent requirement shall apply.

1.5.3 Pre-Construction Conference

Along with the CP, meet with the Contracting Officer to discuss in detail the Lead Waste Management Plan and the Lead Compliance Plan, including procedures and precautions for the work.

1.6 EQUIPMENT

1.6.1 Respirators

Furnish appropriate respirators approved by the National Institute for Occupational Safety and Health (NIOSH), Department of Health and Human Services, for use in atmospheres containing lead dust, fume and mist. Respirators shall comply with the requirements of 29 CFR 1926.62.

1.6.2 Special Protective Clothing

Furnish personnel who will be exposed to lead-contaminated dust with proper disposable protective whole body clothing, head covering, gloves, eye, and foot coverings as required by 29 CFR 1926.62. Furnish proper disposable plastic or rubber gloves to protect hands. Reduce the level of protection only after obtaining approval from the CP.

1.6.3 Rental Equipment Notification

If rental equipment is to be used during PWL or MCL handling and disposal,
notify the rental agency in writing concerning the intended use of the equipment.

1.6.4 Vacuum Filters

UL 586 labeled HEPA filters.

1.6.5 Equipment for Government Personnel

Furnish the Contracting Officer with two complete sets of personal protective equipment (PPE) daily, as required herein, for entry into and inspection of the lead removal work within the lead controlled area. Personal protective equipment shall include disposable whole body covering, including appropriate foot, head, eye, and hand protection. PPE shall remain the property of the Contractor. The Government will provide respiratory protection for the Contracting Officer.

1.7 PROJECT/SITE CONDITIONS

1.7.1 Protection of Existing Work to Remain

Perform work without damage or contamination of adjacent areas. Where existing work is damaged or contaminated, restore work to its original condition or better as determined by the Contracting Officer.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

3.1 PREPARATION

3.1.1 Protection

3.1.1.1 Notification

a. Notify the Contracting Officer 20 days prior to the start of any lead work.

3.1.1.2 Lead Control Area

a. Physical Boundary - Provide physical boundaries around the lead control area by roping off the area designated in the work plan or providing curtains, portable partitions or other enclosures to ensure that lead will not escape outside of the lead control area.

b. Warning Signs - Provide warning signs at approaches to lead control areas. Locate signs at such a distance that personnel may read the sign and take the necessary precautions before entering the area. Signs shall comply with the requirements of 29 CFR 1926.62.

3.1.1.3 Furnishings

The Government will remove furniture and equipment from the building before lead work begins.
3.1.1.4 Heating, Ventilating and Air Conditioning (HVAC) Systems

Shut down, lock out, and isolate HVAC systems that supply, exhaust, or pass through the lead control areas. Seal intake and exhaust vents in the lead control area with 6 mil plastic sheet and tape. Seal seams in HVAC components that pass through the lead control area.

3.1.1.5 Decontamination Shower Facility

Provide clean and contaminated change rooms and shower facilities in accordance with this specification and 29 CFR 1926.62.

3.1.1.6 Eye Wash Station

Where eyes may be exposed to injurious corrosive materials, suitable facilities for quick drenching or flushing of the eyes shall be provided within the work area.

3.1.1.7 Mechanical Ventilation System

a. To the extent feasible, use local exhaust ventilation or other collection systems, approved by the CP. Local exhaust ventilation systems shall be evaluated and maintained in accordance with 29 CFR 1926.62.

b. Vent local exhaust outside the building and away from building ventilation intakes or ensure system is connected to HEPA filters.

c. Use locally exhausted, power actuated tools or manual hand tools.

3.1.1.8 Personnel Protection

Personnel shall wear and use protective clothing and equipment as specified herein. Eating, smoking, or drinking or application of cosmetics is not permitted in the lead control area. No one will be permitted in the lead control area unless they have been appropriately trained and provided with protective equipment.

3.2 ERECTION

3.2.1 Lead Control Area Requirements

Establish a lead control area by completely establishing barriers and physical boundaries around the area or structure where PWL or MCL removal operations will be performed.

3.3 APPLICATION

3.3.1 Lead Work

Perform lead work in accordance with approved Lead Compliance Plan. Use procedures and equipment required to limit occupational exposure and environmental contamination with lead when the work is performed in accordance with 29 CFR 1926.62, and as specified herein. Dispose of all PWL or MCL and associated waste in compliance with federal, State, and local requirements.
3.3.2 Paint with Lead or Material Containing Lead Removal

Manual or power sanding or grinding of lead surfaces or materials is not permitted unless tools are equipped with HEPA attachments or wet methods. The dry sanding or grinding of surfaces that contain lead is prohibited. Provide methodology for removing lead in the Lead Compliance Plan. Select lead removal processes to minimize contamination of work areas outside the control area with lead-contaminated dust or other lead-contaminated debris or waste and to ensure that unprotected personnel are not exposed to hazardous concentrations of lead. Describe this removal process in the Lead Compliance Plan.

3.3.2.1 Paint with Lead or Material Containing Lead - Indoor Removal

Perform manual removal in the lead control areas using enclosures, barriers or containments and powered locally exhausted tools. Collect residue debris for disposal in accordance with federal, State, and local requirements.

3.3.2.2 Paint with Lead or Material Containing Lead - Outdoor Removal

Perform outdoor removal as indicated in federal, State, and local regulations and in the Lead Compliance Plan. The worksite preparation (barriers or containments) shall be job dependent and presented in the Lead Compliance Plan.

3.3.3 Personnel Exiting Procedures

Whenever personnel exit the lead-controlled area, they shall perform the following procedures and shall not leave the work place wearing any clothing or equipment worn in the control area:

a. Vacuum all clothing before entering the contaminated change room.

b. Remove protective clothing in the contaminated change room, and place them in an approved impermeable disposal bag.

c. Wash hands and face at the site, don appropriate disposable or uncontaminated reusable clothing, move to an appropriate shower facility, shower.

d. Change to clean clothes prior to leaving the clean clothes storage area.

3.4 FIELD QUALITY CONTROL

3.4.1 Tests

3.4.1.1 Air and Wipe Sampling

Conduct sampling for lead in accordance with 29 CFR 1926.62 and as specified herein. Air and wipe sampling shall be directed or performed by the CP.

a. The CP shall be on the job site directing the air and wipe sampling and inspecting the PWL or MCL removal work to ensure that the requirements of the contract have been satisfied during the entire PWL or MCL operation.
b. Collect personal air samples on employees who are anticipated to have the greatest risk of exposure as determined by the CP. In addition, collect air samples on at least twenty-five percent of the work crew or a minimum of two employees, whichever is greater, during each work shift.

c. Submit results of air samples, signed by the CP, within 72 hours after the air samples are taken.

d. Conduct area air sampling daily, on each shift in which lead-based paint removal operations are performed, in areas immediately adjacent to the lead control area. Sufficient area monitoring shall be conducted to ensure unprotected personnel are not exposed at or above 30 micrograms per cubic meter of air. If 30 micrograms per cubic meter of air is reached or exceeded, stop work, correct the conditions(s) causing the increased levels. Notify the Contracting Officer immediately. Determine if condition(s) require any further change in work methods. Removal work shall resume only after the CP and the Contracting Officer give approval.

e. Before any work begins, a third party consultant shall collect and analyze baseline wipe samples in accordance with methods defined by federal, State, and local standards inside and outside of the physical boundary to assess the degree of dust contamination in the facility prior to lead disturbance or removal.

3.4.1.2 Sampling After Removal

After the visual inspection, conduct soil sampling if bare soil is present during external removal operations and collect wipe samples according to the HUD protocol contained in HUD 6780 to determine the lead content of settled dust in micrograms per square meter foot of surface area and parts per million (ppm) for soil.

3.4.1.3 Testing of Material Containing Lead Residue

Test residue in accordance with 40 CFR 261 for hazardous waste.

3.5 CLEANING AND DISPOSAL

3.5.1 Cleanup

Maintain surfaces of the lead control area free of accumulations of dust and debris. Restrict the spread of dust and debris; keep waste from being distributed over the work area. Do not dry sweep or use pressurized air to clean up the area. At the end of each shift and when the lead operation has been completed, clean the controlled area of visible contamination by vacuuming with a HEPA filtered vacuum cleaner, wet mopping the area and wet wiping the area as indicated by the Lead Compliance Plan. Reclean areas showing dust or debris. After visible dust and debris is removed, wet wipe and HEPA vacuum all surfaces in the controlled area. If adjacent areas become contaminated at any time during the work, clean, visually inspect, and then wipe sample all contaminated areas. The CP shall then certify in writing that the area has been cleaned of lead contamination before clearance testing.
3.5.1.1 Clearance Certification

The CP shall certify in writing that air samples collected outside the lead control area during paint removal operations are less than 30 micrograms per cubic meter of air; the respiratory protection used for the employees was adequate; the work procedures were performed in accordance with 29 CFR 1926.62; and that there were no visible accumulations of material and dust containing lead left in the work site. Do not remove the lead control area or roped off boundary and warning signs prior to the Contracting Officer's acknowledgement of receipt of the CP certification.

Certify surface wipe samples are not significantly greater than the initial surface loading determined prior to work.

3.5.2 Disposal

a. All material, whether hazardous or non-hazardous shall be disposed in accordance with all laws and provisions and all federal, State or local regulations. Ensure all waste is properly characterized. The result of each waste characterization (TCLP for RCRA materials) will dictate disposal requirements.

b. Contractor is responsible for segregation of waste. Collect lead-contaminated waste, scrap, debris, bags, containers, equipment, and lead-contaminated clothing that may produce airborne concentrations of lead particles. Label the containers in accordance with 29 CFR 1926.62 and 40 CFR 261.

c. Dispose of lead-contaminated material classified as hazardous waste at an EPA approved hazardous waste treatment, storage, or disposal facility off Government property.

d. Store waste materials in U.S. Department of Transportation (49 CFR 178) approved 55 gallon drums. Properly label each drum to identify the type of waste (49 CFR 172) and the date the drum was filled. For hazardous waste, the collection drum requires marking/labeling in accordance with 40 CFR 262 during the accumulation/collection timeframe. The Contracting Officer or an authorized representative will assign an area for interim storage of waste-containing drums. Do not store hazardous waste drums in interim storage longer than 90 calendar days from the date affixed to each drum.

3.5.2.1 Disposal Documentation

Submit written evidence to demonstrate the hazardous waste treatment, storage, or disposal facility (TSD) is approved for lead disposal by the EPA, State or local regulatory agencies. Submit one copy of the completed hazardous waste manifest, signed and dated by the initial transporter in accordance with 40 CFR 262. Contractor shall provide a certificate that the waste was accepted by the disposal facility. Provide turn-in documents or weight tickets for non-hazardous waste disposal.
3.5.2.2 Payment for Hazardous Waste

Payment for disposal of hazardous and non-hazardous waste will not be made until a signed copy of the manifest from the treatment or disposal facility certifying the amount of lead-containing materials or non-hazardous waste delivered is returned and a copy is furnished to the Government.

-- End of Section --
Dear Mr. Alvar:

Crystal Coast Environmental, Inc. (CCEI) was retained to conduct a lead base paint (LBP) inspection at the project identified above. The inspection consisted of visible and accessible interior and exterior surfaces coated with paint.

Background information on the Site and a summary of the inspection are provided below. CCEI’s services are subject to the Terms and Conditions to the Limitations and Service Constraints in Attachment A. The results of the inspection are presented in the attachments to this report.

LEAD SURVEY

CCEI conducted a LBP inspection to identify building components that may be impacted during scheduled renovations and may have lead-containing surface coatings.

The LBP inspection was performed on June 1, 2017, by Mr. Robert Elbertson of CCEI. The inspection was conducted by visually assessing areas of concern that may have surface coatings that are suspected to contain lead. Suspected materials coated with LBP were analyzed for total lead content (reported in total percent by weight) by Flame Atomic Adsorption Spectrometry (AAS) in accordance with U.S. EPA Method 7420, SW 846-3050B/7000B. Strict Quality Control/Quality Assurance provisions were adhered to for analysis of all lead samples. from a wall, door frame, window sill, and baseboard. The results of the LBP inspection are presented in the attachments to this report as follows.
• Attachment A – CCEI Limitations and Service Constraints
• Attachment B – Laboratory Results
• Attachment C – Sampling Locations
• Attachment D – Photographic Log

If analysis was conducted by a laboratory: 0.5% by weight or 5,000 parts per million (ppm).

The Occupational Safety and Health Administration (OSHA) Lead in Construction standard does not define lead paint based on content. Any detectable lead in paint makes it lead paint for purposes of complying with OSHA regulations to determine worker exposure.

CONCLUSIONS

Based upon the results of the inspection, the samples are reported as not containing detectable quantities of lead. The scope of this lead screening survey was limited to only assessing building components located areas or rooms identified by the client. If areas outside the scope of assessment for this survey may be disturbed, additional assessment may be required.

The remaining samples are reported as not containing detectable quantities of lead. The scope of this lead screening survey was limited to only assessing building components located areas or rooms identified by the client. If areas outside the scope of assessment for this survey may be disturbed, additional assessment may be required.

CLOSING

Should you have any questions in regards to the aforementioned or if CCEI can be of further assistance, please feel free to contact CCEI at (910) 938-7998.

Sincerely,
Crystal Coast Environmental, Inc.

Robert Elbertson
Operations Manager
Limitations and Service Constraints

The opinions, conclusions and recommendations presented in this report are limited to the information obtained during the performance of the specific scope of service identified in the report. To the extent that Crystal Coast Environmental, Inc. (CCEI) relied upon any information prepared by other parties not under direct contract to CCEI, no representation as to the accuracy or completeness of such information is made. This report is an instrument of professional service and the services described in the report were performed in accordance with generally accepted standards and level of skill and care ordinarily exercised by members of the profession working under similar conditions including comparable budgetary and schedule constraints. No warranty, guarantee or certification express or implied, is intended or given with respect to CCEI’s services, opinions, conclusions or recommendations. This statement is in lieu of any other statement either expressed or implied.

CCEI’s observations, the results of testing and CCEI’s opinions, conclusions and recommendations apply solely to conditions existing at the specific times when and specific locations where CCEI’s investigative work was performed. Observation and testing activities such as those conducted by CCEI are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site, building or area may vary from conditions at the specific locations where observations were made and where testing was performed by CCEI. Additionally, other building material hazards which were not identified by CCEI, may also be present in the indoor air, un-accessed areas and in walls, ceilings, cavities and floors. Therefore, the extent of CCEI’s opinions, conclusions and recommendations are limited and 100% confidence in these opinions, conclusions and recommendations cannot reasonably be achieved. Nothing contained in this report shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards nor shall it be considered medical advice or consultation.

This report may document whether work conducted by CCEI or under CCEI’s observation was done so in accordance with applicable regulatory standards. In the absence of standards such as is often the case for microbial assessment and abatement, this report may not be construed as providing clearance, approval, or authorization for use or re-occupancy of a given structure. Actual site conditions and quantities should be field verified and unless expressly stated.

This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for and for the particular purpose outlined in the report. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user’s sole risk.
Analysis Report

Customer: Crystal Coast Environmental (3425)
Address: 10302 Bristow Center Dr
#115
Bristow, VA 20136

Attn:
Project: HP 145
Location: Camp Lejene, NC
Number: 17-5023

Order #: 216319

- **Matrix:** Paint
- **Received:** 06/05/17
- **Analyzed:** 06/05/17
- **Reported:** 06/07/17

Sample ID	**Cust. Sample ID**	**Location**	**Method**	**Sample Date**	**Weight**	**% / Wt.**	**Conc.**	**RL**
216319-001 | 145-PB-01 | Door/Frame- Barracks | EPA 7000B / 3050B | 06/01/17 | 125 mg | <10.0 µg | <0.00800 % | >80.0 mg/kg | 80.0 mg/kg
216319-002 | 145-PB-02 | Door/Frame- Breezeway | EPA 7000B / 3050B | 06/01/17 | 345 mg | <10.0 µg | <0.0029 % | <29.0 mg/kg | 29.0 mg/kg
216319-003 | 145-PB-03 | Walls-Barracks | EPA 7000B / 3050B | 06/01/17 | 315 mg | <10.0 µg | <0.00318 % | <31.8 mg/kg | 31.7 mg/kg
216319-004 | 145-PB-04 | Riser-Sprinkler | EPA 7000B / 3050B | 06/01/17 | 325 mg | <10.0 µg | <0.00308 % | <30.8 mg/kg | 30.8 mg/kg

Sample weight below method guidelines.

Analyst: ESB
216319-06/07/17 09:03 AM

Federal Lead Paint Statute

Location	Clearance	Unit
Lead in paint by weight	< 0.50 %	
Lead in paint as PPM	< 5000 mg/kg	

Minimum reporting limit: 10.0 µg. Concentration and *Reporting Limit (RL) based on weights provided by client. All internal QC parameters were met. Unusual sample conditions, if any, are described. Values are reported to three significant figures. PPM = mg/kg | PPB = µg/kg. The test results reported relate only to the samples submitted. AIHA-LAP, LLC accredited for Lead.
<table>
<thead>
<tr>
<th>Lanes</th>
<th>Move Order</th>
<th>Total Calls</th>
<th>Total Mileage</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanes</td>
<td>Move Order</td>
<td>Total Calls</td>
<td>Total Mileage</td>
<td>Total Time</td>
</tr>
<tr>
<td>Lanes 1</td>
<td>001</td>
<td>010</td>
<td>010</td>
<td>010</td>
</tr>
<tr>
<td>Lanes 2</td>
<td>002</td>
<td>020</td>
<td>020</td>
<td>020</td>
</tr>
<tr>
<td>Lanes 3</td>
<td>003</td>
<td>030</td>
<td>030</td>
<td>030</td>
</tr>
<tr>
<td>Lanes 4</td>
<td>004</td>
<td>040</td>
<td>040</td>
<td>040</td>
</tr>
</tbody>
</table>

Total:
- Total Calls: 100
- Total Mileage: 1000 miles
- Total Time: 100 hours
EXISTING/DEMOLITION FIRST FLOOR PLAN

SCALE: 3/64" = 1'-0"
EXISTING/DEMOLITION SECOND FLOOR PLAN

SCALE: 3/64" = 1'-0"
EXISTING/DEMOLITION THIRD FLOOR PLAN

SCALE: 3/64" = 1'-0"
EXISTING/DEMOLITION ATTIC PLAN

SCALE: 3/64" = 1'-0"
View of the Front of the Building

Pb-01: Door/Door Frame - Barracks

Pb-2: Door/Door Frame - Breezeway

Pb-3: Wall - Barracks

Pb-4: Riser - Sprinkler
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.1000 Air Contaminants
40 CFR 260 Hazardous Waste Management System: General
40 CFR 261 Identification and Listing of Hazardous Waste
40 CFR 262 Standards Applicable to Generators of Hazardous Waste
40 CFR 263 Standards Applicable to Transporters of Hazardous Waste
40 CFR 265 Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities
40 CFR 268 Land Disposal Restrictions
40 CFR 270 EPA Administered Permit Programs: The Hazardous Waste Permit Program
40 CFR 273 Standards For Universal Waste Management
40 CFR 761 Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions
49 CFR 178 Specifications for Packagings

1.2 REQUIREMENTS

Removal and disposal of PCB containing lighting ballasts and associated mercury-containing lamps. Contractor may encounter leaking PCB ballasts.

1.3 DEFINITIONS

1.3.1 Certified Industrial Hygienist (CIH)

A industrial hygienist hired by the contractor shall be certified by the American Board of Industrial Hygiene.
1.3.2 Leak

Leak or leaking means any instance in which a PCB article, PCB container, or PCB equipment has any PCBs on any portion of its external surface.

1.3.3 Lamps

Lamp, also referred to as "universal waste lamp", is defined as the bulb or tube portion of an electric lighting device. A lamp is specifically designed to produce radiant energy, most often in the ultraviolet, visible, and infra-red regions of the electromagnetic spectrum. Examples of common universal waste electric lamps include, but are not limited to, fluorescent, high intensity discharge, neon, mercury vapor, high pressure sodium, and metal halide lamps.

1.3.4 Polychlorinated Biphenyls (PCBs)

PCBs as used in this specification shall mean the same as PCBs, PCB containing lighting ballast, and PCB container, as defined in 40 CFR 761, Section 3, Definitions.

1.3.5 Spill

Spill means both intentional and unintentional spills, leaks, and other uncontrolled discharges when the release results in any quantity of PCBs running off or about to run off the external surface of the equipment or other PCB source, as well as the contamination resulting from those releases.

1.3.6 Universal Waste

Universal Waste means any of the following hazardous wastes that are managed under the universal waste requirements 40 CFR 273:

1. Batteries as described in Sec. 273.2 of this chapter;
2. Pesticides as described in Sec. 273.3 of this chapter;
3. Thermostats as described in Sec. 273.4 of this chapter; and
4. Lamps as described in Sec. 273.5 of this chapter.

1.4 QUALITY ASSURANCE

1.4.1 Regulatory Requirements

Perform PCB related work in accordance with 40 CFR 761 and North Carolina or EM385-1-1. North Carolina, EM385-1-1, and DOT regulations

1.4.2 Training

Certified industrial hygienist (CIH) shall instruct and certify the training of all persons involved in the removal of PCB containing lighting ballasts and mercury-containing lamps. The instruction shall include: The dangers of PCB and mercury exposure, decontamination, safe work practices, and applicable OSHA and EPA regulations. The CIH shall review and approve the PCB and Mercury-Containing Lamp Removal Work Plans.

1.4.3 Regulation Documents

Contractor removal work plan and disposal plan for PCB and for associated mercury-containing lamps.

1.5 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-07 Certificates
 Qualifications of CIH
 Training Certification
 PCB and Lamp Removal Work Plan
 PCB and Lamp Disposal Plan

SD-11 Closeout Submittals
 Transporter certification of notification to EPA of their PCB waste activities and EPA ID numbers
 Certification of Decontamination
 Certificate of Disposal and/or recycling. Submit to the Government before application for payment within 30 days of the date that the disposal of the PCB and mercury-containing lamp waste identified on the manifest was completed.
 DD Form 1348-1
 Testing results

1.6 ENVIRONMENTAL REQUIREMENTS

Use special clothing:
 a. Disposable gloves (polyethylene)
 b. Eye protection
 c. PPE as required by CIH

1.7 SCHEDULING

Notify the Contracting Officer 20 days prior to the start of PCB and mercury-containing lamp removal work.

1.8 QUALITY ASSURANCE

1.8.1 Qualifications of CIH

Submit the name, address, and telephone number of the Industrial Hygienist selected to perform the duties in paragraph entitled "Certified Industrial Hygienist." Submit training certification that the Industrial Hygienist is certified, including certification number and date of certification or re-certification.
1.8.2 PCB and Lamp Removal Work Plan

Submit a job-specific plan within 20 calendar days after award of contract of the work procedures to be used in the removal, packaging, and storage of PCB-containing lighting ballasts and associated mercury-containing lamps. Include in the plan: Requirements for Personal Protective Equipment (PPE), spill cleanup procedures and equipment, eating, smoking and restroom procedures. The plan shall be approved and signed by the Certified Industrial Hygienist. Obtain approval of the plan by the Contracting Officer prior to the start of PCB and/or lamp removal work.

1.8.3 PCB and Lamp Disposal Plan

Submit a PCB and lamp Disposal Plan with 20 calendar days after award of contract. The PCB and Lamp Disposal Plan shall comply with applicable requirements of federal, state, and local PCB and Universal waste regulations and address:

a. Estimated quantities of wastes to be generated, disposed of, and recycled.

b. Names and qualifications of each Contractor that will be transporting, storing, treating, and disposing of the wastes. Include the facility location. Furnish two copies of EPA and state PCB and mercury-containing lamp waste permit applications and EPA identification numbers, as required.

c. Names and qualifications (experience and training) of personnel who will be working on-site with PCB and mercury-containing lamp wastes.

d. Spill prevention, containment, and cleanup contingency measures to be implemented.

e. Work plan and schedule for PCB and mercury-containing lamp waste removal, containment, storage, transportation, disposal and or recycling. Wastes shall be cleaned up and containerize daily.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

3.1 WORK PROCEDURE

Furnish labor, materials, services, and equipment necessary for the removal of PCB containing lighting ballasts, associated mercury-containing fluorescent lamps, and high intensity discharge (HID) lamps in accordance with local, state, or federal regulations. Do not expose PCBs to open flames or other high temperature sources since toxic decomposition by-products may be produced. Do not break mercury containing fluorescent lamps or high intensity discharge lamps.

3.1.1 Work Operations

Ensure that work operations or processes involving PCB or PCB-contaminated materials are conducted in accordance with 40 CFR 761, 40 CFR 262 40 CFR 263, and the applicable requirements of this section, including but not limited to:
a. Obtaining suitable PCB and mercury-containing lamp storage sites.
b. Notifying Contracting Officer prior to commencing the operation.
c. Reporting leaks and spills to the Contracting Officer.
d. Cleaning up spills.
e. Inspecting PCB and PCB-contaminated items and waste containers for
 leaks and forwarding copies of inspection reports to the Contracting
 Officer.
f. Maintaining inspection, inventory and spill records.
3.2 PCB SPILL CLEANUP REQUIREMENTS
3.2.1 PCB Spills
 Immediately report to the Contracting Officer any PCB spills.
3.2.2 PCB Spill Control Area
 Rope off an area around the edges of a PCB leak or spill and post a "PCB
 Spill Authorized Personnel Only" caution sign. Immediately transfer
 leaking items to a drip pan or other container.
3.2.3 PCB Spill Cleanup
 40 CFR 761, subpart G. Initiate cleanup of spills as soon as possible, but
 no later than 24 hours of its discovery. Mop up the liquid with rags or
 other conventional absorbent. The spent absorbent shall be properly
 contained and disposed of as solid PCB waste.
3.2.4 Records and Certification
 Document the cleanup with records of decontamination in accordance with
 40 CFR 761, Section 125, Requirements for PCB Spill Cleanup. Provide test
 results of cleanup and certification of decontamination.
3.3 REMOVAL
3.3.1 Ballasts
 As ballasts are removed from the lighting fixture, inspect label on ballast.
 Ballasts without a "No PCB" label shall be assumed to contain PCBs and
 containerized and disposed of as required under paragraphs STORAGE FOR
 DISPOSAL and DISPOSAL. If there are less than 1600 "No PCB" labeled
 lighting ballasts dispose of them as normal demolition debris. If there
 are more than 1600 "No PCB" labeled ballasts, establish whether the "No
 PCB" labeled ballasts contain diethylhexyl phthalate (DEHP) either by test
 or by checking with the ballast manufacturer indicated on the label.
 Submit testing results and/or written confirmation from the manufacturer to
 the Contracting Officer. If the ballasts do not contain DEHP, dispose of
 them as normal construction debris. If they do contain DEHP, dispose of
 them as hazardous material in accordance with Federal, State, and local
 regulations. As a basis of bid assume ballasts with "No PCB" labels do not
 contain DEHP and may disposed of as normal construction debris. If 1600 or
 more DEHP ballasts are disposed of in a 24 hour period, notify the National
Response Team at 800-424-8802.

3.3.2 Lighting Lamps

Remove lighting tubes/lamps from the lighting fixture and carefully place (unbroken) into appropriate containers (original transport boxes or equivalent). In the event of a lighting tube/lamp breaking, sweep and place waste in double plastic taped bags and dispose of as universal waste as specified herein.

3.4 STORAGE FOR DISPOSAL

3.4.1 Storage Containers for PCBs

49 CFR 178. Store PCB in containers approved by DOT for PCB.

3.4.2 Storage Containers for lamps

Store mercury containing lamps in appropriate DOT containers. The boxes shall be stored and labeled for transport in accordance with 40 CFR 273.

3.4.3 Labeling of Waste Containers

Label with the following:

a. Date the item was placed in storage and the name of the cognizant activity/building.

c. Label mercury-containing lamp waste in accordance with 40 CFR 273. Affix labels to all lighting waste containers.

3.5 DISPOSAL

Dispose of off Government property in accordance with EPA, DOT, and local regulations at a permitted site.

3.5.1 Identification Number

Federal regulations 40 CFR 761, and 40 CFR 263 require that generators, transporters, commercial storers, and disposers of PCB waste posses U.S. EPA identification numbers. The contractor shall verify that the activity has a U.S. EPA generator identification number for use on the Uniform Hazardous Waste manifest. If not, the contractor shall advise the activity that it must file and obtain an I.D. number with EPA prior to commencement of removal work. For mercury containing lamp removal, Federal regulations 40 CFR 273 require that large quantity handlers of Universal waste (LQH) must provide notification of universal waste management to the appropriate EPA Region (or state director in authorized states), obtain an EPA identification number, and retain for three years records of off-site shipments of universal waste. The contractor shall verify that the activity has a U.S. EPA generator identification number for use on the Universal Waste manifest. If not, the contractor shall advise the activity that it must file and obtain an I.D. number with EPA prior to commencement of removal work.
3.5.2 Transporter Certification

Comply with disposal and transportation requirements outlined in 40 CFR 761 and 40 CFR 263. Before transporting the PCB waste, sign and date the manifest acknowledging acceptance of the PCB waste from the Government. Return a signed copy to the Government before leaving the job site. Ensure that the manifest accompanies the PCB waste at all times. Submit transporter certification of notification to EPA of their PCB waste activities (EPA Form 7710-53).

3.5.2.1 Certificate of Disposal and/or Recycling

40 CFR 761. Certificate for the PCBs and PCB items disposed shall include:

a. The identity of the disposal and or recycling facility, by name, address, and EPA identification number.

b. The identity of the PCB waste affected by the Certificate of Disposal including reference to the manifest number for the shipment.

c. A statement certifying the fact of disposal and or recycling of the identified PCB waste, including the date(s) of disposal, and identifying the disposal process used.

d. A certification as defined in 40 CFR 761.

3.5.3 Disposal by the Government

Comply with disposal and transportation requirements outlined in 40 CFR 761 and 40 CFR 263. Load and haul PCBs to the storage site at Camp Lejeune, operated by the Defense Reutilization and marketing Officer (DRMO). If the primary site is filled to capacity, contact the Contracting Officer. The transport distance to any storage site will not exceed the distance between the project site and the DRMO storage site at Camp Lejeune or at a distance agreed upon by the Government and Contractor.

3.5.3.1 Delivery

Contact DRMO at least 5 working days in advance to make arrangements for delivery of materials Phone TBD or write to:

Defense Reutilization and Marketing Office

3.5.3.2 DD Form 1348-1

Prepare DD Form 1348-1 Turn-in Document (TID), which will accompany the PCB to the storage site. Ensure that a responsible person from the activity that owns the PCB signs the DD Form 1348-1.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

1.2 DEFINITIONS

1.2.1 Epoxy Resin Binder

A two-component epoxy bonding system in low and medium viscosities used by itself as a primer or for producing epoxy concrete or mortars when mixed with aggregate.

1.2.2 Epoxy Concrete

A combination of epoxy resin binder and fine and coarse aggregate used in the repair of spalling along joints or cracks, small surface spalls or "popouts."

1.2.3 Epoxy Mortar

A combination of epoxy resin binder and fine aggregate used in the surface repair of non-structural cracks and filling of saw kerfs.

1.2.4 Non-Pressure Epoxy Grout

A combination of epoxy resin binder, a mineral filler and a thixotropic agent used in cementing dowels in place and the repair of non-structural cracks.

1.2.5 Pressure Grouting Epoxy

A low viscosity epoxy resin system pumped under pressure into structural cracks in walls or pavements.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-07 Certificates
Epoxy Resin Binder
Epoxy Grout

SD-08 Manufacturer's Instructions

Epoxy Repair Material

Submit for mixing and applying.

1.4 QUALITY ASSURANCE

1.5 DELIVERY, STORAGE, AND HANDLING

Inspect materials delivered to site for damage, unload and store with a
minimum of handling. Deliver epoxy resin components and aggregate
materials in original sealed containers and store in dry covered areas at
temperatures below 90 degrees F. Remove from job site unused mixed
materials which have reached end of working or pot life.

1.6 WEATHER LIMITATIONS

Halt work when weather conditions detrimentally affect the quality of
patching or bonding concrete. Apply epoxy resin materials only when the
contact surfaces are completely dry and if the atmospheric and surface
temperature ranges are suitable for the specified epoxy material. Follow
manufacturer's instructions for weather conditions and temperature ranges.

1.7 EQUIPMENT

Use a container recommended by the epoxy manufacturer as the mixing vessel.
Use a power drive (air or spark-proof) propeller type blade for mixing
except that hand mixing may be used for small batches. Use equipment
specified by epoxy manufacturer for field mixing of aggregates and epoxy
resin.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Epoxy

2.1.1.1 Epoxy Resin Binder for Concrete and Mortar

ASTM C881/C881M, Type III, Grade 1 or 2, Class B or C without mineral
filler.

2.1.1.2 Non-Pressure Epoxy Grout

ASTM C881/C881M Type IV, Grade 2 or 3, Class B or C with or without
mineral filler.
PART 3 EXECUTION

3.1 PREPARATION

3.1.1 Epoxy Concrete

3.1.1.1 Patch Areas

Remove loose concrete from the spalled areas indicated. Inspect the cavity for remaining defective concrete by tapping with a hammer or steel rod and listening for dull or hollow sounds. In areas where tapping does not produce a solid tone, remove additional concrete until testing produces a solid tone. Make the entire cavity at least one inch deep. Sawcut edges of cavity to avoid feather edging. Prepare surface of cavity by sandblasting, grinding, or water blasting. Remove dust, dirt, and loosely bonded material resulting from cleaning. Ensure cavity surfaces are dry.

3.1.2 Epoxy Mortar for Cracks and Saw Kerfs

Apply epoxy mortar to newly exposed loose and unsound materials. Prepare surfaces by sandblasting, scarifying or waterblasting. Remove dust, dirt, and loosely bonded material resulting from cleaning. Ensure surfaces are dry before application of epoxy mortar.

3.1.3 Epoxy Grout for Cracks

Apply grout to newly exposed concrete free of loose and unsound materials. Prepare surfaces by sandblasting, scarifying or waterblasting. Remove dust, dirt, and loosely bonded material resulting from cleaning. Ensure surfaces are dry before application of epoxy grout.

3.2 MIXING MATERIALS

Make batches small enough to ensure placement before binder sets. Mix materials in accordance with manufacturer's recommendations.

3.3 PLACEMENT

3.3.1 Epoxy Mortar

Prime surfaces with epoxy resin binder. Scrub prime coat into surface with a stiff bristle brush. Make coating approximately 20 mils thick. Place epoxy mortar while primer is still tacky. Apply at a thickness recommended by the manufacturer. Work mortar into place and consolidate thoroughly so that contact surfaces are wetted by the mortar. Finish surface of mortar to the required texture. Do not feather edge epoxy mortar onto adjacent surfaces.

3.3.2 Non-Pressure Epoxy Grout

3.3.2.1 Cementing Dowels

Immediately prior to placing the dowel, clean hole of dust and other deleterious material with a high pressure air hose. Fill hole halfway with grout. Insert dowel in hole by rotating it at least one complete turn while tapping it down. If necessary add more grout to fill hole.
3.3.2.2 Epoxy Grout for Cracks

Apply epoxy grout at a thickness recommended by the manufacturer. Work grout into place and consolidate thoroughly so that contact surfaces are wetted by the grout. Finish surface of grout to the required texture. Do not feather edge epoxy grout onto adjacent surfaces.

3.4 CURING

Cure epoxy materials in accordance with manufacturer's recommendations.

3.5 FIELD QUALITY CONTROL

3.5.1 Inspection

Check each repaired area for cracks, spalls, popouts and loss of bond between repaired area and surrounding concrete. Check each repaired area for voids by tapping with a hammer or steel rod and listening for dull or hollow sounds. Immediately repair defects.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 301 (2005; Errata 2008) Specifications for Structural Concrete

ASTM INTERNATIONAL (ASTM)

ASTM A 615/A 615M (2008b) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
ASTM D 1140 (2000; R 2006) Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve

PART 2 PRODUCTS

2.1 CONCRETE

ASTM C 94/C 94M, a minimum strength of 3000 psi at 28 days and slump
between 2 and 4 inches ASTM C 143/C 143M.

2.2 CURING MATERIALS

ACI 301.

2.3 CONCRETE AGGREGATE

ASTM C 33/C 33M, fine aggregate grading with a maximum of 3 percent by weight passing ASTM D 1140, No. 200 sieve, or coarse aggregate Size 57, 67, or 7.

2.4 REINFORCING STEEL

ASTM A 615/A 615M, Grade 60.

2.5 WELDED-WIRE FABRIC FOR CONCRETE REINFORCEMENT

ASTM A 185/A 185M.

2.6 VAPOR BARRIER

Shall be polyethylene sheeting of natural color with a nominal thickness of 10 mils. The loss of moisture when determined in accordance with ASTM C 156 shall not exceed 0.055 gram per square centimeter of surface.

PART 3 EXECUTION

3.1 FILL

Under the areas to receive concrete shall be compacted to 95% density.

3.2 WORKMANSHIP

The surface immediately under concrete installed on grade shall be wetted as directed immediately before the concrete is placed.

3.3 CURING

Curing concrete shall conform to ACI 301.

3.4 CONCRETE FINISHES

Concrete shall be given a floated finish.

3.5 HOT WEATHER CONCRETE WORK

ACI 305R.

3.6 COLD WEATHER CONCRETE WORK

ACI 306R.

-- End of Section --
SECTION 04 20 00

UNIT MASONRY

11/15

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A615/A615M (2015a; E 2015) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C129 (2014a) Standard Specification for Nonloadbearing Concrete Masonry Units

ASTM C216 (2015) Facing Brick (Solid Masonry Units Made from Clay or Shale)

ASTM C641 (2009) Staining Materials in Lightweight Concrete Aggregates

ASTM C780 (2015) Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry

ASTM C90 (2014) Loadbearing Concrete Masonry Units

ASTM D2287 (2012) Nonrigid Vinyl Chloride Polymer and Copolymer Molding and Extrusion Compounds

THE MASONRY SOCIETY (TMS)

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

- Hot Weather Procedures
- Cold Weather Procedures
- Clay or Shale Brick
- Cement
- Cementitious Materials

SD-04 Samples

- Mock-Up Panel
- Clay or Shale Brick
- Concrete Masonry Units (CMU)
- Anchors, Ties, and Bar Positioners
- Clay Masonry Expansion-Joint Materials

SD-05 Design Data

- Masonry Compressive Strength

SD-06 Test Reports

- Efflorescence Test
- Field Testing of Mortar
- Field Testing of Grout

SD-07 Certificates

- Clay or Shale Brick
- Concrete Masonry Units (CMU)
- Cementitious Materials
- Admixtures for Masonry Mortar
- Admixtures for Grout
- Anchors, Ties, and Bar Positioners
- Joint Reinforcement
- Insulation

SD-08 Manufacturer's Instructions

- Admixtures for Masonry Mortar
- Admixtures for Grout
1.3 QUALITY ASSURANCE

1.3.1 Masonry Mock-Up Panels

1.3.1.1 Mock-Up Panel Location

After material samples are approved and prior to starting masonry work, construct a mock-up panel for each type and color of masonry required. At least 48 hours prior to constructing the panel or panels, submit written notification to the Contracting Officer. Do not build-in mock-up panels as part of the structure; locate mock-up panels where directed. Construct portable mock-up panels or locate in an area where they will not be disrupted during construction.

1.3.1.2 Mock-Up Panel Configuration

Construct mock-up panels L-shaped or otherwise configured to represent all of the wall elements. Construct panels of the size necessary to demonstrate the acceptable level of workmanship for each type of masonry represented on the project. Provide a straight panel or a leg of an L-shaped panel of minimum size 8 feet long by 4 feet high.

1.3.1.3 Mock-Up Panel Composition

Show full color range, texture, and bond pattern of the masonry work. Demonstrate mortar joint tooling; grouting of reinforced vertical cores, collar joints, bond beams, and lintels; positioning, securing, and lapping of reinforcing steel; positioning and lapping of joint reinforcement (including prefabricated corners); and cleaning of masonry work during the construction of the panels. Also include installation or application procedures for anchors, wall ties, CMU control joints, brick expansion joints, flashing, brick soldier, row lock courses and weeps. When the panel represents reinforced masonry, include a 2 by 2 foot opening placed at least 2 feet above the panel base and 2 feet away from all free edges, corners, and control joints. Provide required reinforcing around this opening as well as at wall corners and control joints.

1.3.1.4 Mock-Up Panel Construction Method

Where anchored veneer walls or cavity walls are required, demonstrate and receive approval for the method of construction; i.e., either bring up the two wythes together or separately, with the insulation and appropriate ties placed within the specified tolerances across the cavity. Demonstrate provisions to preclude mortar or grout droppings in the cavity and to provide a clear open air space of the dimensions shown on the drawings. Where masonry is to be grouted, demonstrate and receive approval on the method that will be used to bring up the masonry wythes; support the reinforcing bars; and grout cells, bond beams, lintels, and collar joints using the requirements specified herein. When water-repellent is specified to be applied to the masonry, apply the approved product to the mock-up panel. Construct panels on a properly designed concrete foundation.

1.3.1.5 Mock-Up Panel Purpose

The completed panels is used as the standard of workmanship for the type of masonry represented. Do not commence masonry work until the mock-up panel for that type of masonry construction has been completed and approved. Protect panels from the weather and construction operations until the masonry work has been completed and approved. Perform cleaning procedures...
on the mockup and obtain approval of the Contracting Officer prior to cleaning the building. After completion of the work, completely remove the mock-up panels, including all foundation concrete, from the construction site.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver, store, handle, and protect material to avoid chipping, breakage, and contact with soil or contaminating material. Store and prepare materials in already disturbed areas to minimize project site disturbance and size of project site.

1.4.1 Masonry Units

Cover and protect masonry units from precipitation. Conform to handling and storage requirements of TMS MSJC.

a. Pack glazed brick, glazed structural clay tile, and prefaced concrete masonry units in the manufacturer's standard paper cartons, trays, or shrink wrapped pallets with a divider between each unit. Do not stack pallets. Do not remove units from cartons until cartons are placed on scaffolds or in the location where units are to be laid.

b. Mark prefabricated lintels on top sides to show either the lintel schedule number or the number and size of top and bottom bars.

1.4.2 Reinforcement, Anchors, and Ties

Store steel reinforcing bars, coated anchors, ties, and joint reinforcement above the ground. Maintain steel reinforcing bars and uncoated ties free of loose mill scale and loose rust.

1.4.3 Cementitious Materials, Sand and Aggregates

Deliver cementitious and other packaged materials in unopened containers, plainly marked and labeled with manufacturers' names and brands. Store cementitious material in dry, weathertight enclosures or completely cover. Handle cementitious materials in a manner that will prevent the inclusion of foreign materials and damage by water or dampness. Store sand and aggregates in a manner to prevent contamination and segregation.

1.5 PROJECT/SITE CONDITIONS

Conform to TMS MSJC for hot and cold weather masonry erection.

1.5.1 Hot Weather Procedures

When ambient air temperature exceeds 100 degrees F, or exceeds 90 degrees F and the wind velocity is greater than 8 mph, comply with TMS MSJC Article 1.8 D for: preparation prior to conducting masonry work; construction while masonry work is in progress; and protection for newly completed masonry.

1.5.2 Cold Weather Procedures

When ambient temperature is below 40 degrees F, comply with TMS MSJC Article 1.8 C for: preparation prior to conducting masonry work; construction while masonry work is in progress; and protection for newly completed masonry.
PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

2.1.1 Design - Specified Compressive Strength of Masonry

The specified compressive strength of masonry, \(f'\text{m} \), is 2,000 psi.

2.1.2 Performance - Verify Masonry Compressive Strength

Verify specified compressive strength of masonry using the "Unit Strength Method" of TMS MSJC. Submit calculations and certifications of unit and mortar strength.

Verify specified compressive strength of masonry using the "Prism Test Method" of TMS MSJC when the "Unit Strength Method" cannot be used. Submit test results.

2.2 MANUFACTURED UNITS

2.2.1 General Requirements

Do not change the source of materials, which will affect the appearance of the finished work, after the work has started except with Contracting Officer's approval. Submit test reports from an approved independent laboratory. Certify test reports on a previously tested material as the same materials as that proposed for use in this project. Submit certificates of compliance stating that the materials meet the specified requirements.

2.2.2 Clay or Shale Brick

2.2.2.1 General

2.2.2.1.1 Sample Submittal

Submit brick samples as specified. Color range and texture of clay or shale brick shall match the existing brick masonry. Brick shall be approved by ROICC and Base Architectural Review Board.

2.2.2.1.2 Uniformity

Deliver clay or shale brick units factory-blended to provide a uniform appearance and color range in the completed wall. Brick shall be approved by ROICC and Base Architectural Review Board.

2.2.2.1.3 Efflorescence Test

Test clay brick that will be exposed to weathering for efflorescence in accordance with ASTM C67. Schedule tests far enough in advance of starting masonry work to permit retesting if necessary. Units meeting the definition of "effloresced" are subject to rejection.

2.2.2.2 Solid Clay or Shale Brick

Provide solid clay or shale brick that conforms to ASTM C216, Type FBS. Where brick cores, recesses, or deformation would be exposed to view, provide 100 percent solid units. Provide brick with texture and color
tange to match the brick existing.

Provide brick with specified sizes.

a. Modular size, 3-5/8 inches thick, 2-1/4 inches high, and 7-5/8 inches long.

2.2.3 Concrete Units

2.2.3.1 Aggregates

Test lightweight aggregates, and blends of lightweight and heavier aggregates in proportions used in producing the units, for stain-producing iron compounds in accordance with ASTM C641, visual classification method. Do not incorporate aggregates for which the iron stain deposited on the filter paper exceeds the "light stain" classification.

Use industrial waste by-products (air-cooled slag, cinders, or bottom ash), ground waste glass and concrete, granulated slag, and expanded slag in aggregates.

2.2.3.2 Concrete Masonry Units (CMU)

2.2.3.2.1 Cement

Use only cement that has a low alkali content and is of one brand.

2.2.3.2.2 Size

Provide units with specified dimension of 7 5/8 inches wide, 7 5/8 inches high, and 15 5/8 inches long.

2.2.3.2.3 Surfaces

For units that are to be plastered or stuccoed, provide surfaces that are sufficiently rough to provide bond. Elsewhere, provide units with exposed surfaces that are smooth and of uniform texture.

2.2.3.2.4 Weather Exposure

Provide concrete masonry units with water-repellant admixture added during manufacture where units will be exposed to weather.

2.2.3.2.5 Unit Types

b. Hollow Non-Load-Bearing Units: ASTM C129, lightweight. Load-bearing units may be provided in lieu of non-load-bearing units.

c. Solid Load-Bearing Units: ASTM C90, lightweight units. Provide solid units as indicated.

2.2.3.2.6 Jamb Units

Provide jamb units of the shapes and sizes to conform with wall units.
Solid units may be incorporated in the masonry work where necessary to fill out at corners, gable slopes, and elsewhere as approved.

Provide sash jamb units with a 3/4 by 3/4 inch groove near the center at end of each unit.

2.3 EQUIPMENT

2.3.1 Vibrators

Maintain at least one spare vibrator on site at all times.

2.3.2 Grout Pumps

Pumping through aluminum tubes is not permitted.

2.4 MATERIALS

2.4.1 Mortar Materials

2.4.1.1 Cementitious Materials

Provide cementitious materials that conform to those permitted by ASTM C270.

2.4.1.2 Hydrated Lime and Alternates

Provide lime that conforms to one of the materials permitted by ASTM C207 for use in combination with portland cement, hydraulic cement, and blended hydraulic cement. Do not use lime in combination with masonry cement or mortar cement.

2.4.1.3 Admixtures for Masonry Mortar

In cold weather, use a non-chloride based accelerating admixture that conforms to ASTM C1384, unless Type III portland cement is used in the mortar.

In showers and kitchens, use mortar that contains a water-repellent admixture that conforms to ASTM C1384. Provide a water-repellent admixture, conforming to ASTM C1384 and of the same brand and manufacturer as the block's integral water-repellent, in the mortar used to place concrete masonry units that have an integral water-repellent admixture.

2.4.1.4 Aggregate and Water

Provide aggregate (sand) and water that conform to materials permitted by ASTM C270.

2.4.2 Grout and Ready-Mix Grout Materials

2.4.2.1 Cementitious Materials for Grout

Provide cementitious materials that conform to those permitted by ASTM C476.

2.4.2.2 Admixtures for Grout

Water-reducing admixtures that conform to ASTM C494/C494M Type F or G and viscosity-modifying admixtures that conform to ASTM C494/C494M Type S are permitted for use in grout. Other admixtures require approval by the
Contracting Officer.

In cold weather, a non-chloride based accelerating admixture may be used subject to approval by the Contracting Officer; use accelerating admixture that is non-corrosive and conforms to ASTM C494/C494M, Type C.

2.4.2.3 Aggregate and Water

Provide fine and coarse aggregates and water that conform to materials permitted by ASTM C476.

2.5 MORTAR AND GROUT MIXES

2.5.1 Mortar Mix

a. Provide mortar Type S unless specified otherwise herein.

b. Use ASTM C270 Type S cement-lime mortar or mortar cement mortar for seismic-force-resisting elements indicated.

c. For field-batched mortar, measure component materials by volume. Use measuring boxes for materials that do not come in packages, such as sand, for consistent batching. Mix cementitious materials and aggregates between 3 and 5 minutes in a mechanical batch mixer with a sufficient amount of water to produce a workable consistency. Do not hand mix mortar unless approved by the Contracting Officer. Maintain workability of mortar by remixing or retempering. Discard mortar that has begun to stiffen or is not used within 2-1/2 hours after initial mixing.

d. For preblended mortar, follow manufacturer's mixing instructions.

2.5.2 Grout and Ready Mix Grout Mix

Use grout that conforms to ASTM C476, fine. Use conventional grout with a slump between 8 and 10 inches. Use self-consolidating grout with slump flow of 24 to 30 inches and a visual stability index (VSI) not greater than 1. Provide minimum grout strength of 2000 psi in 28 days, as tested in accordance with ASTM C1019. Do not change proportions and do not use materials with different physical or chemical characteristics in grout for the work unless additional evidence is furnished that grout meets the specified requirements. Use ready-mixed grout that conforms to ASTM C476.

2.6 ACCESSORIES

2.6.1 Grout Barriers

Grout barriers for vertical cores that consist of fine mesh wire, fiberglass, or expanded metal.

2.6.2 Anchors, Ties, and Bar Positioners

2.6.2.1 General

a. Fabricate anchors and ties without drips or crimps. Size anchors and ties to provide a minimum of 5/8 inch mortar cover from each face of masonry.

b. Fabricate steel wire anchors and ties shall from wire conforming to
ASTM A1064/A1064M and hot-dip galvanize in accordance with ASTM A153/A153M.

c. Fabricate joint reinforcement in conformance with ASTM A951/A951M. Hot dip galvanize joint reinforcement in exterior walls and in interior walls exposed to moist environment in conformance with ASTM A153/A153M. Galvanize joint reinforcement in other interior walls in conformance with ASTM A641/A641M; coordinate with paragraph JOINT REINFORCEMENT below.

e. Submit two anchors, ties and bar positioners of each type used, as samples.

2.6.2.2 Wire Mesh Anchors

Provide wire mesh anchors of 1/4 inch mesh galvanized hardware cloth, conforming to ASTM A185/A185M, with length not less than 12 inches, at intersections of interior non-bearing masonry walls.

2.6.2.3 Wall Ties for Multi-Wythe Masonry Construction

Provide rectangular-shaped wall ties, fabricated of hot-dipped galvanized W1.7 diameter steel wire. Provide rectangular wall ties no less than 4 inches wide.

Provide adjustable type wall ties, if approved for use, that consist of two essentially U-shaped elements fabricated of minimum W2.8 diameter steel wire or pintle type ties that are inserted to eyes of horizontal joint reinforcement, hot-dip galvanized. Provide adjustable ties with double pintle legs and allows a maximum offset of 1-1/4 inch between each element of the tie and maximum distance between connecting parts no more than 1/16 inch. Form the pintle and eye elements shall be formed so that both can be in the same plane. Wall ties may also be of a continuous type conforming to paragraph JOINT REINFORCEMENT.

2.6.2.4 Bar Positioners

Factory-fabricate bar positioners, used to prevent displacement of reinforcing bars during the course of construction, from 9 gauge steel wire or equivalent, and hot-dip galvanized.

2.6.3 Joint Reinforcement

Factory fabricate joint reinforcement in conformance with ASTM A951/A951M, welded construction. Provide ladder type joint reinforcement, having one longitudinal wire in the mortar bed of each face shell for hollow units and one wire for solid units and with all wires a minimum of 9 gauge. Size joint reinforcement to provide a minimum of 5/8 inch cover from each face. Space crosswires not more than 16 inches. Provide joint reinforcement for straight runs in flat sections not less than 10 feet long. Provide joint reinforcement with factory formed corners and intersections. If approved for use, joint reinforcement may be furnished with adjustable wall tie
features. Submit one piece of each type used, including corner and wall intersection pieces, showing at least two cross wires.

2.6.4 Reinforcing Steel Bars

Reinforcing steel bars and rods shall conform to ASTM A615/A615M or ASTM A996/A996M, Grade 60.

2.6.5 Concrete Masonry Control Joint Keys

Provide control joint keys of a factory fabricated solid section of natural or synthetic rubber (or combination thereof) conforming to ASTM D2000 M2AA-805 with a minimum durometer hardness of 80 or polyvinyl chloride conforming to ASTM D2287 Type PVC 654-4 with a minimum durometer hardness of 85. Form the control joint key with a solid shear section not less than 5/8 inch thick and 3/8 inch thick flanges, with a tolerance of plus or minus 1/16 inch, to fit neatly, but without forcing, in masonry unit jamb sash grooves.

2.6.6 Clay Masonry Expansion-Joint Materials

Provide backer rod and sealant, adequate to accommodate joint compression and extension equal to 50 percent of the width of the joint. Provide the backer rod of compressible rod stock of closed cell polyethylene foam, polyurethane foam, butyl rubber foam, or other flexible, nonabsorptive material as recommended by the sealant manufacturer. Provide sealant in conformance with Section 07 92 00 JOINT SEALANTS with a maximum volatile organic compound (VOC) content of 600 grams/liter. Submit one piece of each type of material used.

2.6.7 Through Wall Flashing and Weeps

2.6.7.1 General

Provide coated copper, copper or stainless steel sheet, self-adhesive rubberized sheet, or reinforced membrane sheet flashing except that flashing indicated to terminate in reglets shall be metal or coated-metal flashing and except that the material shall be one which is not adversely affected by dampproofing material.

2.6.7.2 Coated-Copper Flashing

Provide 7 ounce, electrolytic copper sheet, uniformly coated on both sides with acidproof, alkaliproof, asphalt impregnated kraft paper or polyethylene sheets.

2.6.7.3 Copper or Stainless Steel Flashing

Provide copper sheet, complying with ASTM B370, minimum 16 ounce weight; or stainless steel, ASTM A167, Type 304 or 316, 0.015 inch thick, No. 2D finish. Where indicated, provide with factory-fabricated deformations that mechanically bond flashing against horizontal movement in all directions, where deformations consist of dimples, diagonal corrugations, or a combination of dimples and transverse corrugations.
2.6.7.4 Rubberized Flashing

Provide self-adhesive rubberized asphalt sheet flashing consisting of 32-mil thick pliable and highly adhesive rubberized asphalt compound bonded completely and integrally to 8-mil thick, high density, cross-laminated polyethylene film to produce an overall thickness of 40 mils. Provide rubberized, asphalt-based mastic and surface conditioner that are each approved by flashing manufacturer for use with flashing material.

2.6.7.5 Weep Ventilators

Provide weep ventilators that are prefabricated from stainless steel or plastic. Provide inserts with grill or louver-type openings designed to allow the passage of moisture from cavities and to prevent the entrance of insects, and with a rectangular closure strip to prevent mortar droppings from clogging the opening. Provide ventilators with compressible flanges to fit in a standard 3/8 inch wide mortar joint and with height equal to the nominal height of the unit.

2.6.7.6 Metal Drip Edge

Provide stainless steel drip edge, 15-mil thick, hemmed edges, with down-turned drip at the outside edge and upturned dam at the inside edge for use with membrane flashings.

2.6.8 RIGID BOARD-TYPE INSULATION

Provide rigid board-type insulation as specified in Section 07 21 13 BOARD AND BLOCK INSULATION.

PART 3 EXECUTION

3.1 EXAMINATION

Prior to start of work, verify the applicable conditions as set forth in TMS MSJC, inspection.

3.2 PREPARATION

3.2.1 Stains

Protect exposed surfaces from mortar and other stains. When mortar joints are tooled, remove mortar from exposed surfaces with fiber brushes and wooden paddles. Protect base of walls from splash stains by covering adjacent ground with sand, sawdust, or polyethylene.

3.2.2 Loads

Do not apply uniform loads for at least 12 hours or concentrated loads for at least 72 hours after masonry is constructed. Provide temporary bracing as required.

3.2.3 Concrete Surfaces

Where masonry is to be placed, clean concrete of laitance, dust, dirt, oil, organic matter, or other foreign materials and slightly roughen to provide a surface texture with a depth of at least 1/8 inch. Sandblast, if necessary, to remove laitance from pores and to expose the aggregate.
3.2.4 Shelf Angles

Adjust shelf angles as required to keep the masonry level and at the proper elevation.

3.3 ERECTION

3.3.1 General

a. Coordinate masonry work with the work of other trades to accommodate built-in items and to avoid cutting and patching. Lay masonry units in running bond pattern. Lay facing courses level with back-up courses, unless the use of adjustable ties has been approved in which case the tolerances is plus or minus 1/2 inch. Adjust each unit to its final position while mortar is still soft and has plastic consistency.

b. Remove and clean units that have been disturbed after the mortar has stiffened, and relay with fresh mortar. Keep air spaces, cavities, chases, expansion joints, and spaces to be grouted free from mortar and other debris. Select units to be used in exposed masonry surfaces from those having the least amount of chipped edges or other imperfections detracting from the appearance of the finished work.

c. When necessary to temporarily discontinue the work, step (rack) back the masonry for joining when work resumes. Tooothing may be used only when specifically approved by the Contracting Officer. Before resuming work, remove loose mortar and thoroughly clean the exposed joint. Cover the top of walls subjected to rain or snow with nonstaining waterproof covering or membrane when work is not in process. Extend the covering a minimum of 610 mm 2 feet down on each side of the wall and hold securely in place.

d. Ensure that units being laid and surfaces to receive units are free of water film and frost. Lay solid units in a nonfurrowed full bed of mortar. Bevel mortar for veneer wythes and slope down toward the cavity side. Shove units into place so that the vertical joints are tight. Completely fill vertical joints between solid units with mortar, except where indicated at control, expansion, and isolation joints. Place hollow units so that mortar extends to the depth of the face shell at heads and beds, unless otherwise indicated. Mortar will be permitted to protrude up to 1/2 inch into the space or cells to be grouted. Provide means to prevent mortar from dropping into the space below or clean grout spaces prior to grouting.

d. In multi-wythe construction with collar joints no more than 3/4 inch wide, bring up the inner wythe not more than 16 inches ahead of the outer wythe. Fill collar joints with mortar during the laying of the facing wythe, and filling shall not lag the laying of the facing wythe by back-buttering each unit as it is laid.

3.3.1.1 Jointing

Tool mortar joints when the mortar is thumbprint hard. Tool horizontal joints after tooling vertical joints. Brush mortar joints to remove loose and excess mortar.

3.3.1.1.1 Tooled Joints

Tool mortar joints in exposed exterior and interior masonry surfaces concave
using a jointer that is slightly larger than the joint width so that complete contact is made along the edges of the unit. Perform tooling so that the mortar is compressed and the joint surface is sealed. Use a jointer of sufficient length to obtain a straight and true mortar joint.

3.3.1.1.2 Flush Joints

Flush cut mortar joints in concealed masonry surfaces and joints at electrical outlet boxes in wet areas. Finish flush cut joints by cutting off the mortar flush with the face of the wall. Point joints in unparged masonry walls below grade tight. For architectural units, such as fluted units, completely fill both the head and bed joints and flush cut.

3.3.1.1.3 Door and Window Frame Joints

On the exposed interior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch. On the exterior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch.

3.3.1.1.4 Joint Widths

a. Construct brick masonry with mortar joint widths equal to the difference between the specified and nominal dimensions of the unit, within tolerances permitted by TMS MSJC.

b. Provide 3/8 inch wide mortar joints in concrete masonry, except for prefaced concrete masonry units.

c. Provide 3/8 inch wide mortar joints on unfaced side of prefaced concrete masonry units and not less than 3/16 inch nor more than 1/4 inch wide on prefaced side.

d. Maintain mortar joint widths within tolerances permitted by TMS MSJC

3.3.1.2 Cutting and Fitting

Use full units of the proper size wherever possible, in lieu of cut units. Locate cut units where they would have the least impact on the architectural aesthetic goals of the facility. Perform cutting and fitting, including that required to accommodate the work of others, by masonry mechanics using power masonry saws. Concrete masonry units may be wet or dry cut. Before being placed in the work, dry wet-cut units to the same surface-dry appearance as uncut units being laid in the wall. Provide cut edges that are clean, true and sharp.

a. Carefully make openings in the masonry so that wall plates, cover plates or escutcheons required by the installation will completely conceal the openings and will have bottoms parallel with the masonry bed joints. Provide reinforced masonry lintels above openings over 12 inches wide for pipes, ducts, cable trays, and other wall penetrations, unless steel sleeves are used.

b. Do not reduce masonry units in size by more than one-third in height and one-half in length. Do not locate cut products at ends of walls, corners, and other openings.
3.3.1.3 Unfinished Work

Rack back unfinished work for joining with new work. Tooothing may be resorted to only when specifically approved by the Contracting Officer. Remove loose mortar and thoroughly clean the exposed joints before laying new work.

3.3.1.4 Clay Masonry Expansion Joints

Provide clay masonry expansion joints as indicated. Construct by leaving a gap. Ensure that no mortar or other noncompressible materials are within the joint. Install backer rod and sealant in accordance with Section 07 92 00 JOINT SEALANTS.

3.3.1.5 Control Joints

Provide control joints in concrete masonry as indicated. Construct by using open end stretcher units placed with the closed end at the joint in accordance with the details shown on the Drawings. Form a continuous vertical joint at control joint locations, including through bond beams, by utilizing half blocks in alternating courses on each side of the joint. Interrupt the control joint key in courses containing continuous bond beam reinforcement. Do not interrupt the horizontal reinforcement and grout at the control joint.

Where mortar was placed in the joint, rake both faces of the control joints to a depth of 3/4 inch. Install backer rod and sealant on both faces in accordance with Section 07 92 00 JOINT SEALANTS.

3.3.1.6 Decorative Architectural Units

Place decorative masonry units with the patterned face shell properly aligned in the completed wall.

3.3.2 Clay or Shale Brick Masonry

3.3.2.1 Brick Placement

Blend all brick at the jobsite from several cubes to produce a uniform appearance when installed. An observable "banding" or "layering" of colors or textures caused by improperly mixed brick is unacceptable. Lay brick facing with the better face exposed. Lay brick in running bond with each course bonded at corners, unless otherwise indicated. Lay molded brick with the frog side down. Do not lay brick that is cored, recessed, or has other deformatons in a manner that allows those deformations to be exposed to view; lay 100 percent solid units in these areas. Completely fill head and bed joints of solid units with mortar. Lay hollow units with mortar joints as specified for concrete masonry units.

Place exterior face of salvaged bricks towards the exterior.

3.3.2.2 Wetting of Units

Wetting of clay, shale brick, or hollow brick units having an initial rate of absorption of more than 1 gram per minute per square inch of bed surface shall be in conformance with ASTM C67. Ensure that each unit is nearly saturated when wetted but surface dry when laid.

Test clay or shale brick daily on the job, prior to laying, as follows:
Using a wax pencil, draw a circle the size of a quarter on five randomly selected bricks. Apply 20 drops of water with a medicine dropper to the surface within the circle on each brick. If the average time that the water is completely absorbed in the five bricks is less than 1-1/2 minutes, wet bricks represented by the five bricks tested.

3.3.2.3 Brick Sills

Lay brick on edge, slope not less than 3/4 inch downward to the outside, and project not less than 1/2 inch beyond the face of the wall to form a wash and drip. Fill all joints solidly with mortar and tool.

3.3.2.4 Partitions

a. Construct partitions continuous from floor to underside of floor or roof deck where shown. Fill openings in firewalls around joists and other structural members as indicated or approved. Where suspended ceilings on both sides of partitions are indicated, the partitions other than those shown to be continuous may be stopped approximately 4 inches above the ceiling level. Construct an isolation joint in the intersection between partitions and structural or exterior walls.

b. Tie interior partitions having 4 inch nominal thickness units to intersecting partitions of 4 inch units, 5 inches into partitions of 6 inch units, and 7 inches into partitions of 8 inch or thicker units. Cells within vertical plane of ties shall be filled solid with grout for full height of partition or solid masonry units may be used. Tie interior partitions over 4 inches thick together with joint reinforcement. Provide joint reinforcement with prefabricated pieces at corners and intersections of partitions.

c. Double-Faced Bases or Partitions: Construct double-faced clay unit bases and partitions of two-unit construction. Bond units by overlapping from opposite faces of the wall, 2 inches for 6 inch thick partitions and 4 inches for 8 inch thick or greater. A single wythe prefaced concrete masonry base or partition may be made with double faced units.

3.3.3 Anchored Veneer Construction

a. Construct exterior masonry wythes to the thickness indicated on the drawings. Provide an air space behind the masonry veneer as indicated. Provide means to ensure that the cavity space and flashings are kept clean of mortar droppings and other loose debris. Maintain chases and raked-out joints free from mortar and debris.

b. Place masonry in running bond pattern.

c. For veneer over stud framing, do not install veneer until the exterior sheathing, moisture barrier, veneer anchors and flashing have been installed on the backing. Take extreme care to avoid damage to the moisture barrier and flashing during construction of the masonry veneer. Repair or replace portions of the moisture barrier and flashing that are damaged prior to completion of the veneer. Provide a continuous cavity as indicated.

d. For veneer with a masonry backup wythe, lay up both the inner and the outer wythes together except when adjustable joint reinforcement assemblies are approved for use. When both wythes are not brought up
together, install through-wall flashings with the exterior wythe, securing the top edge of the flashing with a termination bar and sealant, or protect flashings that are installed with the interior wythe from damage until they are fully enclosed in the wall.

e. Provide anchors (ties) to connect the veneer to its backing in sufficient quantity to comply with the following requirements: maximum wall area per anchor (tie) of 2.67 sf, and maximum vertical spacing of 16", and maximum horizontal spacing of 24". Provide additional anchors around openings larger than 16 inch in either direction. Space anchors around perimeter of opening at a maximum of 16" on center. Place anchors within 12 inches of openings. Anchors with drips are not permitted.

f. With solid units, embed anchors in mortar joint and extend into the veneer a minimum of 1-1/2 inch, with at least 5/8 inch mortar cover to the outside face.

f. With hollow units, embed anchors in mortar or grout and extend into the veneer a minimum of 1-1/2 inch, with at least 5/8 inch mortar or grout cover to outside face.

3.3.4 Composite Walls

Tie masonry wythes together with joint reinforcement or with unit wall ties. Embed wall ties at least 1-1/2 inch into mortar of solid units and at least 1/2 inch into the mortar of the outer face shell of hollow units. Provide at least one tie every 2.67 square feet for wire size W1.7 and at least one tie every 4.50 square feet for wire size W2.8. Space ties at a maximum of 36 inches horizontally and 24 inches vertically. Do not cross expansion joints or control joints with ties. Fill collar joints between masonry facing and masonry backup solidly with grout.

3.3.5 Reinforced, Single Wythe Concrete Masonry Units Walls

3.3.5.1 Concrete Masonry Unit Placement

a. Fully bed units used to form piers, pilasters, columns, starting courses on footings, solid foundation walls, lintels, and beams, and where cells are to be filled with grout in mortar under both face shells and webs. Provide mortar beds under both face shells for other units. Mortar head joints for a distance in from the face of the unit not less than the thickness of the face shell.

b. Solidly grout foundation walls below grade.

c. Stiffen double walls at wall-mounted plumbing fixtures by use of strap anchors, two above each fixture and two below each fixture, located to avoid pipe runs, and extending from center to center of each wall within the double wall. Adequately reinforce walls and partitions for support of wall-hung plumbing fixtures when chair carriers are not specified.

3.3.5.2 Preparation for Reinforcement

Lay units in such a manner as to preserve the unobstructed vertical continuity of cores to be grouted. Remove mortar protrusions extending 1/2
inch or more into cells before placing grout. Position reinforcing bars accurately as indicated before placing grout. Where vertical reinforcement occurs, fill cores solid with grout in accordance with paragraph PLACING GROUT in this Section.

3.3.6 ANCHORAGE

3.3.6.1 Anchorage to Concrete

Anchorage of masonry to the face of concrete columns, beams, or walls shall be with wire ladder reinforcing or dovetail anchors spaced not over 16 inches on centers vertically and 24 inches on center horizontally.

3.3.6.2 Anchorage at Intersecting Walls

Provide wire mesh anchors at maximum 16 inches spacing at intersections of interior non-bearing masonry walls.

Anchor structural masonry walls with as indicated in the drawings, unless the drawings indicate a movement joint at the intersection.

3.3.7 Lintels

3.3.7.1 Masonry Lintels

Construct masonry lintels with lintel units filled solid with grout in all courses and reinforced with a minimum of two No. 5 bars in the bottom course unless otherwise indicated. Extend lintel reinforcement beyond each side of masonry opening 40 bar diameters or 24 inches, whichever is greater. Support reinforcing bars in place prior to grouting and locate 1/2 inch above the bottom inside surface of the lintel unit.

3.3.7.2 Precast Concrete and Steel Lintels

Provide precast concrete and steel lintels as shown on the Drawings. Set lintels in a full bed of mortar with faces plumb and true. Provide steel and precast lintels with a minimum bearing length of 8 inches unless otherwise indicated. In partially grouted masonry, provide fully grouted units under the full lintel bearing length, unless otherwise indicated.

3.3.8 Sills and Copings

Set sills and copings in a full bed of mortar with faces plumb and true. Slope sills and copings to drain water. Mechanically anchor copings and sills longer than 4 feet as indicated.

3.4 INSTALLATION

3.4.1 Bar Reinforcement Installation

3.4.1.1 Preparation

Clean reinforcement of loose, flaky rust, scale, grease, mortar, grout, and other coatings that might destroy or reduce its bond prior to placing grout. Do not use bars with kinks or bends not shown on the approved shop drawings. Place reinforcement prior to grouting. Unless otherwise indicated, extend vertical wall reinforcement to within 2 inches of tops of
3.4.1.2 Positioning Bars

a. Accurately place vertical bars within the cells at the positions indicated on the drawings. A minimum clearance of 1/2 inch shall be maintained between the bars and masonry units. Provide minimum clearance between parallel bars of 1/2 inch between the bars and masonry units for coarse grout and a minimum clearance of 1/4 inch between the bars and masonry units for fine grout. Provide minimum clearance between parallel bars of 1 inch or one diameter of the reinforcement, whichever is greater. Vertical reinforcement may be held in place using bar positioners located near the ends of each bar and at intermediate intervals of not more than 192 diameters of the reinforcement or by other means to prevent displacement beyond permitted tolerances. As masonry work progresses, secure vertical reinforcement to prevent displacement beyond allowable tolerances.

b. Wire column and pilaster lateral ties in position around the vertical reinforcing bars. Place lateral ties in contact with the vertical reinforcement and do not place in horizontal mortar bed joints.

c. Position horizontal reinforcing bars as indicated. Stagger splices in adjacent horizontal bars, unless otherwise indicated.

d. Form splices by lapping bars as indicated. Do not cut, bend or eliminate reinforcing bars. Foundation dowel bars may be field-bent when permitted by TMS MSJC.

3.4.1.3 Splices of Bar Reinforcement

Lap splice reinforcing bars as indicated. When used, provide welded or mechanical connections that develop at least 125 percent of the specified yield strength of the reinforcement.

3.4.2 Placing Grout

3.4.2.1 General

Fill cells containing reinforcing bars with grout. Solidly grout hollow masonry units in walls or partitions supporting plumbing, heating, or other mechanical fixtures, voids at door and window jambs, and other indicated spaces. Solidly grout cells under lintel bearings on each side of openings for full height of openings. Solidly grout walls below grade, lintels, and bond beams. Units other than open end units may require grouting each course to preclude voids in the units.

Discard site-mixed grout that is not placed within 1-1/2 hours after water is first added to the batch or when the specified slump is not met without adding water after initial mixing. Discard ready-mixed grout that does not meet the specified slump without adding water other than water that was added at the time of initial discharge. Allow sufficient time between grout lifts to preclude displacement or cracking of face shells of masonry units. Provide a grout shear key between lifts when grouting is delayed and the lower lift loses plasticity. If blowouts, flowouts, misalignment, or cracking of face shells should occur during construction, tear down the wall and rebuild.
3.4.2.2 Horizontal Grout Barriers

Embed horizontal grout barriers in mortar below cells of hollow units receiving grout.

3.4.2.3 Grout Holes and Cleanouts

3.4.2.3.1 Grout Holes

Provide grouting holes in slabs, spandrel beams, and other in-place overhead construction. Locate holes over vertical reinforcing bars or as required to facilitate grout fill in bond beams. Provide additional openings spaced not more than 16 inches on centers where grouting of hollow unit masonry is indicated. From such openings not less than 4 inches in diameter or 3 by 4 inches in horizontal dimensions. Upon completion of grouting operations, plug and finish grouting holes to match surrounding surfaces.

3.4.2.3.2 Cleanouts for Hollow Unit Masonry Construction

For hollow masonry units, provide cleanout holes at the bottom of every grout pour in cores containing vertical reinforcement when the height of the grout pour exceeds 5 feet 4 inches. Where all cells are to be grouted, construct cleanout courses using bond beam units in an inverted position to permit cleaning of all cells. Provide cleanout holes at a maximum spacing of 32 inches where all cells are to be filled with grout.

Establish a new series of cleanouts if grouting operations are stopped for more than 4 hours. Provide cleanouts not less than 3 by 3 inch by cutting openings in one face shell. Manufacturer's standard cutout units may be used at the Contractor's option. Do not cleanout holes until masonry work, reinforcement, and final cleaning of the grout spaces have been completed and inspected. For walls which will be exposed to view, close cleanout holes in an approved manner to match surrounding masonry.

3.4.2.4 Grout Placement

A grout pour is the total height of masonry to be grouted prior to erection of additional masonry. A grout lift is an increment of grout placement within a grout pour. A grout pour is filled by one or more lifts of grout.

a. Lay masonry to the top of a pour permitted by TMS MSJC Table 7, based on the size of the grout space and the type of grout. Prior to grouting, remove masonry protrusions that extend 1/2 inch or more into cells or spaces to be grouted. Provide grout holes and cleanouts in accordance with paragraph GROUT HOLES AND CLEANOUTS above when the grout pour height exceeds 5 feet 4 inches. Hold reinforcement, bolts, and embedded connections rigidly in position before grouting is started. Do not prewet concrete masonry units.

b. Place grout using a hand bucket, concrete hopper, or grout pump to fill the grout space without segregation of aggregate. Operate grout pumps to produce a continuous stream of grout without air pockets, segregation, or contamination.

c. If the masonry has cured at least 4 hours, grout slump is maintained between 10 to 11 inches, and no intermediate reinforced bond beams are placed between the top and bottom of the pour height, place conventional grout in lifts not exceeding 12 feet 8 inches. For the
same curing and slump conditions but with intermediate bond beams, limit conventional grout lift to the bottom of the lowest bond beam that is more than 5 feet 4 inches above the bottom of the lift, but do not exceed 12 feet 8 inches. If masonry has not cured at least 4 hours or grout slump is not maintained between 10 to 11 inches, place conventional grout in lifts not exceeding 5 feet 4 inches.

d. Consolidate conventional grout lift and reconsolidate after initial settlement before placing next lift. For grout pours that are 12 inches or less in height, consolidate and reconsolidate grout by mechanical vibration or puddling. For grout pours that are greater than 12 inches in height, consolidate and reconsolidate grout by mechanical vibration. Apply vibrators at uniformly spaced points not further apart than the visible effectiveness of the machine. Limit duration of vibration to time necessary to produce satisfactory consolidation without causing segregation. If previous lift is not permitted to set, dip vibrator into previous lift. Do not insert vibrators into lower lifts that are in a semi-solidified state. If lower lift sets prior to placement of subsequent lift, form a grout key by terminating grout a minimum of 1-1/2 inch below a mortar joint. Vibrate each vertical cell containing reinforcement in partially grouted masonry. Do not form grout keys within beams.

e. If the masonry has cured 4 hours, place self-consolidating grout (SCG) in lifts not exceeding the pour height. If masonry has not cured for at least 4 hours, place SCG in lifts not exceeding 5 feet 4 inches. Do not mechanically consolidate self-consolidating grout. Place self-consolidating grout in accordance with manufacturer's recommendations.

f. Upon completion of each day's grouting, remove waste materials and debris from the equipment, and dispose of outside the masonry.

3.4.3 Joint Reinforcement Installation

Install joint reinforcement at 16 inches on center unless otherwise indicated. Lap joint reinforcement not less than 6 inches. Install prefabricated sections at corners and wall intersections. Place the longitudinal wires of joint reinforcement in mortar beds to provide not less than 5/8 inch cover to either face of the unit.

3.4.4 Bond Beams

Reinforce and grout bond beams as indicated and as described in paragraphs above. Install grout barriers under bond beam units to retain the grout as required, unless wall is fully grouted or solid bottom units are used. For high lift grouting in partially grouted masonry, provide grout retaining material on the top of bond beams to prevent upward flow of grout. Ensure that reinforcement is continuous, including around corners, except through control joints or expansion joints, unless otherwise indicated.

3.4.5 Flashing and Weeps

Install through-wall flashing at obstructions in the cavity and where indicated on Drawings. Ensure continuity of the flashing at laps and inside and outside corners by splicing in a manner approved by the flashing manufacturer. Ensure that the top edge of the flashing is sealed by turning the flashing 1/2 inch into the mortar bed joint of backup masonry. Terminate the horizontal leg of the flashing extending the fabric flashing
beyond the outside face of masonry and, when construction is complete, cutting the flashing flush with the face of masonry. Provide sealant below the drip edge of through-wall flashing.

Wherever through-wall flashing occurs, provide weep holes to drain flashing to exterior at acceptable locations as indicated. Provide weeps of open head joints. Locate weeps not more than 24 inches on centers in mortar joints of the exterior wythe directly on the horizontal leg of through-wall flashing over foundations, bond beams, and any other horizontal interruptions of the cavity. Place weep holes perfectly horizontal or slightly canted downward to encourage water drainage outward and not inward. Other methods may be used for providing weeps when spacing is reduced to 16 inches on center and approved by the Contracting Officer. Maintain weeps free of mortar and other obstructions.

3.5 APPLICATION

3.5.1 Insulation

Insulate cavity walls (multi-wythe noncomposite masonry walls), where shown, by installing board-type insulation on the cavity side of the inner wythe. Apply board type insulation directly to the masonry or thru-wall flashing with adhesive. Neatly fit insulation between obstructions without impaling insulation on ties or anchors. Apply insulation in parallel courses with vertical joints breaking midway over the course below and in moderate contact with adjoining units without forcing. Cut to fit neatly against adjoining surfaces. Tape or seal the joints between the boards.

3.5.2 Interface with Other Products

3.5.2.1 Built-In Items

Fill spaces around built-in items with mortar. Point openings around flush-mount electrical outlet boxes in wet locations with mortar. Embed anchors, ties, wall plugs, accessories, flashing, pipe sleeves and other items required to be built-in as the masonry work progresses. Fully embed anchors, ties and joint reinforcement in the mortar. Fill cells receiving anchor bolts and cells of the first course below bearing plates with grout, unless otherwise indicated.

3.5.2.2 Door and Window Frame Joints

On the exposed interior and exterior sides of exterior frames, rake joints between frames and abutting masonry walls to a depth of 3/8 inch.

3.5.3 Tolerances

Lay masonry plumb, true to line, with courses level within the tolerances of TMS MSJC, Article 3.3 F.

3.6 FIELD QUALITY CONTROL

3.6.1 Tests

3.6.1.1 Field Testing of Mortar

Perform mortar testing at the following frequency: 2 times per day. For each required mortar test, provide a minimum of three mortar samples. Perform initial mortar testing prior to construction for comparison.
purposes during construction.

Prepare and test mortar samples for mortar aggregate ratio in accordance with ASTM C780.

3.6.1.2 Field Testing of Grout

a. Perform grout testing at the following frequency: 2 times per day. For each required grout property to be evaluated, provide a minimum of three specimens.

b. Sample and test conventional and self-consolidating grout for compressive strength and temperature in accordance with ASTM C1019.

c. Evaluate slump in conventional grout in accordance with ASTM C1019.

d. Evaluate slump flow and visual stability index of self-consolidating grout in accordance with ASTM C1611/C1611M.

3.6.1.3 Clay Brick Efflorescence Test

Test clay brick that will be exposed to weathering for efflorescence in accordance with ASTM C67. Schedule tests far enough in advance of starting masonry work to permit retesting if necessary. Units meeting the definition of "effloresced" are subject to rejection.

3.7 POINTING AND CLEANING

After mortar joints have attained their initial set, but prior to hardening, completely remove mortar and grout daubs and splashings from masonry-unit surfaces that will be exposed or painted. Before completion of the work, rake out defects in joints of masonry to be exposed or painted, fill with mortar, and tool to match existing joints. Immediately after grout work is completed, remove scum and stains that have percolated through the masonry work using a low pressure stream of water and a stiff bristled brush. Do not clean masonry surfaces, other than removing excess surface mortar, until mortar in joints has hardened. Leave masonry surfaces clean, free of mortar daubs, dirt, stain, and discoloration, including scum from cleaning operations, and with tight mortar joints throughout. Do not use metal tools and metal brushes for cleaning.

3.7.1 Dry-Brushing Concrete Masonry

Dry brush exposed concrete masonry surfaces at the end of each day's work and after any required pointing, using stiff-fiber bristled brushes.

3.7.2 Clay Brick Surfaces

Clean exposed clay brick masonry surfaces to obtain surfaces free of stain, dirt, mortar and grout daubs, efflorescence, and discoloration or scum from cleaning operations. Perform cleaning in accordance with the approved cleaning procedure demonstrated on the mockup.

After cleaning, examine the sample panel of similar material for discoloration or stain as a result of cleaning. If the sample panel is discolored or stained, change the method of cleaning to ensure that the masonry surfaces in the structure will not be adversely affected. Water-soak exposed masonry surfaces and then clean with a proprietary masonry cleaning agent specifically recommended for the color and texture...
by the clay brick manufacturer and manufacturer of the cleaning product. Apply the solution with stiff fiber brushes, followed immediately by thorough rinsing with clean water. Use proprietary cleaning agents in conformance with the cleaning product manufacturer's printed recommendations. Remove efflorescence in conformance with the brick manufacturer's recommendations.

3.8 PROTECTION

Protect facing materials against staining. Cover top of walls with nonstaining waterproof covering or membrane to protect from moisture intrusion when work is not in progress. Continue covering the top of the unfinished walls until the wall is waterproofed with a complete roof or parapet system. Extend covering a minimum of 2 feet down on each side of the wall and hold securely in place. Before starting or resuming work, clean top surface of masonry in place of loose mortar and foreign material.

-- End of Section --
SECTION 05 50 13

MISCELLANEOUS METAL FABRICATIONS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)

ASSE/SAFE A10.3 (2013) Operations - Safety Requirements for Powder Actuated Fastening Systems

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASME INTERNATIONAL (ASME)

ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASTM INTERNATIONAL (ASTM)

Steel Products

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A653/A653M</td>
<td>(2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process</td>
</tr>
<tr>
<td>ASTM A924/A924M</td>
<td>(2016a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process</td>
</tr>
<tr>
<td>ASTM C1513</td>
<td>(2013) Standard Specification for Steel Tapping Screws for Cold-Formed Steel Framing Connections</td>
</tr>
<tr>
<td>ASTM D1187/D1187M</td>
<td>(1997; E 2011; R 2011) Asphalt-Base Emulsions for Use as Protective Coatings for Metal</td>
</tr>
</tbody>
</table>

Master Painters Institute (MPI)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI 79</td>
<td>(Oct 2009) Alkyd Anti-Corrosive Metal Primer</td>
</tr>
</tbody>
</table>

Society for Protective Coatings (SSPC)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPC SP 3</td>
<td>(1982; E 2004) Power Tool Cleaning</td>
</tr>
<tr>
<td>SSPC SP 6/NACE No.3</td>
<td>(2007) Commercial Blast Cleaning</td>
</tr>
</tbody>
</table>
1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Embedded Angles and Plates, Installation Drawings; G Roof Hatch;

Submit fabrication drawings showing layout(s), connections to structural system, and anchoring details as specified in AISC 303.

Submit templates, erection and installation drawings indicating thickness, type, grade, class of metal, and dimensions. Show construction details, reinforcement, anchorage, and installation with relation to the building construction.

SD-03 Product Data

Access Doors and Panels

Roof Hatch

1.3 QUALIFICATION OF WELDERS

Qualify welders in accordance with AWS D1.1/D1.1M. Use procedures, materials, and equipment of the type required for the work.

1.4 DELIVERY, STORAGE, AND PROTECTION

Protect from corrosion, deformation, and other types of damage. Store items in an enclosed area free from contact with soil and weather. Remove and replace damaged items with new items.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Structural Carbon Steel

ASTM A36/A36M.

2.1.2 Anchor Bolts

ASTM A307. Where exposed, shall be of the same material, color, and finish as the metal to which applied.

2.1.2.1 Expansion Anchors

As indicated in the drawings.

2.1.2.2 Lag Screws and Bolts

ASME B18.2.1, type and grade best suited for the purpose.
2.1.2.3 Toggle Bolts
ASME B18.2.1.

2.1.2.4 Bolts, Nuts, Studs and Rivets
ASME B18.2.2 or ASTM A307.

2.1.2.5 Powder Actuated Fasteners
Follow safety provisions of ASSE/SAFE A10.3.

2.1.2.6 Screws
ASME B18.2.1, ASME B18.6.2, ASME B18.6.3 and ASTM C1513.

2.1.2.7 Washers
Provide plain washers to conform to ASME B18.21.1. Provide beveled washers for American Standard beams and channels, square or rectangular, tapered in thickness, and smooth. Provide lock washers to conform to ASME B18.21.1.

2.1.3 Aluminum Alloy Products
Conform to ASTM B209 for sheet plate, ASTM B221 for extrusions and ASTM B26/B26M or ASTM B108/B108M for castings, as applicable. Provide aluminum extrusions at least 1/8 inch thick and aluminum plate or sheet at least 0.050 inch thick.

2.2 FABRICATION FINISHES

2.2.1 Galvanizing
Hot-dip galvanize items specified to be zinc-coated, after fabrication where practicable. Galvanizing: ASTM A123/A123M, ASTM A153/A153M, ASTM A653/A653M or ASTM A924/A924M, G90, as applicable.

2.2.2 Galvanize
Anchor bolts, grating fasteners, washers, and parts or devices necessary for proper installation, unless indicated otherwise.

2.2.3 Repair of Zinc-Coated Surfaces
Repair damaged surfaces with galvanizing repair method and paint conforming to ASTM A780/A780M or by application of stick or thick paste material specifically designed for repair of galvanizing, as approved by Contracting Officer. Clean areas to be repaired and remove slag from welds. Heat surfaces to which stick or paste material is applied, with a torch to a temperature sufficient to melt the metallics in stick or paste; spread molten material uniformly over surfaces to be coated and wipe off excess material.

2.2.4 Shop Cleaning and Painting

2.2.4.1 Surface Preparation
Blast clean surfaces in accordance with SSPC SP 6/NACE No.3. Surfaces that will be exposed in spaces above ceiling or in attic spaces, crawl spaces,
furred spaces, and chases may be cleaned in accordance with SSPC SP 3 in lieu of being blast cleaned. Wash cleaned surfaces which become contaminated with rust, dirt, oil, grease, or other contaminants with solvents until thoroughly clean. Steel to be embedded in concrete shall be free of dirt and grease. Do not paint or galvanize bearing surfaces, including contact surfaces within slip critical joints, but coat with rust preventative applied in the shop.

2.2.4.2 Pretreatment, Priming and Painting

Apply pretreatment, primer, and paint in accordance with manufacturer's printed instructions.

2.2.5 Nonferrous Metal Surfaces

Protect by plating, anodic, or organic coatings.

2.2.6 Aluminum Surfaces

2.2.6.1 Surface Condition

Before finishes are applied, remove roll marks, scratches, rolled-in scratches, kinks, stains, pits, orange peel, die marks, structural streaks, and other defects which will affect uniform appearance of finished surfaces.

2.2.6.2 Aluminum Finishes

Unexposed sheet, plate and extrusions may have mill finish as fabricated. Sandblast castings' finish, medium, AA DAF45. Unless otherwise specified, provide all other aluminum items with a standard mill finish. Provide a coating thickness not less than that specified for protective and decorative type finishes for items used in interior locations or architectural Class I type finish for items used in exterior locations in AA DAF45. Provide a polished satin finish on items to be anodized.

2.3 ACCESS DOORS AND PANELS

Provide flush type access doors and panels unless otherwise indicated. Fabricate frames for access doors of steel not lighter than 14 gage with welded joints and anchorage for securing into construction. Provide access doors with a minimum of 14 by 20 inches and of not lighter than 14 gage steel, with stiffened edges and welded attachments. Provide access doors hinged to frame and with a flush-face, turn-screw-operated latch. Provide exposed metal surface with a baked enamel finish.

Provide ceiling access panels for terminal air blenders as indicated. Provide pin-tumbler cylinder locks with appropriate cams in lieu of screwdriver-operated latches.

2.4 MISCELLANEOUS PLATES AND SHAPES

Provide for items that do not form a part of the structural steel framework, such as lintels, sill angles, miscellaneous mountings and frames. Provide lintels fabricated from structural steel shapes over openings in masonry walls and partitions as indicated and as required to support wall loads over openings. Provide with connections and fasteners. Construct to have at least 8 inches bearing on masonry at each end.

Provide angles and plates, ASTM A36/A36M, for embedment as indicated.
Galvanize embedded items exposed to the elements according to ASTM A123/A123M.

2.5 ROOF HATCH (SCUTTLES)

Provide aluminum roof hatch with 3 inch beaded flange, fully welded and ground at corner. Provide a minimum clear opening of 36 by 36 inches. Construction and accessories as follows:

a. Insulate cover and curb with one inch thick rigid fiberboard insulation covered and protected by aluminum sheet with 12 inches high curb, formed with 3 inch mounting flange with holes provided for securing to the roof deck. Equip the curb with an integral metal cap flashing of the same gage and metal as the curb, full welded and ground at corners for weather tightness.

b. Provide hatch completely assembled with pintle hinges, compression spring operators enclosed in telescopic tubes, positive snap latch with turn handles on inside and outside, and neoprene draft seal. Provide fasteners for padlocking on the inside. Equip the cover with an automatic hold-open arm complete with grip handle to permit one-hand release. Cover action shall be smooth through its entire range with an operating pressure of approximately 30 pounds.

c. Provide fire rated attic access floor hatch per NFPA 251, NFPA 288 and ASTM E119. Cover of 1/4 inch aluminum plate reinforced for 150 psf live load, frame of 1/4 inch extruded aluminum with built in perimeter anchor flange. Both cover and frame shall have intumescent fire coating on the underside/interior surfaces. Hinges shall be continuous heavy-duty type of 316 stainless steel. Proved pneumatic self closing latch which automatically closes, in the event of a fire, using a fusible link. Fire rating and size as indicated.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Install items at locations indicated, according to manufacturer's instructions. Verify all measurements and take all field measurements necessary before fabrication. Exposed fastenings shall be compatible materials, shall generally match in color and finish, and harmonize with the material to which fastenings are applied. Include materials and parts necessary to complete each item, even though such work is not definitely shown or specified. Poor matching of holes for fasteners shall be cause for rejection. Conceal fastenings where practicable. Thickness of metal and details of assembly and supports shall provide strength and stiffness. Form joints exposed to the weather shall be formed to exclude water. Items listed below require additional procedures.

3.2 WORKMANSHIP

Provide miscellaneous metalwork that is well formed to shape and size, with sharp lines and angles and true curves. Drilling and punching shall produce clean true lines and surfaces. Provide continuous welding along the entire area of contact except where tack welding is permitted. Do not tack weld exposed connections of work in place and ground smooth. Provide a smooth finish on exposed surfaces of work in place and unless otherwise approved, flush exposed riveting. Mill joints where tight fits are
required. Corner joints shall be coped or mitered, well formed, and in true alignment. Accurately set work to established lines and elevations and securely fastened in place. Install in accordance with manufacturer's installation instructions and approved drawings, cuts, and details.

3.3 ANCHORAGE, FASTENINGS, AND CONNECTIONS

Provide anchorage where necessary for fastening miscellaneous metal items securely in place. Include for anchorage not otherwise specified or indicated slotted inserts, expansion shields, and powder-driven fasteners, when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; through bolts, lag bolts, and screws for wood. Do not use wood plugs in any material. Provide non-ferrous attachments for non-ferrous metal. Make exposed fastenings of compatible materials, generally matching in color and finish, to which fastenings are applied. Conceal fastenings where practicable.

3.4 BUILT-IN WORK

Form for anchorage metal work built-in with concrete or masonry, or provide with suitable anchoring devices as indicated or as required. Furnish metal work in ample time for securing in place as the work progresses.

3.5 WELDING

Perform welding, welding inspection, and corrective welding, in accordance with AWS D1.1/D1.1M. Use continuous welds on all exposed connections. Grind visible welds smooth in the finished installation.

3.6 FINISHES

3.6.1 Dissimilar Materials

Where dissimilar metals are in contact, protect surfaces with a coat conforming to MPI 79 to prevent galvanic or corrosive action. Where aluminum is in contact with concrete, plaster, mortar, masonry, wood, or absorptive materials subject to wetting, protect with ASTM D1187/D1187M, asphalt-base emulsion.

3.6.2 Field Preparation

Remove rust preventive coating just prior to field erection, using a remover approved by the rust preventive manufacturer. Surfaces, when assembled, shall be free of rust, grease, dirt and other foreign matter.

3.6.3 Environmental Conditions

Do not clean or paint surface when damp or exposed to foggy or rainy weather, when metallic surface temperature is less than 5 degrees F above the dew point of the surrounding air, or when surface temperature is below 45 degrees F or over 95 degrees F, unless approved by the Contracting Officer.

3.7 ACCESS PANELS

Install a removable access panel not less than 12 by 12 inches directly below each valve, flow indicator, damper, or air splitter that is located above the ceiling, other than an acoustical ceiling, and that would otherwise not be accessible.
3.8 CONTROL-JOINT COVERS

Provide covers over control-joints and fasten on one side only with fasteners spaced to give positive contact with wall surfaces on both sides of joint throughout the entire length of cover.

3.9 COVER PLATES AND FRAMES

Install the tops of cover plates and frames flush with floor.

3.10 INSTALLATION OF DOWNSPOUT BOOTS

Secure downspouts to building through integral lips with appropriate fasteners.

-- End of Section --
SECTION 05 52 00

ALUMINUM RAILINGS

08/15

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASTM INTERNATIONAL (ASTM)

1.2 ADMINISTRATIVE REQUIREMENTS

1.2.1 Pre-Installation Meetings

Within 30 days of Contract Award, submit fabrication drawings for the following items:

c. Steel Railings and Handrails
d. Aluminum Railings and Handrails
e. Anchorage and fastening systems

Submit manufacturer's catalog data, including two copies of manufacturers specifications, load tables, dimension diagrams, and anchor details for the following items:

k. Anchorage and fastening systems

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Fabrication Drawings
SD-03 Product Data
Aluminum Railings and Handrails
1.4 QUALITY CONTROL

1.4.1 Welding Procedures

Submit welding procedures testing in accordance with AWS D1.1/D1.1M made in the presence of the Contracting Officer and by an approved testing laboratory at the Contractor's expense.

1.4.2 Welder Qualification

Submit certified welder qualification by tests in accordance with AWS D1.1/D1.1M, or under an equivalent approved qualification test. In addition perform tests on test pieces in positions and with clearances equivalent to those actually encountered. If a test weld fails to meet requirements, make an immediate retest of two test welds and ensure each test weld passes. Failure in the immediate retest will require that the welder be retested after further practice or training and make a complete set of test welds.

PART 2 PRODUCTS

2.1 FABRICATION

Pre-assemble items in the shop to the greatest extent possible. Disassemble units only to the extent necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.

For the fabrication of work exposed to view, use only materials that are smooth and free of surface blemishes, including pitting, seam marks, roller marks, rolled trade names, and roughness. Remove blemishes by grinding, or by welding and grinding, prior to cleaning, treating, and application of surface finishes, including zinc coatings.

Provide railings and handrails detail plans and elevations at not less than 1-inch to 1-foot. Provide details of sections and connections at not less than 3-inches to 1-foot. Also detail setting drawings, diagrams, templates for installation of anchorages, including concrete inserts, anchor bolts, and miscellaneous metal items having integral anchors.

Use materials of size and thicknesses indicated or, if not indicated, of required size and thickness to produce adequate strength and durability in finished product for intended use. Work materials to dimensions indicated on approved detail drawings, using proven details of fabrication and support. Use type of materials indicated or specified for the various components of work.
Form exposed work true to line and level with accurate angles and surfaces and straight sharp edges. Ensure all exposed edges are eased to a radius of approximately 1/32-inch. Bend metal corners to the smallest radius possible without causing grain separation or otherwise impairing the work.

Weld corners and seams continuously and in accordance with the recommendations of AWS D1.1/D1.1M. Grind exposed welds smooth and flush to match and blend with adjoining surfaces.

Form exposed connections with hairline joints that are flush and smooth, using concealed fasteners wherever possible. Use exposed fasteners of the type indicated or, if not indicated, use Phillips flathead (countersunk) screws or bolts.

Provide anchorage of the type indicated and coordinated with the supporting structure. Fabricate anchoring devices and space as indicated and as required to provide adequate support for the intended use of the work.

Use hot-rolled steel bars for work fabricated from bar stock unless work is indicated or specified to be fabricated from cold-finished or cold-rolled stock.

2.1.1 Aluminum Railings

Fabrication: Provide fabrication jointing by one of the following methods:

a. Flush-type rail fittings, welded and ground smooth with splice locks secured with 3/8-inch recessed head set screws.

b. Ensure all mitered and welded joints made by fitting post to top rail, intermediate rail to post, and corners, are groove welded and ground smooth. Provide butted splices, where allowed by the Contracting Officer, reinforced by a tight fitting dowel or sleeve not less than 6 inches in length. Tack weld or epoxy cement dowel or sleeve to one side of the splice.

c. Assemble railings using slip-on aluminum-magnesium alloy fittings for joints. Fasten fittings to pipe or tube with 1/4 or 3/8-inch stainless steel recessed head setscrews. Provide assembled railings with fittings only at vertical supports or at rail terminations attached to walls. Provide expansion joints at the midpoint of panels. Provide a setscrew in only one side of the slip-on sleeve. Provide alloy fittings to conform to ASTM B26/B26M.

2.2 COMPONENTS

2.2.1 Aluminum Railings And Handrails

Provide railings and handrails consisting of, 1-3/4-inch square aluminum semi-hollow tube with rounded corners ASTM B221. Provide mill finish aluminum railings. Ensure all fasteners are Series 300 stainless steel.

PART 3 EXECUTION

3.1 PREPARATION

Adjust stair railings and handrails prior to securing in place to ensure proper matching at butting joints and correct alignment throughout their length. Space posts not more than 6 feet on center. Plumb posts in each
direction. Secure posts and rail ends to building construction as follows:

a. Anchor posts in concrete by means of pipe sleeves set and anchored into concrete. Provide sleeves of galvanized, standard weight, steel pipe, not less than 6-inches long, and having an inside diameter not less than 1/2-inch greater than the outside diameter of the inserted pipe post. Provide steel plate closure secured to the bottom of the sleeve, with closure width and length not less than 1-inch greater than the outside diameter of the sleeve. After posts have been inserted into sleeves, fill the annular space between post and sleeve with molten lead, sulfur, or a quick-setting hydraulic cement. Cover anchorage joint with a round steel flange welded to the post.

Secure handrails to walls by means of wall brackets and wall return fitting at handrail ends. Provide brackets of malleable iron castings, with not less than 3-inch projection from the finish wall surface to the center of the pipe drilled to receive one 3/8-inch bolt. Locate brackets not more than 60-inches on center. Provide wall return fittings of cast iron castings, flush-type, with the same projection as that specified for wall brackets. Secure wall brackets and wall return fittings to building construction as follows:

a. For concrete and solid masonry anchorage, use bolt anchor expansion shields and lag bolts.

b. For hollow masonry and stud partition anchorage, use toggle bolts having square heads.

Install toe boards and brackets where indicated. Make splices, where required, at expansion joints. Install removable sections as indicated.

3.2 INSTALLATION

Submit manufacturer's installation instructions for the following products to be used in the fabrication of railings:

a. Structural steel plates, shapes, and bars
b. Structural steel tubing
c. Cold finished steel bars
d. Hot-Rolled carbon steel bars
e. Cold-Drawn steel tubing
f. Protective coating
g. Masonry anchorage devices
h. Steel railings and handrails
i. Aluminum railings and handrails
j. Anchorage and fastening systems

Provide complete, detailed fabrication and installation drawings for all hardware, and for all shapes, plates, bars and strips used in accordance with the design specifications referenced in this section.
3.2.1 Aluminum Handrail

Affix to base structure by flanges through-bolted to a backing plate. Provide Series 300 stainless steel bolts to anchor aluminum alloy flanges, of a size appropriate to the standard product of the manufacturer. Where aluminum or alloy fittings or extrusions are to be in contact with dissimilar metals or concrete, coat the contact surface a heavy coating of bituminous paint.

3.3 FIELD QUALITY CONTROL

3.3.1 Field Welding

Ensure procedures of manual shielded metal arc welding, appearance and quality of welds made, and methods used in correcting welding work comply with AWS D1.1/D1.1M.

-- End of Section --
This Page is Intentionally Left Blank
SECTION 06 10 00
ROUGH CARPENTRY
08/16

PART 1 GENERAL
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INSTITUTE OF TIMBER CONSTRUCTION (AITC)

AITC 111 (2005) Recommended Practice for Protection of Structural Glued Laminated Timber During Transit, Storage and Erection

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)

AMERICAN WOOD COUNCIL (AWC)

APA - THE ENGINEERED WOOD ASSOCIATION (APA)

APA EWS R540 (2013) Builder Tips: Proper Storage and Handling of Glulam Beams

APA EWS T300 (2007) Technical Note: Glulam Connection Details

APA F405 (19) Product Guide: Performance Rated Panels

APA L870 (2010) Voluntary Product Standard, PS 1-09, Structural Plywood

APA S350 (2014) PS 2-10, Performance Standard for Wood-Based Structural-Use Panels
ASME INTERNATIONAL (ASME)

ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASME B18.5.2.1M (2006; R 2011) Metric Round Head Short Square Neck Bolts

ASME B18.5.2.2M (1982; R 2010) Metric Round Head Square Neck Bolts

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM F547 (2006; R 2012) Nails for Use with Wood and Wood-Base Materials

FM GLOBAL (FM)

FM 4435 (2013) Roof Perimeter Flashing

FOREST STEWARDSHIP COUNCIL (FSC)

FSC STD 01 001 (2000) Principles and Criteria for Forest Stewardship

INTERNATIONAL CODE COUNCIL (ICC)

NATIONAL HARDWOOD LUMBER ASSOCIATION (NHLA)

NHLA Rules (2011) Rules for the Measurement & Inspection of Hardwood & Cypress

NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA)

1.2 DELIVERY AND STORAGE

Deliver materials to the site in an undamaged condition. Store, protect, handle, and install prefabricated structural elements in accordance with manufacturer's instructions and as specified. Store materials off the ground to provide proper ventilation, with drainage to avoid standing water, and protection against ground moisture and dampness. Store materials with a moisture barrier at both the ground level and as a cover forming a well ventilated enclosure. Store wood I-beams and glue-laminated beams and joists on edge. Adhere to requirements for stacking, lifting,
bracing, cutting, notching, and special fastening requirements. Handle and store laminated timber in accordance with AITC 111 or APA EWS R540. Do not use materials that have visible moisture or biological growth. Remove defective and damaged materials and provide new materials. Store separated reusable wood waste convenient to cutting station and area of work.

1.3 GRADING AND MARKING

1.3.1 Lumber

Mark each piece of framing and board lumber or each bundle of small pieces of lumber with the grade mark of a recognized association or independent inspection agency. Such association or agency must be certified by the Board of Review, American Lumber Standards Committee, to grade the species used. Surfaces that are to be exposed to view must not bear grademarks, stamps, or any type of identifying mark. Hammer marking will be permitted on timbers when all surfaces will be exposed to view.

1.3.2 Plywood

Mark each sheet with the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood. The mark must identify the plywood by species group or span rating, exposure durability classification, grade, and compliance with APA L870. Surfaces that are to be exposed to view must not bear grademarks or other types of identifying marks.

1.4 SIZES AND SURFACING

ALSC PS 20 for dressed sizes of yard and structural lumber. Lumber must be surfaced four sides. Size references, unless otherwise specified, are nominal sizes, and actual sizes must be within manufacturing tolerances allowed by the standard under which the product is produced. Other measurements are IP or SI standard.

1.5 MOISTURE CONTENT

Air-dry or kiln-dry lumber. Kiln-dry treated lumber after treatment. Maximum moisture content of wood products must be as follows at the time of delivery to the job site:

a. Framing lumber and board, 19 percent maximum
b. Timbers 5 inches and thicker, 25 percent maximum
c. Roof planking, 15 percent maximum
d. Materials other than lumber; moisture content must be in accordance with standard under which the product is produced

1.6 CERTIFICATIONS

1.6.1 Certified Wood Grades

Provide certificates of grade from the grading agency on graded but unmarked lumber or plywood attesting that materials meet the grade requirements specified herein.
1.6.2 Certified Sustainably Harvested Wood

Provide wood certified as sustainably harvested by FSC STD 01 001. Provide a letter of Certification of Sustainably Harvested Wood signed by the wood supplier. Identify certifying organization and their third party program name and indicate compliance with chain-of-custody program requirements. Submit sustainable wood certification data; identify each certified product on a line item basis. Submit copies of invoices bearing certification numbers.

1.6.3 Indoor Air Quality Certifications

Submit required indoor air quality certifications in one submittal package.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Virgin Lumber

Lumber fabricated from old growth timber is not permitted. Avoid companies who buy, sell, or use old growth timber in their operations, when possible.

2.1.2 Natural Decay- and Insect-Resistant Wood

An occasional piece with corner sapwood is permitted if 90 percent or more of the width of each side on which the sapwood occurs is heartwood.

2.2 LUMBER

2.2.1 Structural Lumber

Except where a specific grade is indicated or specified, Any of the species and grades listed in AWC NDS that have allowable unit stresses in pounds per square inch (psi) not less than 1,500 Fb, 825 Ft, 1,650 Fc, with 1,600,000 E. Use for joists, rafters, headers, trusses, beams (except collar beams), columns, posts, stair stringers, girders, and all other members indicated to be stress rated. Design of members and fastenings must conform to AITC TCM. Other stress graded or dimensioned items such as blocking, carriages, and studs must be standard or No. 2 grade except that studs may be Stud grade.

2.2.2 Framing Lumber

Framing lumber such as studs, plates, caps, collar beams, cant strips, bucks, sleepers, nailing strips, and nailers and board lumber such as subflooring and wall and roof sheathing must be one of the species listed in the table below. Minimum grade of species must be as listed.
<table>
<thead>
<tr>
<th>Grading Rules</th>
<th>Species</th>
<th>Framing</th>
<th>Board Lumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCLIB 17 standard grading rules</td>
<td>Douglas Fir-Larch, Hem-Fir, Mountain Hemlock, Sitka Spruce, Western Cedars, Western Hemlock</td>
<td>All Species: Standard Light Framing or No. 3 Structural Light Framing (Stud Grade for 2x4 nominal size, 10 feet and shorter)</td>
<td>All Species: Standard</td>
</tr>
<tr>
<td>Grading Rules</td>
<td>Species</td>
<td>Framing</td>
<td>Board Lumber</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>SPIB 1003 standard grading rules</td>
<td>Southern Pine</td>
<td>All Species: Standard Light Framing or No. 3 Structural Light Framing (Stud Grade for 2x4 nominal size, 10 feet and shorter)</td>
<td>No. 2 Boards</td>
</tr>
<tr>
<td>SCMA Spec standard specifications</td>
<td>Cypress</td>
<td>No. 2 Common</td>
<td>No. 2 Common</td>
</tr>
<tr>
<td>NELMA Grading Rules standard grading rules</td>
<td>Balsam Fir, Eastern Hemlock-Tamarack, Eastern Spruce, Eastern White Pine, Northern Pine, Northern Pine-Cedar</td>
<td>All Species: Standard Light Framing or No. 3 Structural Light Framing (Stud Grade for 2x4 nominal size, 10 feet and shorter)</td>
<td>All Species: No. 3 Common except Standard for Eastern White and Northern Pine</td>
</tr>
<tr>
<td>RIS Grade Use standard specifications</td>
<td>Redwood</td>
<td>All Species: Standard Light Framing or No. 3 Structural Light Framing (Stud Grade for 2x4 nominal size, 10 feet and shorter)</td>
<td>Construction Heart</td>
</tr>
</tbody>
</table>
Table of Grades for Framing and Board Lumber

<table>
<thead>
<tr>
<th>Grading Rules</th>
<th>Species</th>
<th>Framing</th>
<th>Board Lumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHLA Rules rules for the measurement and inspection of hardwood and cypress</td>
<td>Cypress</td>
<td>No. 2 Dimension</td>
<td>No. 2 Common</td>
</tr>
<tr>
<td>lumber</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 PLYWOOD, STRUCTURAL-USE, AND ORIENTED STRAND BOARD (OSB) PANELS

APA L870,APA S350,APA E445, and APA F405 respectively.

2.3.1 Subflooring

2.3.1.1 Plywood

C-D Grade, Exposure 1 durability classification, Span rating of 48/24 or greater.

2.3.2 Roof Sheathing

2.3.2.1 Plywood

C-D Grade, Exposure 1, with an Identification Index of not less than 24/0. Provide exterior grade material with phenol resin for all applications.

2.3.2.2 Structural-Use Panel

Sheathing grade with durability equivalent to Exposure 1, Span Rating of 24/0 or greater.

2.3.3 Diaphragms

2.3.3.1 Plywood

Structural I, C-C grade, Exposure 1, and a minimum thickness of 3/4 inch.

2.3.4 Other Uses

2.4 OTHER MATERIALS

2.4.1 Building Paper

FS UU-B-790, Type I, Grade D, Style 1.

2.5 ROUGH HARDWARE

Unless otherwise indicated or specified, rough hardware must be of the type and size necessary for the project requirements. Sizes, types, and spacing of fastenings of manufactured building materials UST be as recommended by the product manufacturer unless otherwise indicated or specified. Rough hardware exposed to the weather or embedded in or in contact with...
preservative treated wood, exterior masonry, or concrete walls or slabs must be hot-dip zinc-coated in accordance with ASTM A153/A153M. Nails and fastenings for fire-retardant treated lumber and woodwork exposed to the weather must be copper alloy or hot-dipped galvanized fasteners as recommended by the treated wood manufacturer.

2.5.1 Bolts, Nuts, Studs, and Rivets

ASME B18.2.1, ASME B18.5.2.1M, ASME B18.5.2.2M and ASME B18.2.2.

2.5.2 Anchor Bolts

ASTM A307, size as indicated, complete with nuts and washers.

2.5.3 Expansion Shields

2.5.4 Lag Screws and Lag Bolts

ASME B18.2.1.

2.5.5 Wood Screws

ASME B18.6.1.

2.5.6 Nails

ASTM F547, size and type best suited for purpose. For sheathing and subflooring, length of nails must be sufficient to extend 1 inch into supports. In general, 8-penny or larger nails must be used for nailing through 1 inch thick lumber and for toe nailing 2 inch thick lumber; 16-penny or larger nails must be used for nailing through 2 inch thick lumber. Nails used with treated lumber and sheathing must be hot-dipped galvanized in accordance with ASTM A153/A153M. Nailing must be in accordance with the recommended nailing schedule contained in AWC WFCM. Where detailed nailing requirements are not specified, nail size and spacing must be sufficient to develop an adequate strength for the connection. The connection's strength must be verified against the nail capacity tables in AWC NDS. Reasonable judgment backed by experience must ensure that the designed connection will not cause the wood to split. If a load situation exceeds a reasonable limit for nails, a specialized connector must be used.

2.5.7 Wire Nails

ASTM F1667.

2.5.8 Timber Connectors

Unless otherwise specified, timber connectors must be in accordance with TPI 1, APA EWS T300 or AITC TCM.

2.5.9 Clip Angles

Steel, 1/4 inch thick, size as indicated; or zinc-coated steel or iron commercial clips designed for connecting wood members.
2.5.10 Joist Hangers
Steel or iron, zinc coated, sized to fit the supported member, of sufficient strength to develop the full strength of the supported member in accordance with ICC IBC, and furnished complete with any special nails required.

2.5.11 Tie Straps
For joists supported by the lower flange of steel beams, provide 1/8 by 1-1/2 inch steel strap, 2 feet long, except as indicated otherwise.

2.5.12 Door Buck Anchors
Metal anchors, 1/8 by 1-1/4 inch steel, 12 inches long, with ends bent 2 inches, except as indicated otherwise. Anchors must be screwed to the backs of bucks and built into masonry or concrete. Locate 8 inches above sills and below heads and not more than 24 inches intermediately between.

2.5.13 Toothed Rings and Shear Plates
AWC NDS.

2.5.14 Beam Anchors
Steel U-shaped strap anchors 1/4 inch thick by 1-1/2 inches wide, except as indicated otherwise.

2.5.15 Metal Framing Anchors
Construct anchors to the configuration shown using hot dip zinc-coated steel conforming to ASTM A653/A653M, G90. Except where otherwise shown, Steel must be not lighter than 18 gage. Special nails supplied by the manufacturer must be used for all nailing.

2.5.16 Panel Edge Clips
Extruded aluminum or galvanized steel, H-shaped clips to prevent differential deflection of roof sheathing.

PART 3 EXECUTION
3.1 INSTALLATION
Do not install building construction materials that show visual evidence of biological growth.

Conform to AWC WFCM and install in accordance with the National Association of Home Builders (NAHB) Advanced Framing Techniques: Optimum Value Engineering, unless otherwise indicated or specified. Select lumber sizes to minimize waste. Fit framing lumber and other rough carpentry, set accurately to the required lines and levels, and secure in place in a rigid manner. Space plastic lumber boards as necessary to allow for lengthwise expansion and contraction. Do not splice framing members between bearing points. Set joists, rafters, and purlins with their crown edge up. Frame members for the passage of pipes, conduits, and ducts. Provide adequate support as appropriate to the application, climate, and modulus of elasticity of the product. Do not cut or bore structural members for the passage of ducts or pipes without approval. Reinforce all members damaged...
by such cutting or boring by means of specially formed and approved sheet metal or bar steel shapes, or remove and provide new, as approved. Provide as necessary for the proper completion of the work all framing members not indicated or specified. Spiking and nailing not indicated or specified otherwise must be in accordance with the Nailing Schedule contained in ICC IBC; perform bolting in an approved manner. Spikes, nails, and bolts must be drawn up tight. Install plastic lumber with screws or bolts; if nails are used, use ring shank or spiral shank nails. Timber connections and fastenings must conform to AWC NDS. Use slate or steel shims when leveling joists, beams, and girders on masonry or concrete. Do not use shimming on wood or metal bearings. When joists, beams, and girders are placed on masonry or concrete, a wood base plate must be positioned and leveled with grout. The joist, beam, or girder must then be placed on the plate. When joists, beams, and girders are set into masonry or concrete, a pocket must be formed into the wall. The joist, beam, or girder must then be placed into the pocket and leveled with a steel shim.

3.1.1 Beams and Girders

Set beams and girders level and in alignment and anchor to bearing walls, piers, or supports with U-shaped steel strap anchors. Embed anchors in concrete or masonry at each bearing and through-bolt to the beams or girders with not less than two bolts. Provide bolts not less than 1/2 inch in diameter and with plate washers under heads and nuts. Install beams and girders not indicated otherwise with 8 inch minimum end bearing on walls or supports. Install beams and girders into walls with 1/2 inch clearance at the top, end, and sides or standard steel wall-bearing boxes. Provide joints and splices above bearings only and bolt or spike together.

3.1.2 Joists

Provide joists of the sizes and spacing indicated, accurately and in alignment, and of uniform width. Joists must have full bearing on sills, plates, beams, girders, and trusses; provide laps over bearing only and spike. Where joists are of insufficient length to produce a 12 inch lap, butt joists over bearing and provide wood scabs 2 nominal inches thick by depth of joists by 24 inches long or metal straps 1/4 by 1 1/2 inch by not less than 18 inches long nailed to each joist with not less than four 10-penny nails, or approved sheet metal connectors installed in accordance with the manufacturer's recommendations. Provide joists built into masonry with a beveled fire cut so that the top of the joist does not enter the wall more than one inch or standard steel wall bearing boxes. Provide metal hangers for joists framing into the side of headers, beams, or girders. When a portion of the joist extends above the top flange of a steel beam or girder, provide a 3/8 inch space between the top flange and the extended portion of the joists to allow for shrinkage of joists. The minimum joist end bearing must be 4 inches, and joists built into concrete or masonry must have a 1/2 inch minimum clearance at the top, end, and sides. For joists approved to be bored for the passage of pipes or conduits, bore through the neutral axis of the joist. Provide steel joist hangers of proper size and type to receive the ends of all framed joists.

3.1.2.1 Floor (Ceiling) Framing

Except where otherwise indicated joists must have bearings not less than 4 inches on concrete or masonry and 1-1/2 inches on wood or metal. Joists, trimmers, headers, and beams framing into carrying members at the same relative levels must be carried on joist hangers. Joists must be lapped and spiked together at bearings or butted end-to-end with scab ties at
joint and spiked to plates. Openings in floors must be framed with headers and trimmers. Headers carrying more than two tail joists and trimmers supporting headers carrying more than one tail joist must be doubled, unless otherwise indicated. Joists built into masonry must be provided with a beveled fire cut so that the top of the joist does not enter the wall more than 1 inch or standard steel wall bearing boxes. Install engineered wood joists in accordance with distributor's instructions.

3.1.2.2 Doubled Joists

Provide under bearing walls and partitions running parallel with the floor joists, around stairways, chimneys, fireplaces, and at other openings where joists are cut and framed. Double, space for clearance, block apart 4 feet on center, rigidly frame, and spike together joists under partitions that are to receive ducts, pipes, and conduits.

3.1.2.3 Tie Straps

For joists supported by the lower flange of steel beams, provide straps at every fourth joist and the corresponding fourth joist on the opposite side. Tie joists across the top of the steel beam with a steel strap. Form straps to lie flat across the top of the beam and twist at the ends to provide flat contact with the side of each joist. Nail each strap at each end with three 10-penny nails spaced 2 inches o.c.

3.1.3 Columns and Posts

Set columns and posts, plumb, in alignment, and with full and uniform bearing. Do not embed the bottom and bearing surfaces of posts columns in concrete or set in direct contact with concrete slabs on grade.

3.1.4 Wood Sheathing

Sheathing end joints must be made over framing members and so alternated that there will be at least two boards between joints on the same support. Each board must bear on at least three supports. Boards must be nailed at each support using two nails for boards 6 inches and less in width and three nails for boards more than 6 inches in width. Roof sheathing must not be installed where roof decking is installed.

3.1.5 Building Paper

Provide building paper where indicated. Apply paper shingle fashion, horizontally, beginning at the bottom of the wall. Lap edges 4 inches, and nail with one inch, zinc-coated roofing nails, spaced 12 inches o.c. and driven through tin discs.

3.1.6 Metal Framing Anchors

Provide framing anchors at every rafter or trussed rafter to fasten rafter or trussed rafter to plates and studs against uplift movement and forces as indicated. Anchors must be punched and formed for nailing so that nails will be stressed in shear only. Nails must be zinc-coated; drive a nail in each nail hole provided in the anchor.

3.1.7 Plywood and Structural-Use Panel Roof Sheathing

Install with the grain of the outer plies or long dimension at right angles to supports. Stagger end joints and locate over the centerlines of
supports. Allow 1/8 inch spacing at panel ends and 1/4 inch at panel edges. Nail panels with 8-penny common nails or 6-penny annular rings or screw-type nails spaced 6 inches o.c. at supported edges and 12 inches o.c. at intermediate bearings. Do not use staples in roof sheathing. Where the support spacing exceeds the maximum span for an unsupported edge, provide adequate blocking, tongue-and-groove edges, or panel edge clips, in accordance with APA E30.

3.1.8 Stair Framing

Cut carriages to exact shape required to receive treads and risers, with risers of uniform height and treads of uniform width. Provide trimmers, nailers, and blocking as required to support finish materials.

3.2 MISCELLANEOUS

3.2.1 Wood Roof Nailers, Edge Strips, Crickets, Curbs, and Cants

Provide sizes and configurations indicated or specified and anchored securely to continuous construction.

3.2.1.1 Roof Nailing Strips

Provide roof nailing strips for roof decks as indicated. Apply nailing strips in straight parallel rows in the direction and spacing indicated. Strips must be surface applied.

a. Surface-Applied Nailers: Must be 3 inches wide and of thickness to finish flush with the top of the insulation. Anchor strips securely to the roof deck with powder actuated fastening devices or expansion shields and bolts, spaced not more than 24 inches o.c.

b. Embedded Nailers: Must be nominal 2 by 3 with 2 inch sides beveled. Set and anchor nailers to finish flush with the roof deck surface.

3.2.1.2 Roof Edge Strips and Nailers

Provide at perimeter of roof, around openings through roof, and where roofs abut walls, curbs, and other vertical surfaces. Except where indicated otherwise, nailers must be 6 inches wide and the same thickness as the insulation. Anchor perimeter nailers securely to underlying construction. Anchor perimeter nailers in accordance with FM 4435.

3.2.1.3 Crickets, Cants, and Curbs

Provide wood saddles or crickets, cant strips, curbs for scuttles and ventilators, and wood nailers bolted to tops of concrete or masonry curbs and at expansion joints, as indicated, specified, or necessary and of lumber.

3.2.2 Wood Blocking

Provide proper sizes and shapes at proper locations for the installation and attachment of wood and other finish materials, fixtures, equipment, and items indicated or specified.

3.2.3 Temporary Closures

Provide with hinged doors and padlocks and install during construction at
exterior doorways and other ground level openings that are not otherwise closed. Cover windows and other unprotected openings with polyethylene or other approved material, stretched on wood frames. Provide dustproof barrier partitions to isolate areas as directed.

3.2.4 Temporary Centering, Bracing, and Shoring

Provide for the support and protection of masonry work during construction as specified in Section 04 20 00 UNIT MASONRY.

3.2.5 Wood Sleepers

Run wood sleepers in lengths as long as practicable and stagger end joints in adjacent rows.

3.2.6 Diaphragms

Install plywood, structural-use, or OSB panels with the long dimension parallel to supports. End joints must be staggered and located over the centerline of supports. Longitudinal joints must be continuous and provided with blocking. Nail panels with #8 screws spaced not more than 6 inches on centers around the diaphragm boundaries and along continuous panel edges and 6 inches on centers at all other supported edges and 12 inches o.c. over intermediate bearings.

3.2.7 Corner Bracing

Install corner bracing when required by type of sheathing used or when siding, other than panel siding, is applied directly to studs. Corner bracing must be let into the exterior surfaces of the studs at an angle of approximately 45 degrees, must extend completely over wall plates, and must be secured at each bearing with two nails.

3.3 INSTALLATION OF TIMBER CONNECTORS

Install timber connectors in conformance with requirements of AWC NDS.

3.4 ERECTION TOLERANCES

a. Framing members which will be covered by finishes such as wallboard, plaster, or ceramic tile set in a mortar setting bed, must be within the following limits:

(1) Layout of walls and partitions: 1/4 inch from intended position;
(2) Plates and runners: 1/4 inch in 8 feet from a straight line;
(3) Studs: 1/4 inch in 8 feet out of plumb, not cumulative; and
(4) Face of framing members: 1/4 inch in 8 feet from a true plane.

b. Framing members which will be covered by ceramic tile set in dry-set mortar, latex-portland cement mortar, or organic adhesive must be within the following limits:

(1) Layout of walls and partitions: 1/4 inch from intended position;
(2) Plates and runners: 1/8 inch in 8 feet from a straight line;
(3) Studs: 1/8 inch in 8 feet out of plumb, not cumulative; and

(4) Face of framing members: 1/8 in 8 feet from a true plane.

-- End of Section --
SECTION 06 20 00
FINISH CARPENTRY
02/12

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)

AWPA C20 (2003) Structural Lumber Fire-Retardant Treatment by Pressure Processes
AWPA C27 (2002) Plywood - Fire-Retardant Treatment by Pressure Processes
AWPA M2 (2015) Standard for Inspection of Treated Wood Products
AWPA M4 (2015) Standard for the Care of Preservative-Treated Wood Products

APA - THE ENGINEERED WOOD ASSOCIATION (APA)

APA L870 (2010) Voluntary Product Standard, PS 1-09, Structural Plywood

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

AWI AWS (2nd Edition) Architectural Woodwork Standards

ASME INTERNATIONAL (ASME)

ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASTM INTERNATIONAL (ASTM)

ASTM D2898 (2010) Accelerated Weathering of
1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
1.3 DETAIL DRAWINGS

The Contractor shall submit detail drawings showing fabricated items and special mill and woodwork items. Drawings shall indicate materials and details of construction, methods of fastening, erection, and installation.

1.4 CERTIFICATES

Provide certificates of grade from the grading agency on graded but unmarked lumber or plywood attesting that materials meet the grade requirements specified herein.

Provide certificates of compliance unless materials bear certification markings or statements.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver lumber, plywood, trim, and millwork to job site in an undamaged condition. Stack materials to ensure ventilation and drainage. Protect against dampness before and after delivery. Store materials under cover in a well-ventilated enclosure and protect against extreme changes in temperature and humidity. Do not store products in building until wet trade materials are dry.

1.6 QUALITY ASSURANCE

1.6.1 Lumber

Identify each piece or each bundle of lumber, millwork, and trim by the grade mark of a recognized association or independent inspection agency that is certified by the Board of Review, American Lumber Standards Committee, to grade the species.
1.6.2 Plywood

Each sheet of plywood shall bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of the plywood. Mark shall identify plywood by species group or span rating, and shall show exposure durability classification, grade, and compliance with APA L870.

1.6.3 Hardboard and Particleboard

Materials shall bear a marking or statement identifying the producer and the applicable standard.

1.6.4 Pressure-Treated Lumber and Plywood

Each treated piece shall be inspected in accordance with AWPA M2.

1.6.5 Nonpressure-Treated Woodwork and Millwork

Mark, stamp, or label, indicating compliance with WDMA I.S.4.

1.6.6 Fire-Retardant Treated Lumber

Each piece to bear Underwriters Laboratories label or the label of another nationally recognized independent testing laboratory.

PART 2 PRODUCTS

2.1 WOOD

2.1.1 Sizes and Patterns of Wood Products

Yard and board lumber sizes shall conform to ALSC PS 20. Provide shaped lumber and millwork in the patterns indicated and standard patterns of the association covering the species. Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the applicable standard.

2.1.2 Trim, Finish, and Frames

Provide species and grades listed for materials to be paint finished. Provide materials that are to be stain, natural, or transparent finished one grade higher than that listed. Provide species indicated for materials to be transparent finished. Run trim, except window stools and aprons with hollow backs.
TABLE OF GRADES FOR WOOD TO RECEIVE PAINT FINISH

<table>
<thead>
<tr>
<th>Grading Rules</th>
<th>Species</th>
<th>Exterior and Interior Trim, Finish, and Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCLIB 17 standard grading rules</td>
<td>Douglas Fir-Larch, Hem-Fir, Mountain Hemlock, Sitka Spruce, Western Cedars, Western Hemlock</td>
<td>All Species: C & Btr VG, except A for Western Red Cedar</td>
</tr>
<tr>
<td>SPIB 1003 standard grading rules</td>
<td>Southern Pine</td>
<td>C & Btr</td>
</tr>
<tr>
<td>NHLA Rules</td>
<td>Cypress</td>
<td>C-Select</td>
</tr>
<tr>
<td>RIS Grade Use standard specifications</td>
<td>Redwood</td>
<td>Clear, Clear All Heart</td>
</tr>
<tr>
<td>NHLA Rules</td>
<td>Cypress</td>
<td>B Finish</td>
</tr>
<tr>
<td></td>
<td>Red Gum</td>
<td>Select or BTR (for interior use only)</td>
</tr>
<tr>
<td></td>
<td>Soft Elm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birch</td>
<td></td>
</tr>
</tbody>
</table>

2.1.3 Utility Shelving

Utility shelving shall be a suitable species equal to or exceeding requirements of No. 3 Common white fir under WWPA G-5, 1 inch thick; or plywood, interior type, Grade A-B, 1/2 inch thick, any species group.
2.1.4 Softwood Plywood

APA L870, thicknesses as indicated.

b. Plywood for Shelving: Interior type, A-B Grade, any species group.

2.1.5 Hardwood Plywood

HPVA HP-1, Type II (Interior), Premium (A) Grade, lumber core construction, face veneers of Birch, of thickness indicated.

2.1.6 Hardboard

DOC/NIST PS58, standard type, 1/4 inch thick.

2.2 MOISTURE CONTENT OF WOOD PRODUCTS

Air-dry or kiln-dry lumber. Kiln-dry treated lumber after treatment. Maximum moisture content of wood products at time of delivery to the job site, and when installed, shall be as follows:

b. Interior Finish Lumber, Trim, and Millwork 1-1/4 Inches Nominal or Less in Thickness: 6 percent on 85 percent of the pieces and 8 percent on remainder.

c. Exterior Treated and Untreated Finish Lumber and Trim 4 inches Nominal or Less in Thickness: 19 percent.

e. Moisture content of other materials shall be in accordance with the applicable standards.

2.3 PRESERVATIVE TREATMENT OF WOOD PRODUCTS

2.3.1 Nonpressure Treatment

Treat woodwork and millwork, such as exterior trim, door trim, and window trim, in accordance with WDMA I.S.4, with either 2 percent copper napthenate, 3 percent zinc napthenate, or 1.8 percent copper-8-quinolinolate. Provide a liberal brushcoat of preservative treatment to field cuts and holes.

2.3.2 Pressure Treatment

Lumber and plywood used on the exterior of buildings or in contact with masonry or concrete shall be treated with water-borne preservative listed in AWPA P5 as applicable, and inspected in accordance with AWPA M2. Identify treatment on each piece of material by the quality mark of an agency accredited by the Board of Review of the American Lumber Standards Committee. Plywood shall be treated to a reflection level as follows:

Exterior wood molding and millwork within 18 inches of soil, in contact with water or concrete shall be preservative-treated in accordance with WMMPA WM 6. Exposed areas of treated wood that are cut or drilled after
treatment shall receive a field treatment in accordance with AWPA M4. Items of all-heart material of cedar, cypress, or redwood will not require preservative treatment, except when in direct contact with soil.

2.4 FIRE-RETARDANT TREATMENT

2.4.1 Wood Products

Fire-retardant treated lumber shall be pressure treated in accordance with AWPA C20. Fire-retardant treated plywood shall be pressure treated in accordance with AWPA C27. Material use shall be defined in AWPA C20 and AWPA C27 for Interior Type A and B and Exterior Type. Treatment and performance inspection shall be by a qualified independent testing agency that establishes performance ratings. Each piece or bundle of treated material shall bear identification of the testing agency to indicate performance with such rating. Treated materials to be exposed to rain wetting shall be subjected to an accelerated weathering technique in accordance with ASTM D2898, Method A, prior to being tested for compliance with AWPA C20 or AWPA C27.

2.5 HARDWARE

Provide sizes, types, and spacings of manufactured building materials recommended by the product manufacturer except as otherwise indicated or specified.

2.5.1 Wood Screws

ASME B18.6.1.

2.5.2 Bolts, Nuts, Lag Screws, and Studs

ASME B18.2.1 and ASME B18.2.2.

2.5.3 Nails

Nails shall be the size and type best suited for the purpose and shall conform to ASTM F547. Nails shall be hot-dip galvanized or aluminum when used on exterior work. For siding, length of nails shall be sufficient to extend 1-1/2 inches into supports, including wood sheathing over framing. Screws for use where nailing is impractical shall be size best suited for purpose.

2.5.4 Closet Hanger Rods

Chromium-plated steel rods, not less than 1 inch diameter by 18 gage. Rods may be adjustable with integral mounting brackets if smaller tube is 1 inch by 18 gage. Provide intermediate support bracket for rods more than 48 inches long.

2.6 FABRICATION

2.6.1 Quality Standards (QS)

The terms "Premium," "Custom," and "Economy" refer to the quality grades defined in AWI AWS. Items not specified to be of a specific grade shall be Custom grade. The AWI QS is superseded by all contract document requirements indicated or stated herein.
PART 3 EXECUTION

3.1 FINISH WORK

Provide sizes, materials, and designs as indicated and as specified. Apply primer to finish work before installing. Where practicable, shop assemble and finish items of built-up millwork. Joints shall be tight and constructed in a manner to conceal shrinkage. Miter trim and moldings at exterior angles and cope at interior angles and at returns. Material shall show no warp after installation. Install millwork and trim in maximum practical lengths. Fasten finish work with finish nails. Provide blind nailing where practicable. Set face nails for putty stopping.

3.1.1 Exterior Finish Work

3.1.2 Interior Finish Work

After installation, sand exposed surfaces smooth. Provide window and door trim in single lengths.

3.2 SHELVING

1 inch nominal thick wood shelf material or 3/4 or 23/32 inch thick plywood shelf material supported substantially with end and intermediate supports and arranged to prevent buckling and sagging. Hook strips shall be 1 by 4 inches nominal and cleats 1 by 2 inches nominal. Provide cleats except where hook strips are specified or indicated. Where adjustable shelving is indicated, provide standards and brackets or shelf rests for each shelf.

3.2.1 Room Closets

Provide two shelves 11-1/4 inches wide. Support lower shelf by hook strips at back and ends, and provide full-length wood or metal clothes hanger rods unless indicated otherwise.

3.3 CLOTHES HANGER RODS

Provide clothes hanger rods where indicated and in closets having hook strips. Set rods parallel with front edges of shelves and support by sockets at each end and by intermediate brackets spaced not more than 4 feet o.c.
3.4 MOLDING AND INTERIOR TRIM

Molding and interior trim shall be installed straight, plumb, level and with closely fitted joints. Exposed surfaces shall be machine sanded at the mill. Molded work shall be coped at returns and interior angles and mitered at external corners. Intersections of flatwork shall be shouldered to ease any inherent changes in plane. Window and door trim shall be provided in single lengths. Blind nailing shall be used to the extent practicable, and face nailing shall be set and stopped with a nonstaining putty to match the finish applied. Screws shall be used for attachment to metal; setting and stopping of screws shall be of the same quality as required where nails are used.

-- End of Section --
SECTION 06 41 16.00 10
PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS
08/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

AWI AWS (2nd Edition) Architectural Woodwork Standards

ASTM INTERNATIONAL (ASTM)

ASTM F547 (2006; R 2012) Nails for Use with Wood and Wood-Base Materials

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.9 (2015) Cabinet Hardware

COMPOSITE PANEL ASSOCIATION (CPA)

CPA A208.1 (2016) Particleboard

CPA A208.2 (2016) Medium Density Fiberboard (MDF) for Interior Applications

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)

ANSI/WDMA I.S.1A (2013) Interior Architectural Wood Flush Doors
1.2 SYSTEM DESCRIPTION

Work in this section includes laminate clad custom casework cabinets and vanities as shown on the drawings and as described in this specification. This Section includes high-pressure laminate surfacing and cabinet hardware. Comply with EPA requirements. All exposed and semi-exposed surfaces, whose finish is not otherwise noted on the drawings or finish schedule, shall be sanded smooth and shall receive a clear finish of polyurethane. Wood finish may be shop finished or field applied in accordance with Section 09 90 00 PAINTS AND COATINGS.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Shop Drawings
 Installation

SD-03 Product Data
 Wood Materials
 Wood Finishes
 Finish Schedule

SD-04 Samples
 Plastic Laminates
 Cabinet Hardware

SD-07 Certificates
 Quality Assurance
 Laminate Clad Casework

SD-11 Closeout Submittals

1.4 QUALITY ASSURANCE

1.4.1 General Requirements

Unless otherwise noted on the drawings, all materials, construction methods, and fabrication shall conform to and comply with the customgrade quality standards as outlined in AWI AWS, Section for laminate clad cabinets. These standards shall apply in lieu of omissions or specific requirements in this specification. Contractors and their personnel engaged in the work shall be able to demonstrate successful experience with work of comparable extent, complexity and quality to that shown and specified. Submit a quality control statement which illustrates compliance with and understanding of AWI AWS requirements, in general, and the specific AWI AWS requirements provided in this specification. The quality control statement shall also certify a minimum of ten years Contractor's experience in laminate clad casework fabrication and construction. The quality control statement shall provide a list of a minimum of five
successfully completed projects of a similar scope, size, and complexity.

1.5 DELIVERY, STORAGE, AND HANDLING

Casework may be delivered knockdown or fully assembled. Deliver all units to the site in undamaged condition, stored off the ground in fully enclosed areas, and protected from damage. The storage area shall be well ventilated and not subject to extreme changes in temperature or humidity.

1.6 SEQUENCING AND SCHEDULING

Coordinate work with other trades. Units shall not be installed in any room or space until painting, and ceiling installation are complete within the room where the units are located. Floor cabinets shall be installed before finished flooring materials are installed.

PART 2 PRODUCTS

2.1 WOOD MATERIALS

2.1.1 Lumber

a. All framing lumber shall be kiln-dried Grade III to dimensions as shown on the drawings. Frame front, where indicated on the drawings, shall be nominal 3/4 inch hardwood.

b. Standing or running trim casework components, which are specified to receive a transparent finish, shall be red oak hardwood species, plain sawn. AWI grade shall be custom. Location, shape, and dimensions shall be as indicated on the drawings.

2.1.2 Panel Products

2.1.2.1 Plywood

All plywood panels used for framing purposes shall be veneer core hardwood plywood, AWI AWS Grade AA. Nominal thickness of plywood panels shall be as indicated in this specification and on the drawings.

2.1.2.2 Particleboard

All particleboard shall be industrial grade, medium density (40 to 50 pounds per cubic foot), 3/4 inch thick. A moisture-resistant particleboard in grade Type 2-M-2 or 2-M-3 shall be used as the substrate for plastic laminate covered countertops and other areas subjected to moisture. Particleboard shall meet the minimum standards listed in ASTM D1037 and CPA A208.1.

2.1.2.3 Medium Density Fiberboard

Medium density fiberboard (MDF) shall be an acceptable panel substrate where noted on the drawings. Medium density fiberboard shall meet the minimum standards listed in CPA A208.2.

2.2 SOLID POLYMER MATERIAL

Solid surfacing casework components shall conform to the requirements of Section 06 61 16 SOLID SURFACING FABRICATIONS.
2.3 HIGH PRESSURE DECORATIVE LAMINATE (HPDL)

All plastic laminates shall meet the requirements of ANSI/NEMA LD 3 and ANSI A161.2 for high-pressure decorative laminates. Design, colors, surface finish and texture, and locations shall be as indicated on the drawings. Submit two samples of each plastic laminate pattern and color. Samples shall be a minimum of 5 by 7 inches in size. Plastic laminate types and nominal minimum thicknesses for casework components shall be as indicated in the following paragraphs.

2.3.1 Horizontal General Purpose Standard (HGS) Grade

Horizontal general purpose standard grade plastic laminate shall be 0.048 inches (plus or minus 0.005 inches) in thickness. This laminate grade is intended for horizontal surfaces where postforming is not required.

2.3.2 Vertical General Purpose Standard (VGS) Grade

Vertical general purpose standard grade plastic laminate shall be 0.028 inches (plus or minus 0.004 inches) in thickness. This laminate grade is intended for exposed exterior vertical surfaces of casework components where postforming is not required.

2.3.3 Horizontal General Purpose Postformable (HGP) Grade

Horizontal general purpose postformable grade plastic laminate shall be 0.042 inches (plus or minus 0.005 inches) in thickness. This laminate grade is intended for horizontal surfaces where post forming is required.

2.3.4 Vertical General Purpose Postformable (VGP) Grade

Vertical general purpose postformable grade plastic laminate shall be 0.028 inches (plus or minus 0.004 inches) in thickness. This laminate grade is intended for exposed exterior vertical surfaces of components where postforming is required for curved surfaces.

2.3.5 Horizontal General Purpose Fire Rated (HGF) Grade

Horizontal general purpose fire rated grade plastic laminate shall be 0.048 inches (plus or minus 0.005 inches) in thickness. Laminate grade shall have a class 1, class A fire rating in accordance with ASTM E84.

2.3.6 Vertical General Purpose Fire Rated (VGF) Grade

Vertical general purpose fire rated grade plastic laminate shall be 0.028 inches (plus or minus 0.004 inches) in thickness. This laminate grade shall have a class 1, class A fire rating in accordance with ASTM E84.

2.3.7 Cabinet Liner Standard (CLS) Grade

Cabinet liner standard grade plastic laminate shall be 0.020 inches in thickness. This laminate grade is intended for light duty semi-exposed interior surfaces of casework components.

2.3.8 Backing Sheet (BK) Grade

Undecorated backing sheet grade laminate is formulated specifically to be used on the backside of plastic laminated panel substrates to enhance dimensional stability of the substrate. Backing sheet thickness shall be
0.020 inches. Backing sheets shall be provided for all laminated casework components where plastic laminate finish is applied to only one surface of the component substrate.

2.4 THERMOSET DECORATIVE OVERLAYS (MELAMINE)

Thermoset decorative overlays (melamine panels) shall be used for all semi-exposed surfaces.

2.5 EDGE BANDING

Edge banding for casework doors and drawer fronts shall be PVC vinyl and shall be 0.125 inch thick. Material width shall be as indicated on the drawings. Color and pattern shall match exposed door and drawer front laminate pattern and color.

2.6 CABINET HARDWARE

Submit one sample of each cabinet hardware item specified to include hinges, pulls, and drawer glides. All hardware shall conform to ANSI/BHMA A156.9, unless otherwise noted, and shall consist of the following components:

2.6.1 Door Hinges

Wraparound type.

2.6.2 Cabinet Pulls

5/16 inch wire pull, solid brass, satin chrome plated type.

2.6.3 Drawer Slide

Side mounted type, with full extension and a minimum 100 pound load capacity. Slides shall include an positive stop to avoid accidental drawer removal.

2.6.4 Adjustable Shelf Support System

Multiple holes with metal pin supports.

2.7 FASTENERS

Nails, screws, and other suitable fasteners shall be the size and type best suited for the purpose and shall conform to ASTM F547 where applicable.

2.8 ADHESIVES, CAULKS, AND SEALANTS

2.8.1 Adhesives

Adhesives shall be of a formula and type recommended by AWI. Adhesives shall be selected for their ability to provide a durable, permanent bond and shall take into consideration such factors as materials to be bonded, expansion and contraction, bond strength, fire rating, and moisture resistance. Adhesives shall meet local regulations regarding VOC emissions and off-gassing.

2.8.1.1 Wood Joinery

Adhesives used to bond wood members shall be a Type II for interior use.
polyvinyl acetate resin emulsion. Adhesives shall withstand a bond test as described in ANSI/WDMA I.S.1A.

2.8.1.2 Laminate Adhesive

Adhesive used to join high-pressure decorative laminate to wood shall be adhesive consistent with AWI and laminate manufacturer's recommendations. PVC edgebanding shall be adhered using a polymer-based hot melt glue.

2.8.2 Caulk

Caulk used to fill voids and joints between laminated components and between laminated components and adjacent surfaces shall be clear, 100 percent silicone.

2.8.3 Sealant

Sealant shall be of a type and composition recommended by the substrate manufacturer to provide a moisture barrier at sink cutouts and all other locations where unfinished substrate edges may be subjected to moisture.

2.9 WOOD FINISHES

Paint, stain, varnish and their applications required for laminate clad casework components shall be as indicated in Section 09 90 00 PAINTS AND COATINGS. Color and location shall be as indicated on the drawings.

2.10 ACCESSORIES

2.10.1 Grommets

Grommets shall be plastic material for cutouts with a diameter of 2 inches. Locations shall be as indicated on the drawings.

2.11 FABRICATION

Verify field measurements as indicated in the shop drawings before fabrication. Fabrication and assembly of components shall be accomplished at the shop site to the maximum extent possible. Construction and fabrication of cabinets and their components shall meet or exceed the requirements for AWI custom grade unless otherwise indicated in this specification. Cabinet style, in accordance with AWI AWS, Section 400-G descriptions, shall be reveal overlay.

2.11.1 Base and Wall Cabinet Case Body

2.11.1.1 Cabinet Components

Frame members shall be glued-together, kiln-dried hardwood lumber. Top corners, bottom corners, and cabinet bottoms shall be braced with either hardwood blocks or water-resistant glue and nailed in place metal or plastic corner braces. Cabinet components shall be constructed from the following materials and thicknesses:

2.11.1.1.1 Body Members (Ends, Divisions, Bottoms, and Tops)

3/4 inch particleboard panel product
2.11.1.1.2 Face Frames and Rails

3/4 inch hardwood lumber

2.11.1.1.3 Shelving

3/4 inch particleboard panel product

2.11.1.1.4 Cabinet Backs

1/4 inch veneer core plywood panel product

2.11.1.1.5 Drawer Sides, Backs, and Subfronts

1/2 inch hardwood lumber

2.11.1.1.6 Drawer Bottoms

1/4 inch veneer core plywood panel product

2.11.1.1.7 Door and Drawer Fronts

3/4-inch particleboard panel product

2.11.1.2 Joinery Method for Case Body Members

2.11.1.2.1 Tops, Exposed Ends, and Bottoms

a. Steel "European" assembly screws (1-1/2 inch from end, 5 inch on center, fasteners will not be visible on exposed parts).

b. Doweled, glued under pressure (approx. 4 dowels per 12 inches of joint).

c. Stop dado, glued under pressure, and either nailed, stapled or screwed (fasteners will not be visible on exposed parts).

d. Spline or biscuit, glued under pressure.

2.11.1.2.2 Exposed End Corner and Face Frame Attachment

2.11.1.2.2.1 Mitered Joint

lock miter or spline or biscuit, glued under pressure (no visible fasteners)

2.11.1.2.2.2 Non-Mitered Joint (90 degree)

butt joint glued under pressure (no visible fasteners)

2.11.1.2.3 Butt Joint

glued and nailed

2.11.1.2.3 Cabinet Backs (Wall Hung Cabinets)

Wall hung cabinet backs must not be relied upon to support the full weight of the cabinet and its anticipated load for hanging/mounting purposes. Method of back joinery and hanging/mounting mechanisms should transfer the load to case body members. Fabrication method shall be:
2.11.1.2.3.1 Full Bound

Full bound, captured in grooves on cabinet sides, top, and bottom. Cabinet backs for floor standing cabinets shall be side bound, captured in grooves; glued and fastened to top and bottom.

2.11.1.2.3.2 Full Overlay

Full overlay, plant-on backs with minimum back thickness of 1/2 inch and minimum No. 12 plated (no case hardened) screws spaced a minimum 3 inches on center. Edge of back shall not be exposed on finished sides. Anchor strips are not required when so attached.

2.11.1.2.3.3 Side Bound

Side bound, captured in groove or rabbetts; glued and fastened.

2.11.1.2.4 Cabinet Backs (Floor Standing Cabinets)

2.11.1.2.4.1 Side Bound

Side bound, captured in grooves; glued and fastened to top and bottom.

2.11.1.2.4.2 Full Overlay

Full overlay, plant-on backs with minimum back thickness of 1/2 inch and minimum No. 12 plated (no case hardened) screws spaced a minimum 3 inches on center. Edge of back shall not be exposed on finished sides. Anchor strips are not required when so attached.

2.11.1.2.4.3 Side Bound with Rabbetts

Side bound, placed in rabbetts; glued and fastened in rabbetts.

2.11.1.2.5 Wall Anchor Strips

Wall Anchor Strips shall be required for all cabinets with backs less than 1/2 inch thick. Strips shall consist of minimum 1/2 inch thick lumber, minimum 2-1/2 inches width; securely attached to wall side of cabinet back - top and bottom for wall hung cabinets, top only for floor standing cabinets.

2.11.2 Cabinet Floor Base

Floor cabinets shall be mounted on a base constructed of nominal 2 inch thick lumber. Base assembly components shall be treated lumber. Finished height for each cabinet base shall be not less than the full height of the installed, specified wall base. Bottom edge of the cabinet door or drawer face shall extend below the top of the base as indicated on the drawings.

2.11.3 Cabinet Door and Drawer Fronts

Door and drawer fronts shall be fabricated from 3/4 inch medium density particleboard. All door and drawer front edges shall be surfaced with PVC edgebanding, color and pattern to match exterior face laminate.
2.11.4 Drawer Assembly

2.11.4.1 Drawer Components

Drawer components shall consist of a removable drawer front, sides, backs, and bottom. Drawer components shall be constructed of the following materials and thicknesses:

2.11.4.1.1 Drawer Sides and Back For Thermoset Decorative Overlay (Melamine) Finish

1/2 inch thick medium density particleboard or MDF fiberboard substrate

2.11.4.1.2 Drawer Bottom

1/4 inch thick thermoset decorative overlay melamine panel product

2.11.4.2 Drawer Assembly Joinery Method

b. Doweled, glued under pressure.

d. Bottoms shall be set into sides, front, and back, 1/4 inch deep groove with a minimum 3/8 inch standing shoulder.

2.11.5 Shelving

2.11.5.1 General Requirements

Shelving shall be fabricated from 3/4 inch medium density particleboard. All shelving top and bottom surfaces shall be finished with HPDL plastic laminate. Shelf edges shall be finished in a PVC edgebanding.

2.11.5.2 Shelf Support System

The shelf support system shall be:

2.11.5.2.1 Pin Hole Method

Drill holes on the interior surface of the cabinet side walls. Evenly space holes in two vertical columns. Space the holes in each column at 1 inch increments starting 6 inches from the cabinet interior bottom and extending to within 6 inches of the top interior surface of the cabinet. Drill holes to provide a level, stable surface when the shelf is resting on the shelf pins. Coordinate hole diameter with pin insert size to provide a firm, tight fit.

2.11.6 Laminate Application

Laminate application to substrates shall follow the recommended procedures and instructions of the laminate manufacturer and ANSI/NEMA LD 3, using tools and devices specifically designed for laminate fabrication and application. Provide a balanced backer sheet (Grade BK) wherever only one surface of the component substrate requires a plastic laminate finish. Apply required grade of laminate in full uninterrupted sheets consistent with manufactured sizes using one piece for full length only, using
adhesives specified herein or as recommended by the manufacturer. Fit corners and joints hairline. All laminate edges shall be machined flush, filed, sanded, or buffed to remove machine marks and eased (sharp corners removed). Clean up at easing shall be such that no overlap of the member eased is visible. Fabrication shall conform to ANSI A161.2. Laminate types and grades for component surfaces shall be as follows unless otherwise indicated on the drawings:

2.11.6.1 Base/Wall Cabinet Case Body

a. Exterior (exposed) surfaces to include exposed and semi-exposed face frame surfaces: HPDL Grade VGS.

b. Interior (semi-exposed) surfaces to include interior back wall, bottom, and side walls: Thermoset Decorative Overlay (melamine).

2.11.6.2 Adjustable Shelving

2.11.6.2.1 Top and Bottom Surfaces

HPDL Grade HGS

2.11.6.2.2 All Edges

PVC edgebanding

2.11.6.3 Fixed Shelving

2.11.6.3.1 Top and Bottom Surfaces

HPDL Grade HGS

2.11.6.3.2 Exposed Edges

PVC edgebanding

2.11.6.4 Door, Drawer Fronts, Access Panels

2.11.6.4.1 Exterior (Exposed) and Interior (Semi-Exposed) Faces

HPDL Grade VGS

2.11.6.4.2 Edges

PVC edgebanding

2.11.6.5 Drawer Assembly

 All interior and exterior surfaces: Thermoset Decorative Overlay (melamine).

2.11.6.6 Countertops and Splashes

 All exposed and semi-exposed surfaces: HPDL Grade HGS

2.11.6.7 Tolerances

 Flushness, flatness, and joint tolerances of laminated surfaces shall meet the AWI AWS custom grade requirements.
2.11.7 Finishing

2.11.7.1 Filling

No fasteners shall be exposed on laminated surfaces. All nails, screws, and other fasteners in non-laminated cabinet components shall be countersunk and the holes filled with wood filler consistent in color with the wood species.

2.11.7.2 Sanding

All surfaces requiring coatings shall be prepared by sanding with a grit and in a manner that scratches will not show in the final system.

2.11.7.3 Coatings

Types, method of application and location of casework finishes shall be in accordance with the finish schedule, drawings and Section 09 90 00 PAINTS AND COATINGS. All cabinet reveals shall be painted. Submit descriptive data which provides narrative written verification of all types of construction materials and finishes, methods of construction, etc. not clearly illustrated on the submitted shop drawings. Data shall provide written verification of conformance with AWI AWS for the quality indicated to include materials, tolerances, and types of construction. Both the manufacturer of materials and the fabricator shall submit available literature which describes re-cycled product content, operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products.

PART 3 EXECUTION

3.1 INSTALLATION

Installation shall comply with applicable requirements for AWI AWS custom quality standards. Countertops and fabricated assemblies shall be installed level, plumb, and true to line, in locations shown on the drawings. Cabinets and other laminate clad casework assemblies shall be attached and anchored securely to the floor and walls with mechanical fasteners that are appropriate for the wall and floor construction.

3.1.1 Anchoring Systems

3.1.1.1 Floor

Base cabinets shall utilize a floor anchoring system as detailed on the drawings. Anchoring and mechanical fasteners shall not be visible from the finished side of the casework assembly. Cabinet assemblies shall be attached to anchored bases without visible fasteners as indicated in the drawings. Where assembly abuts a wall surface, anchoring shall include a minimum 1/2 inch thick lumber or panel product hanging strip, minimum 2-1/2 inch width; securely attached to the top of the wall side of the cabinet back.

3.1.1.2 Wall

Cabinet to be wall mounted shall utilize minimum 1/2 inch thick lumber or panel product hanging strips, minimum 2-1/2 inch width; securely attached
to the wall side of the cabinet back, both top and bottom.

3.1.2 Countertops

Countertops shall be installed in locations as indicated on the drawings. Countertops shall be fastened to supporting casework structure with mechanical fasteners, hidden from view. All joints formed by the countertop or countertop splash and adjacent wall surfaces shall be filled with a clear silicone caulk. Loose back and side splashes shall be adhered to both the countertop surface perimeter and the adjacent wall surface with adhesives appropriate for the type of materials to be adhered. Joints between the countertop surface and splash shall be filled with clear silicone caulk in a smooth consistent concave bead. Bead size shall be the minimum necessary to fill the joint and any surrounding voids or cracks.

3.1.3 Hardware

Casework hardware shall be installed in types and locations as indicated on the drawings. Where fully concealed European-style hinges are specified to be used with particleboard or fiberboard doors, the use of plastic or synthetic insertion dowels shall be used to receive 3/16 inch "Euroscrews". The use of wood screws without insertion dowels is prohibited.

3.1.4 Doors, Drawers and Removable Panels

The fitting of doors, drawers and removable panels shall be accomplished within target fitting tolerances for gaps and flushness in accordance with AWI AWS custom grade requirements.

3.1.5 Plumbing Fixtures

Install sinks, sink hardware, and other plumbing fixtures in locations as indicated on the drawings and in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D2583 (2013a) Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor

CSA GROUP (CSA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

NSF INTERNATIONAL (NSF)

NSF/ANSI 51 (2012) Food Equipment Materials

TILE COUNCIL OF NORTH AMERICA (TCNA)

1.2 SYSTEM DESCRIPTION

a. Work under this section includes Shower shelf, Vanity tops and laundry worktop and other items utilizing solid polymer (solid surfacing) fabrication as shown on the drawings and as described in this specification. Do not change source of supply for materials after work has started, if the appearance of finished work would be affected.

b. In most instances, installation of solid polymer fabricated components and assemblies will require strong, correctly located structural support provided by other trades. To provide a stable, sound, secure installation, close coordination is required between the solid polymer fabricator/installer and other trades to ensure that necessary structural wall support, cabinet counter top structural support, proper clearances, and other supporting components are provided for the installation of wall panels, countertops, shelving, and all other solid polymer fabrications to the degree and extent recommended by the solid polymer manufacturer.

c. Appropriate staging areas for solid polymer fabrications. Allow variation in component size and location of openings of plus or minus 1/8 inch.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Detail Drawings
 Installation

SD-03 Product Data
 Solid Polymer Material
 Qualifications
 Fabrications

SD-04 Samples
 Material
 Counter and Vanity Tops

SD-06 Test Reports
 Solid Polymer Material

SD-07 Certificates
 Fabrications
 Qualifications

SD-10 Operation and Maintenance Data
 Clean-up

SD-11 Closeout Submittals
1.4 QUALITY ASSURANCE

1.4.1 Qualifications

To ensure warranty coverage, solid polymer fabricators shall be certified to fabricate by the solid polymer material manufacturer being utilized. Mark all fabrications with the fabricator's certification label affixed in an inconspicuous location. Fabricators shall have a minimum of 5 years of experience working with solid polymer materials. Submit solid polymer manufacturer's certification attesting to fabricator qualification approval.

1.4.2 Drawings

Submit Detail Drawings indicating locations, dimensions, component sizes, fabrication and joint details, attachment provisions, installation details, and coordination requirements with adjacent work.

1.5 DELIVERY, STORAGE, AND HANDLING

Do not deliver materials to project site until areas are ready for installation. Deliver components and materials to the site undamaged, in containers clearly marked and labeled with manufacturer's name. Materials shall be stored indoors and adequate precautions taken to prevent damage to finished surfaces. Provide protective coverings to prevent physical damage or staining following installation, for duration of project.

1.6 WARRANTY

Provide manufacturer's warranty of ten years against defects in materials, excluding damages caused by physical or chemical abuse or excessive heat. Warranty shall provide for material and labor for replacement or repair of defective material for a period of ten years after component installation.

PART 2 PRODUCTS

2.1 MATERIAL

Provide solid polymer material that is a homogeneous filled solid polymer; not coated, laminated or of a composite construction; meeting CSA B45.5-11/IAPMO Z124 requirements. Material shall have minimum physical and performance properties specified. Superficial damage to a depth of 0.01 inch shall be repairable by sanding or polishing. Material thickness shall be as indicated on the drawings. In no case shall material be less than 1/4 inch in thickness. Submit a minimum 4 by 4 inch sample of each color and pattern for approval. Samples shall indicate full range of color and pattern variation. Approved samples shall be retained as a standard for this work. Submit test report results from an independent testing laboratory attesting that the submitted solid polymer material meets or exceeds each of the specified performance requirements.

2.1.1 Cast, 100 Percent Acrylic Polymer Solid Surfacing Material

Cast, 100 percent acrylic solid polymer material shall be composed of acrylic polymer, mineral fillers, and pigments and shall meet the following minimum performance requirements:
<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>4000 psi (max.)</td>
<td>ASTM D638</td>
</tr>
<tr>
<td>Hardness</td>
<td>55-Barcol Impressor (min.)</td>
<td>ASTM D2583</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>.000023 in/in/F (max.)</td>
<td>ASTM D696</td>
</tr>
<tr>
<td>Boiling Water Surface Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.05</td>
</tr>
<tr>
<td>High Temperature Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.06</td>
</tr>
<tr>
<td>Impact Resistance (Ball drop)</td>
<td></td>
<td>ANSI/NEMA LD 3-303</td>
</tr>
<tr>
<td>1/4 inch sheet</td>
<td>36 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>1/2 inch sheet</td>
<td>140 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>3/4 inch sheet</td>
<td>200 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>Mold & Mildew Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Bacteria Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Liquid Absorption</td>
<td>0.1 percent max.</td>
<td>ASTM D570</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td>ASTM E84</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>25 max.</td>
<td></td>
</tr>
<tr>
<td>Smoke Developed</td>
<td>30 max.</td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td>"Food Contact" approval</td>
<td>NSF/ANSI 51</td>
</tr>
</tbody>
</table>

2.1.2 Acrylic-modified Polymer Solid Surfacing Material

Cast, solid polymer material shall be composed of a formulation containing acrylic and polyester polymers, mineral fillers, and pigments. Acrylic polymer content shall be not less than 5 percent and not more than 10 percent in order to meet the following minimum performance requirements:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>4100 psi (max.)</td>
<td>ASTM D638</td>
</tr>
</tbody>
</table>
PROPERTY

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td></td>
</tr>
<tr>
<td>.000023 in/in/F (max.)</td>
<td>ASTM D696</td>
</tr>
<tr>
<td>Boiling Water Surface Resistance</td>
<td>ANSI/NEMA LD 3-3.05</td>
</tr>
<tr>
<td>High Temperature Resistance</td>
<td>ANSI/NEMA LD 3-3.06</td>
</tr>
<tr>
<td>Impact Resistance (Ball drop)</td>
<td>ANSI/NEMA LD 3-303</td>
</tr>
<tr>
<td>1/4 inch sheet</td>
<td></td>
</tr>
<tr>
<td>36 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>1/2 inch sheet</td>
<td></td>
</tr>
<tr>
<td>140 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>3/4 inch sheet</td>
<td></td>
</tr>
<tr>
<td>200 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>Mold & Mildew Growth</td>
<td></td>
</tr>
<tr>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Bacteria Growth</td>
<td></td>
</tr>
<tr>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Liquid Absorption</td>
<td></td>
</tr>
<tr>
<td>(Weight in 24 hrs.)</td>
<td>0.6 percent max. ASTM D570</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
</tr>
<tr>
<td>Smoke Developed</td>
<td></td>
</tr>
<tr>
<td>25 max.</td>
<td></td>
</tr>
<tr>
<td>100 max.</td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td></td>
</tr>
<tr>
<td>"Food Contact" approval</td>
<td>NSF/ANSI 51</td>
</tr>
</tbody>
</table>

2.1.3 Material Patterns and Colors

Patterns and colors for all solid polymer components and fabrications shall be those indicated on the project drawings. Pattern and color shall occur, and shall be consistent in appearance, throughout the entire depth (thickness) of the solid polymer material.

2.1.4 Surface Finish

Exposed finished surfaces and edges shall receive a uniform appearance. Exposed surface finish shall be as indicated on the drawings.

2.2 ACCESSORY PRODUCTS

Accessory products, as specified below, shall be manufactured by the solid
polymer manufacturer or shall be products approved by the solid polymer manufacturer for use with the solid polymer materials being specified.

2.2.1 Seam Adhesive

Seam adhesive shall be a two-part adhesive kit to create permanent, inconspicuous, non-porous, hard seams and joints by chemical bond between solid polymer materials and components to create a monolithic appearance of the fabrication. Adhesive shall be approved by the solid polymer manufacturer. Adhesive shall be color-matched to the surfaces being bonded where solid-colored, solid polymer materials are being bonded together. The seam adhesive shall be clear or color matched where particulate patterned, solid polymer materials are being bonded together.

2.2.2 Panel Adhesive

Panel adhesive shall be neoprene based panel adhesive meeting TCNA Hdbk, Underwriter's Laboratories (UL) listed. Use this adhesive to bond solid polymer components to adjacent and underlying substrates.

2.2.3 Silicone Sealant

Sealant shall be a mildew-resistant, FDA and OSHA Nationally Recognized Testing Laboratory (NRTL) listed silicone sealant or caulk in a clear formulation. The silicone sealant shall be approved for use by the solid polymer manufacturer. Use sealant to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures.

2.2.4 Conductive Tape

Conductive tape shall be manufacturer's standard foil tape, 4 mils thick, applied around the edges of cut outs containing hot or cold appliances.

2.2.5 Insulating Felt Tape

Insulating tape shall be manufacturer's standard product for use with drop-in food wells used in commercial food service applications to insulate solid polymer surfaces from hot or cold appliances.

2.2.6 Heat Reflective Tape

Heat reflective tape as recommended by the solid polymer manufacturer for use with cutouts for heat sources.

2.2.7 Mounting Hardware

Provide mounting hardware, including sink/bowl clips, inserts and fasteners for attachment of undermount sinks and lavatories.

2.3 FABRICATIONS

Components shall be factory or shop fabricated to sizes and shapes indicated, to the greatest extent practical, in accordance with approved Shop Drawings and manufacturer's requirements. Provide factory cutouts for sinks, lavatories, and plumbing fixtures where indicated on the drawings. Contours and radii shall be routed to template, with edges smooth. Defective and inaccurate work will be rejected. Submit product data
indicating product description, fabrication information, and compliance with specified performance requirements for solid polymer, joint adhesive, sealants, and heat reflective tape. Both the manufacturer of materials and the fabricator shall submit a detailed description of operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products.

2.3.1 Joints and Seams

Form joints and seams between solid polymer components using manufacturer's approved seam adhesive. Joints shall be inconspicuous in appearance and without voids to create a monolithic appearance.

2.3.2 Edge Finishing

Rout and finish component edges to a smooth, uniform appearance and finish. Edge shapes and treatments, including any inserts, shall be as detailed on the drawings. Rout all cutouts, then sand all edges smooth. Repair or reject defective or inaccurate work.

2.3.3 Counter and Vanity Top Splashes

Fabricate backsplashes and end splashes from 1/2 inch thick solid surfacing material to be 4 inches high. Backsplashes and end splashes shall be provided for all counter tops and vanity tops. Backsplashes shall be shop fabricated and be permanently attached.

2.3.3.1 End Splashes

End splashes shall be provided loose for installation at the jobsite after horizontal surfaces to which they are to be attached have been installed.

2.3.4 Shower Shelf

Shower Shelf shall be fabricated from 1/2 inch thick solid surfacing, solid polymer material. Provide 8" x 8" shelf with 10" radius

2.3.5 Counter and Vanity Tops

Fabricate all solid surfacing, solid polymer counter top and vanity top components from 1/2 inch thick material. Edge details, dimensions, locations, and quantities shall be as indicated on the Drawings. Counter tops shall be complete with 4 inch high permanently attached with coved transition backsplash and loose end splashes. Attach 2 inch wide reinforcing strip of polymer material under each horizontal counter top seam. Submit a minimum 1 foot wide by 6 inch deep, full size sample for each type of counter top shown on the project drawings. The sample shall include the edge profile and backsplash as detailed on the project drawings. Solid polymer material shall be of a pattern and color as indicated on the drawings. Sample shall include at least one seam. Approved sample shall be retained as standard for this work.

2.3.5.1 Vanity Tops With Bowls

b. Solid polymer bowls shall be a solid polymer manufacturer's standard, pre-molded product specifically designed for attachment to solid
polymer counter tops.

c. One-piece vanity top and bowl fabrications shall be a standard pre-fabricated product provided by the solid polymer manufacturer. Each unit shall include a vanity top with integral backsplash and sink bowl.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Components

Install all components and fabricated units plumb, level, and rigid. Make field joints between solid polymer components using solid polymer manufacturer's approved seam adhesives, to provide a monolithic appearance with joints inconspicuous in the finished work. Attach metal or vitreous china sinks and lavatory bowls to counter tops using solid polymer manufacturer's recommended clear silicone sealant and mounting hardware. Solid polymer sinks and bowls shall be installed using a color-matched seam adhesive. Plumbing connections to sinks and lavatories shall be made in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.1.2 Silicone Sealant

Use a clear, silicone sealant or caulk to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures. Sealant bead shall be smooth and uniform in appearance and shall be the minimum size necessary to bridge any gaps between the solid surfacing material and the adjacent surface. Bead shall be continuous and run the entire length of the joint being sealed.

3.1.3 Plumbing

Make plumbing connections to sinks and lavatories in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.2 CLEAN-UP

Components shall be cleaned after installation and covered to protect against damage during completion of the remaining project items. Components damaged after installation by other trades will be repaired or replaced at the General Contractor's cost. Component supplier will provide a repair/replace cost estimate to the General Contractor who shall approve estimate before repairs are made. Submit a minimum of six copies of maintenance data indicating manufacturer's care, repair and cleaning instructions. Maintenance video shall be provided, if available. Maintenance kit for matte finishes shall be submitted.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D1187/D1187M (1997; E 2011; R 2011) Asphalt-Base Emulsions for Use as Protective Coatings for Metal

ASTM D1227 (2013) Emulsified Asphalt Used as a Protective Coating for Roofing

ASTM D4263 (1983; R 2012) Indicating Moisture in Concrete by the Plastic Sheet Method

ASTM D449/D449M (2003; R 2014; E 2014) Asphalt Used in Dampproofing and Waterproofing

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-07 Certificates

Materials

1.3 DELIVERY AND STORAGE

Deliver materials in sealed containers bearing manufacturer's original labels. Labels shall include date of manufacture, contents of each container, performance standards that apply to the contents and recommended shelf life.

PART 2 PRODUCTS

2.1 ASPHALT

ASTM D449/D449M, Type I or Type II.

2.2 ASPHALT PRIMER

ASTM D41/D41M.
2.3 EMULATION-BASED ASPHALT DAMP PROOFING

2.3.1 Fibrated Emulsion-Based Asphalt

Fibrated emulsion-based asphalt damp proofing shall be cold-applied type conforming to ASTM D1227 Type II, Class 1, asbestos-free, manufactured of refined asphalt, emulsifiers and selected clay, fibrated with mineral fibers. For spray or brush application, emulsion shall contain a minimum of 59 percent solids by weight, 56 percent solids by volume. For trowel application, emulsion shall contain a minimum of 58 percent solids by weight, 55 percent solids by volume.

2.3.2 Non-Fibrated Emulsion-Based Asphalt

Non-fibrated emulsion-based asphalt damp proofing shall be cold-applied type conforming to ASTM D1187/D1187M Type II or ASTM D1227 Type III, manufactured of refined asphalt, emulsifiers and selected clay. Asphalt shall contain a minimum 58 percent solids by weight, 55 percent solids by volume.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Remove or cut form ties and repair all surface defects as required in Section 03 30 50 CAST-IN-PLACE CONCRETE. Clean concrete and masonry surfaces to receive damp proofing of foreign matter and loose particles. Apply damp proofing to clean dry surfaces. Moisture test in accordance with ASTM D4263. If test indicates moisture, allow a minimum of 7 additional days after test completion for curing. If moisture still exists, redo test until substrate is dry.

3.1.1 Metal Surfaces

Metal surfaces shall be dry and be free of rust, scale, loose paint, oil, grease, dirt, frost and debris.

3.2 APPLICATION

Use either hot-application or cold-application method. Use cold-application method in confined spaces where hot bitumen would be hazardous. Apply damp proofing after priming coat is dry, but prior to any deterioration of primed surface, and when ambient temperature is above 40 degrees F.

3.2.1 Surface Priming

Prime surfaces to receive asphalt or . Apply primer when ambient temperature is above 40 degrees F and at rate of approximately one gallon per 100 square feet, fully covering entire surface to be damp proofed.

3.2.2 Cold-Application Method

3.2.2.1 Emulsion-Based Asphalt

Emulsion-based asphalt damp proofing work shall not be performed in temperatures below 40 degrees F. Emulsions shall have a smooth and uniform consistency at time of application. Damp proofing materials shall be applied in accordance with manufacturer's published instructions to produce
a smooth uniform dry film of not less than 12 mils thick without voids or defects. Dull or porous spots shall be recoated. Dampproofing materials shall seal tightly around pipes and other items projecting through dampproofing. Rates of application shall be as follows:

a. Primer: 1/2 gallon per 100 square feet, cold-applied.

b. Fibrated Dampproofing: 2 gallons per 100 square feet, cold-applied with spray, brush or trowel.

c. Non-fibrated Dampproofing: 2 gallons per 100 square feet, cold-applied with spray, brush or trowel.

-- End of Section --
This Page is Intentionally Left Blank
SECTION 07 21 13
BOARD AND BLOCK INSULATION
02/16

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INTERNATIONAL CODE COUNCIL (ICC)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.134 Respiratory Protection

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Manufacturer's Standard Details
Block or Board Insulation
Vapor Retarder
Pressure Sensitive Tape
Accessories including sealants

SD-07 Certificates
Block or Board Insulation
Vapor Retarder
Draft Special Warranties
Final Special Warranties

SD-08 Manufacturer's Instructions
Block or Board Insulation
Adhesive

1.3 MANUFACTURER'S DETAILS
Submit manufacturer's standard details indicating methods of attachment and spacing, transition and termination details, and installation details. Include verification of existing conditions.

1.4 PRODUCT DATA
Include data for material descriptions, recommendations for product shelf life, and precautions for flammability and toxicity. Include data to verify compatibility of sealants with insulation.

1.5 DELIVERY, STORAGE, AND HANDLING
1.5.1 Delivery
Deliver materials to the site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation.

1.5.2 Storage
Inspect materials delivered to the site for damage and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling. Keep materials wrapped and separated from off-gassing materials (such as drying paints and adhesives). Do not use materials that have visible moisture or biological growth. Comply with manufacturer's specifications.
recommendations for handling, storage, and protection of materials before and during installation.

1.6 SAFETY PRECAUTIONS

1.6.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by the National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) and in accordance with 29 CFR 1910.134.

1.6.2 Other Safety Considerations

Comply with the safety requirements of ASTM C930.

1.7 SPECIAL WARRANTIES

1.7.1 Guarantee

Guarantee insulation installation against failure due to ultraviolet light exposure for a period of three years from the date of Beneficial Occupancy. Submit draft and final guarantees in accordance with Sections 01 78 00 CLOSEOUT SUBMITTALS and 01 78 23 OPERATION AND MAINTENANCE DATA.

1.7.2 Warranty

Provide manufacturer's material warranty for all system components for a period of three years from the date of Beneficial Occupancy. Submit draft and final warranties in accordance with Sections 01 78 00 CLOSEOUT SUBMITTALS and 01 78 23 OPERATION AND MAINTENANCE DATA.

PART 2 PRODUCTS

2.1 BLOCK OR BOARD INSULATION

Provide thermal insulating materials as recommended by manufacturer for each type of application indicated. Provide insulation with the following physical properties and in accordance with the following standards:

b. Extruded Preformed Cellular Polystyrene: ASTM C578 REV A

2.1.1 Thermal Resistance

Unless otherwise indicated, Ceiling R-20 Wall R-10.

2.1.2 Fire Protection Requirements

a. Flame spread index of 75 or less when tested in accordance with ASTM E84.

b. Smoke developed index of 150 or less when tested in accordance with ASTM E84.

c. Provide insulated assemblies in accordance ICC IBC Chapter Fire and Smoke Protection Features.

2.1.3 Other Material Properties

Provide thermal insulating materials with the following properties:
a. Rigid cellular plastics: Compressive Resistance at Yield: Not less than 10 pounds per square inch (psi) when measured according to ASTM D1621.

2.1.4 Prohibited Materials

Do not provide materials containing asbestos.

2.2 VAPOR RETARDER AND DAMPPROOFING

2.2.1 Dampproofing for Masonry Cavity Walls

Bituminous material is specified in Section 07 11 13 BITUMINOUS DAMPPROOFING.

2.3 PRESSURE SENSITIVE TAPE

As recommended by manufacturer of vapor retarder(s). Match water vapor permeance rating for each vapor retarder specified. Provide tape in accordance with ASTM D3833/D3833M.

2.4 ACCESSORIES

2.4.1 Adhesive

As recommended by insulation manufacturer.

2.4.2 Mechanical Fasteners

Corrosion resistant fasteners as recommended by the insulation manufacturer.

PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Prior to installation, ensure all areas that are in contact with the insulation are dry and free of projections that could cause voids, compressed insulation, or punctured vapor retarders. For foundation perimeter or under slab applications, check that subsurface fill is flat, smooth, dry, and well tamped. Do not proceed with installation if moisture or other conditions are present, and notify the Contracting Officer of such conditions. Do not proceed with the work until conditions have been corrected and verified to be dry.

3.2 PREPARATION

3.2.1 Blocking Around Heat Producing Devices

Provide noncombustible blocking at all spaces between heat producing devices and the floors, ceilings and roofs through which they pass. Provide in accordance with ICC IBC Section 2111.12 Fireplace Blocking and with the following clearances:

a. Recessed lighting fixtures, including wiring compartments, ballasts, and other heat producing devices, unless certified for installation surrounded by insulation: 3 inches from outside face of fixtures and devices or as required by NFPA 70 and, if insulation is placed above
fixture or device, 24 inches above fixture.

b. Masonry chimneys or masonry enclosing a flue: 2 inches from outside face of masonry. Masonry chimneys for medium and high heat operating appliances: Minimum clearances required by NFPA 211.

c. Vents and vent connectors used for venting products of combustion, flues, and chimneys other than masonry chimneys: Minimum clearances as required by NFPA 211.

d. Gas Fired Appliances: Clearances as required in NFPA 54.

e. Oil Fired Appliances: Clearances as required in NFPA 31.

Blocking is not required if chimneys or flues are certified in writing by the chimney or flue manufacturer for use in contact with specific insulating materials.

3.3 INSTALLATION

3.3.1 Installation and Handling

Provide insulation in accordance with the manufacturer's printed installation instructions. Keep material dry and free of extraneous materials.

3.3.2 Electrical Wiring

Do not install insulation in a manner that would enclose electrical wiring between two layers of insulation.

3.3.3 Cold Climate Requirement

Place insulation on the outside of pipes.

3.3.4 Continuity of Insulation

Butt tightly against adjoining boards, studs, rafters, joists, sill plates, headers and obstructions. Provide continuity and integrity of insulation at corners, wall to ceiling joint, roof, and floor. Avoid creating thermal bridges and voids. Provide and verify continuity of insulative barrier throughout the building enclosure.

3.3.5 Coordination

Verify final installed insulation thicknesses comply with thicknesses indicated, R-values specified herein, and with the approved insulation submittal(s).

3.4 INSTALLATION ON WALLS

3.4.1 Installation on Masonry Walls

Apply board directly to masonry with adhesive or fasteners as recommended by the insulation manufacturer. Fit between obstructions without impaling board on ties or anchors. Apply in parallel courses with joints breaking midway over course below. Place boards in moderate contact with adjoining insulation without forcing and without gaps. Cut and shape as required to fit around wall penetrations, projections or openings to accommodate
conduit or other utilities. Seal around cutouts with sealant. Install insulation in wall cavities so that it leaves at least a nominal 1 inch air space outside of the insulation to allow for cavity drainage.

3.4.2 Adhesive Attachment to Concrete and Masonry Walls

Apply adhesive to wall and completely cover wall with insulation.

c. As recommended by the insulation manufacturer.

d. Use only full back method for pieces of 1 square foot or less.

e. Butt all edges of insulation and seal edges with tape.

3.5 VAPOR RETARDER

Apply vapor retarder continuous across all surfaces. Overlap all joints at least 6 inches and seal with pressure sensitive tape. Seal at utility penetrations. Repair punctures or tears with pressure sensitive tape.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E136 (2016) Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.134 Respiratory Protection

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Blanket Insulation

SD-08 Manufacturer's Instructions

Insulation
1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials to site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation.

1.3.2 Storage

Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling.

1.4 SAFETY PRECAUTIONS

1.4.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134.

1.4.2 Other Safety Concerns

Consider other safety concerns and measures as outlined in ASTM C930.

PART 2 PRODUCTS

2.1 BLANKET INSULATION

ASTM C665, Type I, blankets without membrane coverings.

2.1.1 Thermal Resistance Value (R-VALUE)

The R-Value must be as indicated on drawings.

2.1.2 Recycled Materials

Provide Thermal Insulation containing recycled materials to the extent practicable, provided the material meets all other requirements of this section. The minimum required recycled materials content by weight are:

Fiberglass: 20 to 25 percent glass cullet

2.1.3 Prohibited Materials

Do not provide asbestos-containing materials.
PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Before installing insulation, ensure that areas that will be in contact with the insulation are dry and free of projections which could cause voids, compressed insulation, or punctured vapor retarders. If moisture or other conditions are found that do not allow the workmanlike installation of the insulation, do not proceed but notify Contracting Officer of such conditions.

3.2 PREPARATION

3.2.1 Blocking Around Heat Producing Devices

Install non-combustible blocking around heat producing devices to provide the following clearances:

a. Recessed lighting fixtures, including wiring compartments, ballasts, and other heat producing devices, unless these are certified by the manufacturer for installation surrounded by insulation: 3 inches from outside face of fixtures and devices or as required by NFPA 70 and, if insulation is to be placed above fixture or device, 24 inches above fixture.

b. Masonry chimneys or masonry enclosing a flue: 2 inches from outside face of masonry. Masonry chimneys for medium and high heat operating appliances: Minimum clearances required by NFPA 211.

c. Vents and vent connectors used for venting the products of combustion, flues, and chimneys other than masonry chimneys: Minimum clearances as required by NFPA 211.

d. Gas Fired Appliances: Clearances as required in NFPA 54.

e. Oil Fired Appliances: Clearances as required in NFPA 31.

Blocking around flues and chimneys is not required when insulation blanket, including any attached vapor retarder, passed ASTM E136, in addition to meeting all other requirements stipulated in Part 2. Blocking is also not required if the chimneys are certified by the manufacturer for use in contact with insulating materials.

3.3 INSTALLATION

3.3.1 Insulation

Install and handle insulation in accordance with manufacturer's instructions. Keep material dry and free of extraneous materials. Any materials that show visual evidence of biological growth due to presence of moisture must not be installed on the building project. Ensure personal protective clothing and respiratory equipment is used as required. Observe safe work practices.

3.3.1.1 Electrical wiring

Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation.
3.3.1.2 Continuity of Insulation

Install blanket insulation to butt tightly against adjoining blankets and to studs, rafters, joists, sill plates, headers and any obstructions. Provide continuity and integrity of insulation at corners, wall to ceiling joints, roof, and floor. Avoid creating thermal bridges.

3.3.1.3 Cold Climate Requirement

Place insulation to the outside of pipes.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E136 (2016) Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

16 CFR 1209 Interim Safety Standard for Cellulose Insulation

16 CFR 1404.4 Requirements to Provide Performance and Technical Data by Labeling - Notice to Purchasers

29 CFR 1910.134 Respiratory Protection
1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Loose Fill Insulation

SD-08 Manufacturer's Instructions

Loose Fill Insulation

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials to the site in original sealed containers or packages, each bearing manufacturer's name and brand designation, referenced specification number, type, and class, as applicable; recommended method of installation (pneumatic or pouring); minimum net weight of insulation; coverage charts; R-values; and, for cellulose insulation, a label certifying that the product meets Consumer Product Safety Commission (CPSC) Interim Safety Standard for Cellulose Insulation, 16 CFR 1209, and cautionary label regarding potential fire hazard as required in 16 CFR 1404.4.

1.3.2 Storage

Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling.

1.4 SAFETY PRECAUTIONS

1.4.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134.

1.4.2 Other Safety Concerns

Consider other safety concerns and measures as outlined in ASTM C930

PART 2 PRODUCTS

2.1 LOOSE FILL INSULATION

Provide loose fill insulation conforming to the following:

a. Mineral Fiber Loose Fill: ASTM C764, Type I, for pneumatic application, or II, for poured application, category 1.

2.1.1 Thermal Resistance Value(s) (R-Values)

The R-Value must be as indicated on drawings. The R-value must be the value
the product achieves after settlement.

2.1.2 Prohibited Materials

a. Asbestos-containing materials
b. Urea Formaldehyde containing materials
c. Ammonium Sulfate containing material

2.2 BLOCKING

Wood, metal, unfaced mineral fiber blanket material in accordance with ASTM C665, Type I, or other approved materials. Provide only non-combustible materials (based on determination by ASTM E136 for blocking around chimneys and heat producing devices.

PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Before installing insulation, verify that all areas that will be in contact with the insulation are dry and free of projections which could cause voids, compressed insulation, or punctured vapor retarders. If moisture or other conditions are found that do not allow the workmanlike installation of the insulation, do not proceed but notify the Contracting Officer of such conditions.

3.2 PREPARATION

3.2.1 Blocking at Attic Vents and Access Doors

Prior to installation of insulation, install permanent blocking to prevent insulation from covering, clogging, or restricting air flow through soffit vents at eaves. Install permanent blocking around attic trap doors. Install permanent blocking to maintain accessibility to equipment or controls that require maintenance or adjustment.

3.2.2 Blocking Around Heat Producing Devices

Install non-combustible blocking around heat producing devices to provide the following clearances:

a. Recessed lighting fixtures, including wiring compartments, ballasts, and other heat producing devices, unless certified for installation surrounded by insulation: 3 inches from outside face of fixtures and devices or as required by NFPA 70 and, if insulation is to be placed above fixture or device, 24 inches above fixture.

b. Masonry chimneys or masonry enclosing a flue: 2 inches from outside face of masonry. Masonry chimneys for medium and high heat operating appliances: Minimum clearances required by NFPA 211.

c. Vents and vent connectors used for venting the products of combustion, flues, and chimneys other than masonry chimneys: minimum clearances as required by NFPA 211.

d. Gas fired appliances: Clearances as required in NFPA 54.
e. Oil fired appliances: Clearances as required in NFPA 31.

Blocking around flues and chimneys is not required if the insulation and vapor retarder, when provided, passed ASTM E136, in addition to meeting all other requirements stipulated in Part 2. The blocking is also not required when chimneys are certified by the manufacturer for use in contact with insulating materials.

3.2.3 Protection of Ventilation System

Prior to installation of insulation, inspect existing HVAC equipment and ductwork to ensure that insulation will not infiltrate the air distribution/ventilation system. Where potential infiltration sources have been identified do not install insulation until repairs/modifications have been made to rectify the problem.

3.3 INSTALLATION

3.3.1 Insulation

Install and handle insulation in accordance with applicable provisions of ASTM C1015, and manufacturer's instructions. Keep material dry and free of extraneous materials. Any materials that show visual evidence of biological growth due to the presence of moisture must not be installed on the building project. Ensure personal protective clothing and respiratory equipment is used as required. Observe safe work practices. Use only pneumatic equipment compatible with insulation material. Operate equipment in accordance with the manufacturer's instructions. Do not tamp or rod insulation.

3.3.2 Attics

Fill attic floor to provide the specified R-Value. For pneumatic installations, use lowest air pressure allowed by manufacturer's instructions. Do not blow insulation into electrical devices, soffit vents, and mechanical vents which open into attic or other spaces to receive insulation.

3.3.2.1 Electrical Wiring

Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation.

3.3.2.2 Cold Climate Requirement

Place insulation to the outside of all pipes.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

FM GLOBAL (FM)

FM 4450 (1989) Approval Standard for Class 1 Insulated Steel Deck Roofs

FM APP GUIDE (updated on-line) Approval Guide
http://www.approvalguide.com/

INTERNATIONAL CODE COUNCIL (ICC)

UNDERWRITERS LABORATORIES (UL)

UL 1256 (2002; Reprint Jul 2013) Fire Test of Roof Deck Constructions

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Insulation Board Layout and Attachment;
 Verification of Existing Conditions;

SD-03 Product Data
 Insulation
 Fasteners

SD-06 Test Reports
 Flame Spread Rating

SECTION 07 22 00 Page 1
Installer Qualifications

SD-08 Manufacturer's Instructions

Nails and Fasteners

Roof Insulation

1.3 SHOP DRAWINGS

Submit insulation board layout and attachment indicating methods of attachment and spacing, transitions, tapered components, thicknesses of materials, and closure and termination conditions. Show locations of ridges, valleys, crickets, interface with, and slope to, roof drains. Base shop drawings on verified field measurements and include verification of existing conditions.

1.4 PRODUCT DATA

Include data for material descriptions, recommendations for product shelf life, coatings, and precautions for flammability and toxicity. Include data to verify compatibility of sealants with insulation.

1.5 MANUFACTURER'S INSTRUCTIONS

Include field of roof and perimeter attachment requirements.

Provide a complete description of installation sequencing for each phase of the roofing system. Include weatherproofing procedures.

1.6 QUALITY CONTROL

Provide certification of installer qualifications from the insulation manufacturer confirming the specific installer has the required qualifications for installing the specific roof insulation system(s) indicated.

1.7 FIRE PERFORMANCE REQUIREMENTS

1.7.1 Insulation in Roof Systems

Comply with the requirements of ICC IBC or UL 1256. Roof insulation to have a flame spread rating of 75 or less when tested in accordance with ASTM E84. Additional documentation of compliance with flame spread rating is not required when insulation of the type used for this project as part of the specific roof assembly is listed and labeled as FM Class 1 approved.

1.7.2 Thermal Barrier Requirements

Separate polyurethane or polystyrene insulation from a steel deck with a thermal barrier of glass mat gypsum roof board or other approved barrier material in accordance with the requirements of the ICC IBC or UL 1256.

1.7.3 Fire Resistance Ratings for Roofs

Provide in accordance with ICC IBC Chapter 7 and Table 721.1(3) Min Fire
and Smoke Protection For Floor and Roof Systems.

1.8 DELIVERY, STORAGE, AND HANDLING

1.8.1 Delivery

Deliver materials to the project site in manufacturer's unopened and undamaged standard commercial containers bearing the following legible information:

a. Name of manufacturer
b. Brand designation
c. Specification number, type, and class, as applicable, where materials are covered by a referenced specification

Deliver materials in sufficient quantity to allow continuity of the work.

1.8.2 Storage and Handling

Store and handle materials in accordance with manufacturer's printed instructions. Protect from damage, exposure to open flame or other ignition sources, wetting, condensation, and moisture absorption. Keep materials wrapped and separated from off-gassing materials (such as drying paints and adhesives). Do not use materials that have visible moisture or biological growth. Store in an enclosed building or trailer that provides a dry, adequately ventilated environment. Replace damaged material with new material.

1.9 ENVIRONMENTAL CONDITIONS

Do not install roof insulation during inclement weather or when air temperature is below 40 degrees F and interior humidity is 45 percent or greater, or when there is visible ice, frost, or moisture on the roof deck.

PART 2 PRODUCTS

2.1 INSULATION

2.1.1 Insulation Types

Provide one, or an assembly of a maximum of three, of the following roof insulation materials. Provide roof insulation that is compatible with attachment methods for the specified insulation and roof membrane.

a. Expanded Perlite Board: Provide in accordance with ASTM C728. Minimum 3/4 inch thick when both top and bottom surfaces must be in contact with asphalt.

b. Ventilated Polyisocyanurate Board Insulation Panels:

The ventilated roof insulation shall be a factory-assembled panel consisting of one layer of 7/16" (11.1 mm) oriented strand board top surface, a built-in ventilation space maintained by 1" (25.4 mm) wood spacer blocks, and polyisocyanurate insulation on the bottom.

The wood spacer blocks shall not exceed 8% of the panel area and shall have 50% open area for lateral (across the slope) ventilation. Spacer blocks shall not be over 12" apart in either direction.
The vent space shall provide a minimum of 10 sq. in. of Net Free Area per lineal foot on insulation (along the 8' edge) after deduction for the spacer blocks.

2.1.2 Insulation Thickness

As necessary to provide the thermal resistance (R-value) indicated. Base calculation on the R-value for aged insulation.

2.2 FASTENERS

Provide flush-driven fasteners through flat round or hexagonal steel or plastic plates. Provide zinc-coated steel plates, flat round not less than 1 3/8 inch diameter, hexagonal not less than 28 gage. Provide high-density plastic plates, molded thermoplastic with smooth top surface, reinforcing ribs and not less than 3 inches in diameter. Fully recess fastener head into plastic plate after it is driven. Form plates to prevent dishing. Do not use bell or cup shaped plates. Provide fasteners in accordance with insulation manufacturer's recommendations for holding power when driven, or a minimum of 40 pounds each in steel deck, whichever is the higher minimum. Provide fasteners for steel or concrete decks in accordance with FM APP GUIDE (http://www.approvalguide.com/) for Class I roof deck construction, and spaced to withstand uplift pressure of 90 pounds per square foot.

2.2.1 Roofing Nails for Wood Decks

Barbed 11 gage, zinc-coated nails with 7/16 to 5/8 inch diameter heads or annular ring shank, square head, one piece composite nails. Provide nails long enough to penetrate wood deck at least 5/8 inch without protruding through underside of decking.

2.2.2 Fasteners for Steel Decks

Approved hardened penetrating fasteners or screws in accordance with FM 4450 and listed in FM APP GUIDE for Class I roof deck construction. Quantity and placement to withstand a minimum uplift pressure of 90 psf in accordance with FM APP GUIDE.

PART 3 EXECUTION

3.1 EXAMINATION AND PREPARATION

3.1.1 Surface Inspection

Ensure surfaces are clean, smooth, and dry prior to application. Check roof deck surfaces, including surfaces sloped to roof drains and outlets, for defects before starting work.

The Contractor must inspect and approve the surfaces immediately before starting installation. Prior to installing insulation, perform the following:

b. Examine steel decks to ensure that panels are properly secured to structural members and to each other and that surfaces of top flanges are flat or slightly convex.
3.1.2 Surface Preparation

Correct defects and inaccuracies in roof deck surface to eliminate poor drainage from hollow or low spots, perform the following:

a. Provide wood nailers of the same thickness as the insulation at eaves, edges, curbs, walls, and roof openings for securing of cant strips, gravel stops, and flashing flanges.

d. Cover steel decks with a layer of insulation board of sufficient width to span the width of a deck rib opening, and in accordance with fire safety requirements. Secure with piercing or self-drilling, self-tapping fasteners of quantity and placement in accordance with FM APP GUIDE. Locate insulation joints parallel to ribs of deck on solid bearing surfaces only, not over open ribs.

3.2 INSULATION INSTALLATION

Lay insulation so that continuous longitudinal joints are perpendicular to direction of roofing, and end joints of each course are staggered with those of adjoining courses. Keep insulation 1/2 inch clear of vertical surfaces penetrating and projecting from roof surface.

3.2.1 Installation Using Only Mechanical Fasteners

Secure total thickness of insulation with penetrating type fasteners.

3.3 PROTECTION

3.3.1 Damaged Work and Materials

Restore work and materials that become damaged during construction to original condition or replace with new materials.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)

U.S. DEPARTMENT OF ENERGY (DOE)

UNDERWRITERS LABORATORIES (UL)

1.2 DEFINITIONS

1.2.1 Top Lap

That portion of shingle overlapping shingle in course below.

1.2.2 Head Lap

The triple coverage portion of top lap which is the shortest distance from the butt edge of an overlapping shingle to the upper edge of a shingle in
1.2.3 Exposure

That portion of a shingle exposed to the weather after installation.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Shingles

Submit data including type, weight, class, UL labels, and special types of underlayment and eave flashing.

Information Placard

SD-04 Samples

Shingles

Full shingle sample and manufacturer's standard size samples of materials and products requiring color or finish selection.

Color Charts: Must be submitted to Camp Lejeune BEAP representative (Base Architect) for approval.

SD-08 Manufacturer's Instructions

Application

SD-11 Closeout Submittals

Energy Star Label for Asphalt Shingle (Edit as necessary by project)

Manufacturer's Warranty

Contractor's Warranty

1.4 DELIVERY AND STORAGE

Deliver materials in the manufacturer's unopened bundles and containers bearing the manufacturer's brand name. Keep materials dry, completely covered, and protected from the weather. Store according to manufacturer's written instructions. Store roll goods on end in an upright position or in accordance with manufacturer's recommendations. Immediately before laying, store roofing felt for 24 hours in an area maintained at a temperature not lower than 50 degrees F.

1.5 WARRANTIES

Warranties must begin on the date of Government acceptance of the work.

1.5.1 Manufacturer's Warranty

Furnish the asphalt shingle manufacturer's standard 25 year warranty for
the asphalt shingles. The warranty must run directly to the Government.

1.5.2 Contractor's Warranty

Provide warranty for 5 years that the asphalt shingle roofing system, as installed, is free from defects in workmanship. When repairs due to defective workmanship are required during the Contractor's warranty period, the Contractor must make such repairs within 72 hours of notification. When repairs are not performed within the specified time, emergency repairs performed by others will not void the warranty.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Shingles

Mineral granule-surfaced asphalt shingles, self-sealing, square tab, strip, fungus-resistant. ASTM D3018/D3018M, Type I, and ASTM D3462/D3462M, architectural shingles weighing not less than 250 pounds per 100 square feet. Shingles must meet the fire resistance requirements of UL 790 for Class A and the wind resistance requirements of ASTM D7158/D7158M, Class H. Color must be as selected from the manufacturer's standard color charts. Shingle color must be submitted to in accordance with Camp Lejeune BEAP representative (Base Architect) for approval. (For the following, edit as necessary by project:) Provide asphalt shingle that is Energy Star labeled. Provide data identifying Energy Star label for asphalt shingle product.

2.1.2 Self-Adhering Membrane

Self-adhering rubberized asphaltic membrane, a minimum of 40 mils thick, and recommended by the shingle manufacturer for use as eaves flashing. Products shall meet or exceed the performance criteria of ASTM D1970.

2.1.3 Nails for Applying Shingles

Aluminum or hot-dipped galvanized steel or equivalent corrosion resistant with sharp points and flat heads 3/8 to 7/16 inch in diameter. Shank diameter of nails must be a minimum of 0.105 inch and a maximum of 0.135 inch with garb or otherwise deformed for added pull-out resistance. Nails must be long enough to penetrate completely through or extend a minimum of 3/4 inch into roof deck, whichever is less, when driven through materials to be fastened.

2.1.4 Asphalt Roof Cement

ASTM D4586/D4586M, Type II.

2.1.5 Asphalt Primer

ASTM D41/D41M.

2.1.6 Ventilators

2.1.6.1 Nailable Plastic Shingle Over Type Ridge Vents

Ridge vents must be constructed of UV stabilized nailable rigid polypropylene material, approximately 1 foot wide and 1 inch thick, and
must be in 4 foot long interlocking sections with self-aligning ends or
corrugated polyethylene rigid roll or rigid strip ridge vent with aluminum
wind deflectors on each side. Vents must be designed to prevent
infiltration of insects, rain, and snow.

2.1.6.2 Nailable Mesh Shingle Over Type Ridge Vents

Ridge vents must be constructed of UV stabilized nailable polyester mesh
material, approximately 1 foot wide. Vents must be designed to prevent
infiltration of insects, rain, and snow. Fasten with 3" nails at each
rafter, no exceptions.

2.1.6.3 Information Placard

Information placard must be 8.5 inch x 11 inch and contain the information
contained in Table I. Information on the placard must be typed in Courier
New 12 pitch. Manufactuer's and Contractor's information must
include a phone number. Placard must be able to be mounted on the inside of
a building. Placard can be aluminum or acrylic metal or a sheet of paper
inside a standard compatibles suitable frame.

PART 3 EXECUTION

3.1 VERIFICATION OF CONDITIONS

Do not install building construction materials that show visual evidence of
biological growth.

Ensure that roof deck is smooth, clean, dry, and without loose knots. Roof
surfaces must be firm and free from loose boards, large cracks, and
projecting ends that might damage the roofing. Vents and other projections
through roofs must be properly flashed and secured in position, and
projecting nails must be driven flush with the deck.

3.2 SURFACE PREPARATION

Cover knotholes and cracks with sheet metal nailed securely to sheathing.
Flash and secure vents and other roof projections, and drive projecting
nails firmly home.

3.3 APPLICATION

Apply roofing materials as specified herein unless specified or recommended
otherwise by shingle manufacturer's written instructions or by NRCA 0418.

3.3.1 Drip Edges

Provide metal drip edges as specified in Section 07 60 00 FLASHING AND
SHEET METAL applied directly on the wood deck at eaves and over the
underlayment at rakes. Extend back from edge of deck a minimum of 3 inches,
and secure with nails spaced a maximum of 4 inches o.c. along inner edge.

3.3.2 Starter Strip

Use a row of shingles with tabs removed and trimmed to ensure that joints
are not exposed at shingle cutouts. Apply starter strip along eaves,
overlaying and finishing even with lower edge of eave flashing strip
overhanging the metal drip edge at eaves and rake edges 1/4 inch to 3/8 inch;
fasten in a line parallel to and 3 to 4 inches above eave edge. Place nails so top of nail is not exposed in cutouts of first course of shingles. Fasten with 6 nails per strip of shingles or space nails at 6 inches o.c. for roll roofing. Seal tabs of first course of shingles, eaves, edges, and rakes with asphalt roof cement as specified below.

3.3.3 Shingle Courses

Start first course with full shingle, and apply succeeding courses with joints staggered at thirds or halves. Butt-end joints of shingles must not align vertically more often than every fourth course. Apply shingle courses as follows:

a. Fastening: Do not drive fasteners into or above the factory-applied adhesive unless adhesive is located 5/8 inch or closer to top of cutouts. Place fasteners so they are concealed by shingle top lap and penetrate the head lap.

b. Shingles applied with nails: Nominal 5 inch exposure. Apply each shingle with minimum of (6) six nails. Place one nail 1 inch from each end, and evenly space nails on a horizontal line a minimum of 5/8 inch above top of cutouts. Cement each tab with one spot of asphalt roof cement placed 1 to 2 inches from bottom edge of shingle.

d. Sealing: Seal each tab with continuous, 9 inchlong, 1/4 inch diameter bead of asphalt roof cement, applied to the surface of course below. Place bead on horizontal line 5/8 inch above cutouts so bead will be 1 inch from bottom edge of tab to be sealed and so bead will not show through cutouts. After nailing each shingle, press tabs down to ensure spreading and bonding of asphalt roof cement.

3.3.4 Hips and Ridges

Form with 9 by 12 inch individual shingles or with 12 by 12 inch shingles cut from 12 by 36 inch strip shingles. Bend shingles lengthwise down center with equal exposure on each side of hip or ridge. Lap shingles to provide a maximum 5 inch exposure, and nail each side in unexposed area 5-1/2 inches from butt and 1 inch in from edge.

3.3.5 Valleys

Provide woven valleys.

3.3.5.1 Woven Valleys

Provide valley lining as specified for closed cut valley. Lay valley shingles over lining by either of the following methods:

a. Method I: Apply regular shingles on both roofs simultaneously. Weave each course in turn over the valley. Lay the first regular course of shingles along eaves of roof up to and over valley. Extend course along adjoining roof deck at least 12 inches. Carry first regular course of shingles of adjoining roof over valley on top of previously applied shingles. Lay succeeding courses alternately, weaving valley shingles over each other for full length of valley.

b. Method II: Apply regular shingles on each roof surface separately to a
line about 3 feet from center of valley, and weave valley shingles in place later, as specified for Method I.

In following either method, press shingles tightly into valley, and fasten in normal manner; except apply nails not closer than 6 inches to valley centerline, and apply additional nail in top corner of terminal shingle on both sides of valley.

3.3.6 Flashing

3.3.6.1 Eave Flashing

Provide for roof slopes between 2 inches per foot and 4 inches per foot and greater.
b. From the eaves to the roof peak apply one layer of self-adhering membrane. Follow membrane manufacturer's printed installation instructions.

3.3.6.2 Stepped Flashing

For sloping roofs which abut vertical surfaces, provide stepped metal flashing as specified in Section 07 60 00 FLASHING AND SHEET METAL.

3.3.6.3 Vent and Stack Flashing

Apply shingles up to point where vent or stack pipe projects through roof, and cut nearest shingle to fit around pipe. Before applying shingles beyond pipe, prepare flange of metal pipe vent flashing as specified in Section 07 60 00 FLASHING AND SHEET METAL, by applying a 1/8 inch thick coating of asphalt roof cement on bottom side of flashing flange. Slip flashing collar and flange over pipe, and set coated flange in 1/16 inch coating of asphalt roof cement. After applying flashing flange, continue shingling up roof. Lap lower part of flange over shingles. Overlap flange with side and upper shingles. Fit shingles around pipe, and embed in 1/16 inch thick coating of asphalt roof cement where shingles overlay flange.

Information Placard

Coordinate with Engineering Technician location of plaque inside the building.

TABLE I - ROOF INFORMATION PLACARD

DO NOT MAKE ALTERATIONS OR REPAIRS TO THIS ROOF WITHOUT APPROVAL FROM OWNER
Camp LeJeune, NC

Bldg: ______
Contract No: ________________ Task Order ____

Manufacturer's Warranty:
Expires: __ ___ ____
Warranty No: ______
Provided By: Company
Address
Phone

Contractor's Warranty:
Expires: __ ___ ____
Warranty No: ______
Description of Roof System:
Deck:
Ice and Water Membrane:
Shingle:
Ridge Vent:

-- End of Section --
This Page is Intentionally Left Blank
SECTION 07 60 00
FLASHING AND SHEET METAL
05/17

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 GENERAL REQUIREMENTS

Finished sheet metal assemblies must form a weathertight enclosure without waves, warps, buckles, fastening stresses or distortion, while allowing for expansion and contraction without damage to the system. The sheet metal installer is responsible for cutting, fitting, drilling, and other operations in connection with sheet metal modifications required to accommodate the work of other trades. Coordinate installation of sheet metal items used in conjunction with roofing with roofing work to permit continuous, uninterrupted roofing operations.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Exposed Sheet Metal Coverings;

Gutters;
1.4 MISCELLANEOUS REQUIREMENTS

1.4.1 Product Data

Indicate thicknesses, dimensions, fastenings, anchoring methods, expansion joints, and other provisions necessary for thermal expansion and contraction. Scaled manufacturer's catalog data may be submitted for factory fabricated items.

1.4.2 Finish Samples

Submit two color charts and two finish sample chips from manufacturer's standard color and finish options for each type of finish indicated.

1.4.3 Operation and Maintenance Data

Submit detailed instructions for installation and quality control during installation, cleaning and maintenance, for each type of assembly indicated.

1.5 DELIVERY, HANDLING, AND STORAGE

Package and protect materials during shipment. Uncrate and inspect materials for damage, dampness, and wet-storage stains upon delivery to the job site. Remove from the site and replace damaged materials that cannot be restored to like-new condition. Handle sheet metal items to avoid damage to surfaces, edges, and ends. Store materials in dry, weather-tight, ventilated areas until installation.

PART 2 PRODUCTS

2.1 MATERIALS

Do not use lead, lead-coated metal, or galvanized steel. Use any metal listed by SMACNA 1793 for a particular item, unless otherwise indicated. Provide materials, thicknesses, and configurations in accordance with SMACNA 1793 for each material. Different items need not be of the same
metal, except that contact between dissimilar metals must be avoided.

Furnish sheet metal items in 8 to 10 foot lengths. Single pieces less than 8 feet long may be used to connect to factory-fabricated inside and outside corners, and at ends of runs. Factory fabricate corner pieces with minimum 12 inch legs. Provide accessories and other items essential to complete the sheet metal installation. Provide accessories made of the same or compatible materials as the items to which they are applied. Fabricate sheet metal items of the materials specified below and to the gage, thickness, or weight shown in Table I at the end of this section. Provide sheet metal items with mill finish unless specified otherwise. Where more than one material is listed for a particular item in Table I, each is acceptable and may be used, except as follows:

2.1.1 Exposed Sheet Metal Items

Must be of the same material. Consider the following as exposed sheet metal: gutters, including hangers; downspouts; cap, valley, steeped, base, and eave flashings and related accessories.

2.1.2 Steel Sheet, Zinc-Coated (Galvanized)

Provide in accordance with ASTM A653/A653M.

2.1.3 Zinc Sheet and Strip

Provide in accordance with ASTM B69, Type I, a minimum of 0.024 inch thick.

2.1.4 Aluminum Alloy Sheet and Plate

Provide in accordance with ASTM B209 anodized clear form alloy, and temper appropriate for use.

2.1.4.1 Alclad

When fabricated of aluminum, fabricate the following items with Alclad 3003, Alclad 3004, or Alclad 3005, clad on both sides unless otherwise indicated.

a. Gutters, downspouts, and hangers
b. Gravel stops and fasciae
c. Flashing

2.1.5 Finishes

Provide exposed exterior sheet metal and aluminum with a baked on, factory applied color coating of polyvinylidene fluoride (PVF2) or approved equal fluorocarbon coating. Dry film thickness of coatings must be 0.8 to 1.3 mils. Color to be selected from manufacturer's standard range of color choices. Field applications of color coatings are prohibited and will be rejected.

2.1.6 Scuppers

Line interiors of scupper openings with sheet metal. Provide a drip edge at bottom edges with returns of not less than one inch against the face of the outside wall at the top and sides. Provide the perimeter of the lining
approximately 1/2 inch less than the perimeter of the scupper.

2.1.7 Conductor Heads

Provide conductor heads and screens in the same material as downspouts. Provide outlet tubes not less than 4 inches long.

2.1.8 Asphalt Primer

Provide in accordance with ASTM D41/D41M.

2.1.9 Fasteners

Use the same metal as, or a metal compatible with the item fastened. Confirm compatibility of fasteners and items to be fastened to avoid galvanic corrosion due to dissimilar materials.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Workmanship

Make lines and angles sharp and true. Free exposed surfaces from visible wave, warp, buckle, and tool marks. Fold back exposed edges neatly to form a 1/2 inch hem on the concealed side. Make sheet metal exposed to the weather watertight with provisions for expansion and contraction.

Make surfaces to receive sheet metal plumb and true, clean, even, smooth, dry, and free of defects and projections. For installation of items not shown in detail or not covered by specifications conform to the applicable requirements of SMACNA 1793, Architectural Sheet Metal Manual. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight. Join sheet metal items together as shown in Table II.

3.1.2 Nailing

Confine nailing of sheet metal generally to sheet metal having a maximum width of 18 inches. Confine nailing of flashing to one edge only. Space nails evenly not over 3 inch on center and approximately 1/2 inch from edge unless otherwise specified or indicated. Face nailing will not be permitted. Where sheet metal is applied to other than wood surfaces, include in shop drawings, the locations for sleepers and nailing strips required to secure the work.

3.1.3 Cleats

Provide cleats for sheet metal 18 inches and over in width. Space cleats evenly not over 12 inches on center unless otherwise specified or indicated. Unless otherwise specified, provide cleats of 2 inches wide by 3 inches long and of the same material and thickness as the sheet metal being installed. Secure one end of the cleat with two nails and the cleat folded back over the nailheads. Lock the other end into the seam. Where the fastening is to be made to concrete or masonry, use screws and drive in expansion shields set in concrete or masonry. Pre-tin cleats for soldered seams.
3.1.4 Bolts, Rivets, and Screws

Install bolts, rivets, and screws where indicated or required. Provide compatible washers where required to protect surface of sheet metal and to provide a watertight connection. Provide mechanically formed joints in aluminum sheets 0.040 inches or less in thickness.

3.1.5 Seams

Straight and uniform in width and height with no solder showing on the face.

3.1.5.1 Flat-lock Seams

Finish not less than 3/4 inch wide.

3.1.5.2 Lap Seams

Finish soldered seams not less than one inch wide. Overlap seams not soldered, not less than 3 inches.

3.1.5.3 Loose-Lock Expansion Seams

Not less than 3 inches wide; provide minimum one inch movement within the joint. Completely fill the joints with the specified sealant, applied at not less than 1/8 inch thick bed.

3.1.5.4 Flat Seams

Make seams in the direction of the flow.

3.1.6 Soldering

Where soldering is specified, apply to copper, terne-coated stainless steel, zinc-coated steel, and stainless steel items. Pre-tin edges of sheet metal before soldering is begun. Seal the joints in aluminum sheets of 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.6.1 Edges

Scrape or wire-brush the edges of lead-coated material to be soldered to produce a bright surface. Flux brush the seams in before soldering. Treat with soldering acid flux the edges of stainless steel to be pre-tinned. Seal the joints in aluminum sheets of 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.7 Protection from Contact with Dissimilar Materials

3.1.7.1 Aluminum

Do not allow aluminum surfaces in direct contact with other metals except stainless steel, zinc, or zinc coating. Where aluminum contacts another metal, paint the dissimilar metal with a primer followed by two coats of aluminum paint. Where drainage from a dissimilar metal passes over aluminum, paint the dissimilar metal with a non-lead pigmented paint.

3.1.7.2 Metal Surfaces

Paint surfaces in contact with mortar, concrete, or other masonry materials
with alkali-resistant coatings such as heavy-bodied bituminous paint.

3.1.7.3 Wood or Other Absorptive Materials

Paint surfaces that may become repeatedly wet and in contact with metal with two coats of aluminum paint or a coat of heavy-bodied bituminous paint.

3.1.8 Expansion and Contraction

Provide expansion and contraction joints at not more than 32 foot intervals for aluminum and at not more than 40 foot intervals for other metals. Provide an additional joint where the distance between the last expansion joint and the end of the continuous run is more than half the required interval. Space joints evenly. Join extruded aluminum gravel stops and fasciae by expansion and contraction joints spaced not more than 12 feet apart.

3.1.9 Base Flashing

Lay the base flashings with each course of the roof covering, shingle fashion, where practicable, where sloped roofs abut chimneys, curbs, walls, or other vertical surfaces. Extend up vertical surfaces of the flashing not less than 8 inches and not less than 4 inches under the roof covering. Where finish wall coverings form a counter flashing, extend the vertical leg of the flashing up behind the applied wall covering not less than 6 inches. Overlap the flashing strips or shingles with the previously laid flashing not less than 3 inches. Fasten the strips or shingles at their upper edge to the deck. Horizontal flashing at vertical surfaces must extend vertically above the roof surface and fastened at their upper edge to the deck a minimum of 6 inches on center with large headed aluminum roofing nails a minimum of 2 inch lap of any surface. Solder end laps and provide for expansion and contraction. Extend the metal flashing over crickets at the up-slope side of curbs, and similar vertical surfaces extending through sloping roofs, the metal flashings. Extend the metal flashings onto the roof covering not less than 4.5 inches at the lower side of curbs and similar vertical surfaces extending through the roof decks. Install and fit the flashings so as to be completely weathertight. Provide factory-fabricated base flashing for interior and exterior corners. Do not use metal base flashing on built-up roofing.

3.1.10 Metal Drip Edges

Provide a metal drip edge, designed to allow water run-off to drip free of underlying construction, at eaves and rakes prior to the application of roofing shingles. Apply directly on the wood deck at the eaves and over the underlay along the rakes. Extend back from the edge of the deck not more than 3 inches and secure with compatible nails spaced not more than 10 inches on center along upper edge.

3.1.11 Gutters

The hung type of shape indicated and supported on underside by brackets that permit free thermal movement of the gutter. Provide gutters in sizes indicated complete with mitered corners, end caps, outlets, brackets, and other accessories necessary for installation. Bead with hemmed edge or reinforce the outer edge of gutter with a stiffening bar not less than 3/4 by 3/16 inch of material compatible with gutter. Fabricate gutters in sections not less than 8 feet. Lap the sections a minimum of one inch in the direction of flow or provide with concealed splice plate 6 inches
minimum. Join the gutters, other than aluminum, by riveted and soldered joints. Join aluminum gutters with riveted sealed joints. Provide expansion-type slip joints midway between outlets. Install gutters below slope line of the roof so that snow and ice can slide clear. Support gutters on by cleats spaced not less than 36 inches apart. Adjust gutters to slope uniformly to outlets, with high points occurring midway between outlets. Fabricate hangers and fastenings from compatible metals.

3.1.12 Downspouts

Space supports for downspouts according to the manufacturer's recommendation for the masonry or substrate. Types, shapes and sizes are indicated. Provide complete including elbows and offsets. Provide downspouts in approximately 10 foot lengths. Provide end joints to telescope not less than 1/2 inch and lock longitudinal joints. Provide gutter outlets with wire ball strainers for each outlet. Provide strainers to fit tightly into outlets and be of the same material used for gutters. Keep downspouts not less than one inch away from walls. Fasten to the walls at top, bottom, and at an intermediate point not to exceed 5 feet on center with leader straps or concealed rack-and-pin type fasteners. Form straps and fastenings of metal compatible with the downspouts.

3.1.12.1 Terminations

Neatly fit into the drainage connection the downspouts terminating in drainage lines and fill the joints with a portland cement mortar cap sloped away from the downspout. Provide downspouts terminating in splash blocks with elbow-type fittings. Provide splash pans as specified.

3.1.13 Expansion Joints

Provide expansion joints for roofs, walls, and floors as indicated. Provide expansion joints in continuous sheet metal at 40 foot intervals for copper and stainless steel. Provide evenly spaced joints. Provide an additional joint where the distance between the last expansion joint and the end of the continuous run is more than half the required interval spacing. Conform to the requirements of Table I.

3.1.13.1 Roof Expansion Joints

Consist of curb with wood nailing members on each side of joint, bituminous base flashing, metal counterflashing, and metal joint cover. Bituminous base flashing is specified in Roofing Section. Provide counterflashing as specified in paragraph COUNTERFLASHING, except as follows: Provide counterflashing with vertical leg of suitable depth to enable forming into a horizontal continuous cleat. Secure the inner edge to the nailing member. Make the outer edge projection not less than one inch for flashing on one side of the expansion joint and be less than the width of the expansion joint plus one inch for flashing on the other side of the joint. Hook the expansion joint cover over the projecting outer edges of counterflashing. Provide roof joint with a joint cover of the width indicated. Hook and lock one edge of the joint cover over the shorter projecting flange of the continuous cleat, and the other edge hooked over and loose locked with the longer projecting flange. Joints are specified in Table II.

3.1.14 Flashing at Roof Penetrations and Equipment Supports

Provide metal flashing for all pipes, ducts, and conduits projecting
through the roof surface and for equipment supports, guy wire anchors, and similar items supported by or attached to the roof deck.

3.1.15 Single Pipe Vents

See Table I, footnote (d). Set flange of sleeve in bituminous plastic cement and nail 3 inches on center. Bend the top of sleeve over and extend down into the vent pipe a minimum of 2 inches. For long runs or long rises above the deck, where it is impractical to cover the vent pipe with lead, use a two-piece formed metal housing. Set metal housing with a metal sleeve having a 4 inches roof flange in bituminous plastic cement and nailed 3 inches on center. Extend sleeve a minimum of 8 inches above the roof deck and lapped a minimum of 3 inches by a metal hood secured to the vent pipe by a draw band. Seal the area of hood in contact with vent pipe with an approved sealant.

3.2 PAINTING

Touch ups in the field may be applied only after metal substrates have been cleaned and pretreated in accordance with manufacturer's written instructions and products.

Field-paint sheet metal for separation of dissimilar materials.

3.2.1 Aluminum Surfaces

Clean with solvent and apply one coat of zinc-molybdate primer and one coat of aluminum paint.

3.3 CLEANING

Clean exposed sheet metal work at completion of installation. Remove grease and oil films, handling marks, contamination from steel wool, fittings and drilling debris, and scrub-clean. Free the exposed metal surfaces of dents, creases, waves, scratch marks, and solder or weld marks.

3.4 REPAIRS TO FINISH

Scratches, abrasions, and minor surface defects of finish may be repaired in accordance with the manufacturer's printed instructions and as approved. Repair damaged surfaces caused by scratches, blemishes, and variations of color and surface texture. Replace items which cannot be repaired.

3.5 FIELD QUALITY CONTROL

Establish and maintain a Quality Control Plan for sheet metal used in conjunction with roofing to assure compliance of the installed sheet metalwork with the contract requirements. Remove work that is not in compliance with the contract and replace or correct. Include quality control, but not be limited to, the following:

a. Observation of environmental conditions; number and skill level of sheet metal workers; condition of substrate.

b. Verification that specified material is provided and installed.

c. Inspection of sheet metalwork, for proper size(s) and thickness(es), fastening and joining, and proper installation.
3.5.1 Procedure

Submit for approval prior to start of roofing work. Include a checklist of points to be observed. Document the actual quality control observations and inspections. Furnish a copy of the documentation to the Contracting Officer at the end of each day.

-- End of Section --
This Page is Intentionally Left Blank
SECTION 07 61 00
SHEET METAL AND CLADDING
01/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-07 Certificates
Exposed Sheet Metal Items
Fasteners
Aluminum Alloy Sheet and Plate
Finish
Manufacturer's certificates attesting that materials meet specified requirements

1.3 DELIVERY, HANDLING, AND STORAGE

Package and protect materials during shipment. Uncrate and inspect materials for damage, dampness, and wet-storage stains upon delivery to the job site. Remove from the site and replace damaged materials that cannot be restored to like-new condition. Handle sheet metal items to avoid damage to surfaces, edges, and ends. Store materials in dry, weather-tight, ventilated areas until immediately before installation.
PART 2 PRODUCTS

2.1 MATERIALS

Furnish sheet metal items in 8-to 10-foot lengths. Single pieces less than 8 feet long may be used to connect to factory-fabricated inside and outside corners, and at ends of runs. Provide accessories and other items essential to complete the sheet metal installation. These accessories shall be made of the same materials as the items to which they are applied. Fabricate sheet metal items of the materials specified below and to a thickness of 0.032-inch. Sheet metal items shall have mill finish unless specified otherwise.

2.1.1 Exposed Sheet Metal Items

Shall be of the same material. The following items shall be considered as exposed sheet metal: gutters, including hangers; downspouts; gravel stops and fascias; cap, valley, steeped, base, and eave flashings and related accessories.

2.1.2 Aluminum Alloy Sheet and Plate

ASTM B 209, Alclad 3003, Alclad 3004, or Alclad 3005, embossed finish, clad on one side unless indicated otherwise; temper appropriate to end use. Thickness 0.040 inches.

2.1.2.1 Finish

Exposed exterior sheet metal items of aluminum shall have a baked-on, factory-applied color coating of polyvinylidene fluoride (PVF2) or other equivalent fluorocarbon coating applied after metal substrates have been cleaned and pretreated. Finish coating dry-film thickness shall be 0.8 to 1.3 mils and color shall be as directed.

2.1.2.2 Fasteners

The same metal or a metal compatible with the item fastened. Use stainless steel fasteners to fasten dissimilar materials.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Requirements

Make surfaces to receive sheet metal plumb and true, clean, even, smooth, dry, and free of defects and projections which might affect the application. For installation of items not shown in detail or not covered by specifications conform to the applicable requirements of the SMACNA Arch. Manual. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight.

3.1.2 Workmanship

Make lines, arrises, and angles sharp and true. Free exposed surfaces from visible wave, warp, and buckle, and tool marks. Fold back exposed edges neatly to form a 1/2-inch hem on the concealed side. Make sheet metal exposed to the weather watertight with provisions for expansion and
contraction.

3.1.3 Nailing

Confine nailing of sheet metal generally to sheet metal having a maximum width of 18 inches. Confine nailing or flashing to one edge only. Space nails evenly not over 3 inches on centers and approximately 1/2 inch from edge unless otherwise specified or indicated. Face nailing will not be permitted. Where sheet metal is applied to other than wood surfaces, include in shop drawings, the locations for sleepers and nailing strips required to secure the work.

3.1.4 Cleats

Provide cleats for sheet metal 18 inches and over in width. Space cleats evenly not over 12 inches on centers unless otherwise specified or indicated. Unless otherwise specified, cleats shall be not less than 2 inches wide by 3 inches long and of the same material and thickness as the sheet metal being installed. Secure one end of the cleat with two nails and the cleat folded back over the nailheads. Lock the other end into the seam. Pretin cleats for soldered seams.

3.1.5 Bolts, Rivets, and Screws

Install bolts, rivets, and screws where indicated or required. Provide compatible washers where required to protect surface of sheet metal and to provide a watertight connection.

3.1.6 Edges

Seal joints in aluminum sheets of 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.7 Protection from Contact with Dissimilar Materials

3.1.7.1 Aluminum

Aluminum surfaces shall not directly contact other metals except stainless steel, zinc, or zinc coating. Where aluminum contacts another metal, paint the dissimilar metal with a primer followed by two coats of aluminum paint. Where drainage from a dissimilar metal passes over aluminum, paint the dissimilar metal with a non-lead pigmented paint.

3.1.7.2 Metal Surfaces

Paint surfaces in contact with mortar, concrete, or other masonry materials with alkali-resistant coatings such as heavy-bodied bituminous paint.

3.1.7.3 Wood or Other Absorptive Materials

Paint surfaces that may become repeatedly wet and in contact with metal with two coats of aluminum paint or a coat of heavy-bodied bituminous paint.

3.2 CLEANING

Clean exposed sheet metal work at completion of installation. Remove grease and oil films, handling marks, contamination from steel wool, fittings and drilling debris, and scrub-clean. Free the exposed metal surfaces of dents, creases, waves, scratch marks, and solder or weld marks.
3.3 REPAIRS TO FINISH

Scratches, abrasions, and minor surface defects of finish may be repaired in accordance with the manufacturer's printed instructions and as approved. Repair damaged surfaces caused by scratches, blemishes, and variations of color and surface texture. Replace items which cannot be repaired.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

Furnish and install tested and listed firestopping systems, combination of materials, or devices to form an effective barrier against the spread of flame, smoke and gases, and maintain the integrity of fire resistance rated walls, partitions, floors, and ceiling-floor assemblies, including through-penetrations and construction joints and gaps.

a. Through-penetrations include the annular space around pipes, tubes, conduit, wires, cables and vents.

b. Construction joints include those used to accommodate expansion, contraction, wind, or seismic movement; firestopping material shall not interfere with the required movement of the joint.

Gaps requiring firestopping include gaps between the curtain wall and the floor slab and between the top of the fire-rated walls and the roof or floor deck above and at the intersection of shaft assemblies and adjoining fire resistance rated assemblies.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E2174 (2014b) Standard Practice for On-Site Inspection of Installed Fire Stops

1.3 SEQUENCING

Coordinate the specified work with other trades. Apply firestopping materials, at penetrations of pipes and ducts, prior to insulating, unless insulation meets requirements specified for firestopping. Apply firestopping materials at building joints and construction gaps, prior to completion of enclosing walls or assemblies. Cast-in-place firestop devices shall be located and installed in place before concrete placement. Pipe, conduit or cable bundles shall be installed through cast-in-place device after concrete placement but before area is concealed or made inaccessible. Firestop material shall be inspected and approved prior to final completion and enclosing of any assemblies that may conceal installed firestop.

1.4 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
1.5 QUALITY ASSURANCE

1.5.1 Installer

Engage an experienced Installer who is:

a. FM Research approved in accordance with FM 4991, operating as a UL Certified Firestop Contractor, or

b. Certified, licensed, or otherwise qualified by the firestopping manufacturer as having the necessary staff, training, and a minimum of 3 years experience in the installation of manufacturer's products in accordance with specified requirements. Submit documentation of this experience. A manufacturer's willingness to sell its firestopping products to the Contractor or to an installer engaged by the Contractor does not in itself confer installer qualifications on the buyer. The Installer shall have been trained by a direct representative of the manufacturer (not distributor or agent) in the proper selection and installation procedures. The installer shall obtain from the manufacturer and submit written certification of training, and retain proof of certification for duration of firestop installation.

1.5.2 Inspector Qualifications

The inspector shall meet the criteria contained in ASTM E699 for agencies involved in quality assurance and shall have a minimum of two years experience in construction field inspections of firestopping systems, products, and assemblies. The inspector shall be completely independent of, and divested from, the installer, the manufacturer, and the supplier of any material or item being inspected. The inspector shall not be a competitor of the installer, the contractor, the manufacturer, or supplier of any material or item being inspected. Include in the qualifications submittal a notarized statement assuring compliance with the requirements stated herein.

1.6 DELIVERY, STORAGE, AND HANDLING

Deliver materials in the original unopened packages or containers showing name of the manufacturer and the brand name. Store materials off the ground, protected from damage and exposure to elements and temperatures in accordance with manufacturer requirements. Remove damaged or deteriorated materials from the site. Use materials within their indicated shelf life.
PART 2 PRODUCTS

2.1 FIRESTOPPING SYSTEM

Submit detail drawings including manufacturer's descriptive data, typical
details conforming to UL Fire Resistance or other details certified by
another nationally recognized testing laboratory, installation instructions
or UL listing details for a firestopping assembly in lieu of fire-test data
or report. For those firestop applications for which no UL tested system
is available through a manufacturer, a manufacturer's engineering judgment,
derived from similar UL system designs or other tests, shall be submitted
for review and approval prior to installation. Submittal must indicate the
firestopping material to be provided for each type of application. When
more than a total of 5 penetrations and/or construction joints are to
receive firestopping, provide drawings that indicate location, "F" "T" and
"L" ratings, and type of application.

Also, submit a written report indicating locations of and types of
penetrations and types of firstopping used at each location; record type by
UL list printed numbers.

2.2 FIRESTOPPING MATERIALS

Provide firestopping materials, supplied from a single domestic
manufacturer, consisting of commercially manufactured, asbestos-free,
nontoxic products FM APP GUIDE approved, or UL listed, for use with
applicable construction and penetrating items, complying with the following
minimum requirements:

2.2.1 Fire Hazard Classification

Material shall have a flame spread of 25 or less, and a smoke developed
rating of 50 or less, when tested in accordance with ASTM E84 or UL 723.
Material shall be an approved firestopping material as listed in
UL Fire Resistance or by a nationally recognized testing laboratory.

2.2.2 Toxicity

Material shall be nontoxic and carcinogen free to humans at all stages of
application or during fire conditions and shall not contain hazardous
chemicals or require harmful chemicals to clean material or equipment.

2.2.3 Fire Resistance Rating

Firestop systems shall be UL Fire Resistance listed or FM APP GUIDE
approved with "F" rating at least equal to fire-rating of fire wall or
floor in which penetrated openings are to be protected. Where required,
firestop systems shall also have "T" rating at least equal to the
fire-rated floor in which the openings are to be protected.

2.2.3.1 Through-Penetrations

Firestopping materials for through-penetrations, as described in paragraph
SYSTEM DESCRIPTION, shall provide "F", "T" and "L" fire resistance ratings
in accordance with ASTM E814 or UL 1479. Fire resistance ratings shall be
as follows:
2.2.3.1.1 Penetrations of Fire Resistance Rated Walls and Partitions

F Rating = Rating of wall or partition being penetrated.

2.2.3.1.2 Penetrations of Fire Resistance Rated Floors, Floor-Ceiling Assemblies and the Ceiling Membrane of Roof-Ceiling Assemblies

F Rating = 1 hour, T Rating = 1 hour. Where the penetrating item is outside of a wall cavity the F rating must be equal to the fire resistance rating of the floor penetrated, and the T rating shall be in accordance with the requirements of ICC IBC.

2.2.3.1.3 Penetrations of Fire and Smoke Resistance Rated Walls, Floors, Floor-Ceiling Assemblies, and the ceiling membrane of Roof-Ceiling Assemblies

F Rating = 1 hour, T Rating = 1 hour and L Rating = <10 cfm/sf Where L rating is required.

2.2.3.2 Construction Joints and Gaps

Fire resistance ratings of construction joints, as described in paragraph SYSTEM DESCRIPTION, and gaps such as those between floor slabs and curtain walls shall be the same as the construction in which they occur. Construction joints and gaps shall be provided with firestopping materials and systems that have been tested in accordance with ASTM E119, ASTM E1966 or UL 2079 to meet the required fire resistance rating. Curtain wall joints shall be provided with firestopping materials and systems that have been tested in accordance with ASTM E2307 to meet the required fire resistance rating. Systems installed at construction joints shall meet the cycling requirements of ASTM E1399/E1399M or UL 2079. All joints at the intersection of the top of a fire resistance rated wall and the underside of a fire-rated floor, floor ceiling, or roof ceiling assembly shall provide a minimum class II movement capability.

2.2.4 Material Certification

Submit certificates attesting that firestopping material complies with the specified requirements. For all intumescent firestop materials used in through penetration systems, manufacturer shall provide certification of compliance with UL 1479.

PART 3 EXECUTION

3.1 PREPARATION

Areas to receive firestopping must be free of dirt, grease, oil, or loose materials which may affect the fitting or fire resistance of the firestopping system. For cast-in-place firestop devices, formwork or metal deck to receive device prior to concrete placement must be sound and capable of supporting device. Prepare surfaces as recommended by the manufacturer.

3.2 INSTALLATION

Completely fill void spaces with firestopping material regardless of geometric configuration, subject to tolerance established by the manufacturer. Firestopping systems for filling floor voids 4 inches or more in any direction must be capable of supporting the same load as the floor is designed to support or be protected by a permanent barrier to
prevent loading or traffic in the firestopped area. Install firestopping in accordance with manufacturer's written instructions. Provide tested and listed firestop systems in the following locations, except in floor slabs on grade:

a. Penetrations of duct, conduit, tubing, cable and pipe through floors and through fire-resistance rated walls, partitions, and ceiling-floor assemblies.

b. Penetrations of vertical shafts such as pipe chases, elevator shafts, and utility chutes.

c. Gaps at the intersection of floor slabs and curtain walls, including inside of hollow curtain walls at the floor slab.

d. Gaps at perimeter of fire-resistance rated walls and partitions, such as between the top of the walls and the bottom of roof decks.

e. Construction joints in floors and fire rated walls and partitions.

f. Other locations where required to maintain fire resistance rating of the construction.

3.2.1 Insulated Pipes and Ducts

Thermal insulation shall be cut and removed where pipes or ducts pass through firestopping, unless insulation meets requirements specified for firestopping. Replace thermal insulation with a material having equal thermal insulating and firestopping characteristics.

3.2.2 Fire Dampers

Firestop installed with fire damper must be tested and approved for use in fire damper system. Firestop installed with fire damper must be tested and approved for use in fire damper system.

3.2.3 Data and Communication Cabling

Cabling for data and communication applications shall be sealed with re-enterable firestopping products and devices as indicated.

3.2.3.1 Re-Enterable Devices

Firestopping devices shall be pre-manufactured modular devices, containing built-in self-sealing intumescent inserts. Firestopping devices shall allow for cable moves, additions or changes without the need to remove or replace any firestop materials. Devices must be capable of maintaining the fire resistance rating of the penetrated membrane at 0 percent to 100 percent visual fill of penetrants; while maintaining "L" rating of <10 cfm/sf measured at ambient temperature and 400 degrees F at 0 percent to 100 percent visual fill.

3.2.3.2 Re-Sealable Products

Provide firestopping pre-manufactured modular products, containing self-sealing intumescent inserts. Firestopping products shall allow for cable moves, additions or changes. Devices shall be capable of maintaining the fire resistance rating of the penetrated membrane at 0 percent to 100 percent visual fill of penetrants.
3.3 INSPECTION

For all projects, the firestopped areas shall not be covered or enclosed until inspection is complete and approved by the Contracting Officer. The inspector must inspect the applications initially to ensure adequate preparations (clean surfaces suitable for application, etc.) and periodically during the work to assure that the completed work has been accomplished according to the manufacturer's written instructions and the specified requirements. Submit written reports indicating locations of and types of penetrations and types of firestopping used at each location; type shall be recorded by UL listed printed numbers.

3.3.1 Inspection Standards

Inspect all firestopping in accordance to ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results to be submitted.

3.3.2 Inspection Reports

Submit inspection report stating that firestopping work has been inspected and found to be applied according to the manufacturer's recommendations and the specified requirements.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C509 (2006; R 2011) Elastomeric Cellular Preformed Gasket and Sealing Material
ASTM C734 (2015) Low-Temperature Flexibility of Latex Sealants After Artificial Weathering
ASTM C834 (2014) Latex Sealants
ASTM C919 (2012) Use of Sealants in Acoustical Applications
ASTM D217 (2010) Cone Penetration of Lubricating Grease

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
SD-03 Product Data

Sealants
Primers
Bond breakers
Backstops

Manufacturer's descriptive data including storage requirements, shelf life, curing time, instructions for mixing and application, and primer data (if required). Provide a copy of the Material Safety Data Sheet for each solvent, primer or sealant material.

SD-07 Certificates

Sealant

Certificates of compliance stating that the materials conform to the specified requirements.

1.3 ENVIRONMENTAL CONDITIONS

Apply sealant when the ambient temperature is between 40 and 90 degrees F.

1.4 DELIVERY AND STORAGE

Deliver materials to the job site in unopened manufacturers' external shipping containers, with brand names, date of manufacture, color, and material designation clearly marked thereon. Label elastomeric sealant containers to identify type, class, grade, and use. Carefully handle and store materials to prevent inclusion of foreign materials or subjection to sustained temperatures exceeding 90 degrees F or less than 0 degrees F.

1.5 QUALITY ASSURANCE

1.5.1 Compatibility with Substrate

Verify that each of the sealants are compatible for use with joint substrates.

1.5.2 Joint Tolerance

Provide joint tolerances in accordance with manufacturer's printed instructions.

1.5.3 Mock-Up

Project personnel is responsible for installing sealants in mock-up prepared by other trades, using materials and techniques approved for use on the project.

1.6 SPECIAL WARRANTY

Guarantee sealant joint against failure of sealant and against water penetration through each sealed joint for five years.
PART 2 PRODUCTS

2.1 SEALANTS

Provide sealant that has been tested and found suitable for the substrates to which it will be applied.

2.1.1 Interior Sealant

Provide ASTM C834. Location(s) and color(s) of sealant for the following:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Small voids between walls or partitions and adjacent lockers, casework, shelving, door frames, built-in or surface-mounted equipment and fixtures, and similar items.</td>
<td>As selected</td>
</tr>
<tr>
<td>b. Perimeter of frames at doors, windows, and access panels which adjoin exposed interior concrete and masonry surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>c. Joints of interior masonry walls and partitions which adjoin columns, pilasters, concrete walls, and exterior walls unless otherwise detailed.</td>
<td>As selected</td>
</tr>
<tr>
<td>d. Joints between edge members for acoustical tile and adjoining vertical surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>e. Interior locations, not otherwise indicated or specified, where small voids exist between materials specified to be painted.</td>
<td>As selected</td>
</tr>
<tr>
<td>f. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplaner tile surfaces meet.</td>
<td>As selected</td>
</tr>
<tr>
<td>g. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.</td>
<td>As selected</td>
</tr>
<tr>
<td>h. Behind escutcheon plates at valve pipe penetrations and showerheads in showers.</td>
<td>As selected</td>
</tr>
</tbody>
</table>

2.1.2 Exterior Sealant

For joints in vertical surfaces, provide ASTM C920, Type S or M, Grade NS, Class 25, Use NT. For joints in horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide location(s) and color(s) of sealant as follows:
Interior/Exterior Repairs at BEQ HP145

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joints and recesses formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Use sealant at both exterior and interior surfaces of exterior wall penetrations.</td>
<td>Match adjacent surface color</td>
</tr>
<tr>
<td>b. Joints between new and existing exterior masonry walls.</td>
<td>As selected</td>
</tr>
<tr>
<td>c. Masonry joints where shelf angles occur.</td>
<td>As selected</td>
</tr>
<tr>
<td>d. Joints in wash surfaces of stonework.</td>
<td>As selected</td>
</tr>
<tr>
<td>e. Expansion and control joints.</td>
<td>As selected</td>
</tr>
<tr>
<td>f. Interior face of expansion joints in exterior concrete or masonry walls where metal expansion joint covers are not required.</td>
<td>As selected</td>
</tr>
<tr>
<td>g. Voids where items pass through exterior walls.</td>
<td>As selected</td>
</tr>
<tr>
<td>h. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels.</td>
<td>As selected</td>
</tr>
<tr>
<td>i. Metal-to-metal joints where sealant is indicated or specified.</td>
<td>As selected</td>
</tr>
<tr>
<td>j. Joints between ends of gravel stops, fascias, copings, and adjacent walls.</td>
<td>As selected</td>
</tr>
</tbody>
</table>

2.1.3 Floor Joint Sealant

ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide location(s) and color(s) of sealant as follows:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Seats of metal thresholds for exterior doors.</td>
<td>Gray</td>
</tr>
</tbody>
</table>
b. Control and expansion joints in floors, slabs, ceramic tile, and walkways. | As selected

2.1.4 Acoustical Sealant

Rubber or polymer-based acoustical sealant conforming to ASTM C919 must have a flame spread of 25 or less and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealant must have a consistency of 250 to 310 when tested in accordance with ASTM D217, and must remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C734, and must be non-staining.

2.1.5 Preformed Sealant

Provide preformed sealant of polybutylene or isoprene-butylene based pressure sensitive weather resistant tape or bead sealant capable of sealing out moisture, air and dust when installed as recommended by the manufacturer. At temperatures from minus 30 to plus 160 degrees F, the sealant must be non-bleeding and no loss of adhesion.

2.1.5.1 Tape

Tape sealant: Provide cross-section dimensions of joint width.

2.1.5.2 Bead

Bead sealant: Provide cross-section dimensions of joint width.

2.1.5.3 Foam Strip

Provide foam strip of polyurethane foam; with cross-section dimensions of joint width. Provide foam strip capable of sealing out moisture, air, and dust when installed and compressed as recommended by the manufacturer. Service temperature must be minus 40 to plus 275 degrees F. Furnish untreated strips with adhesive to hold them in place. Do not allow adhesive to stain or bleed into adjacent finishes. Saturate treated strips with butylene waterproofing or impregnated with asphalt.

2.2 PRIMERS

Provide a nonstaining, quick-drying type and consistency recommended by the sealant manufacturer for the particular application.

2.3 BOND BREAKERS

Provide the type and consistency recommended by the sealant manufacturer to prevent adhesion of the sealant to backing or to bottom of the joint.

2.4 BACKSTOPS

Provide glass fiber roving or neoprene, butyl, polyurethane, or polyethylene foams free from oil or other staining elements as recommended by sealant manufacturer. Provide 25 to 33 percent oversized backing for closed cell and 40 to 50 percent oversized backing for open cell material,
unless otherwise indicated. Make backstop material compatible with sealant. Do not use oakum and other types of absorptive materials as backstops.

2.4.1 Rubber

Conform to ASTM D1056, Type 2, closed cell, Class A, Grade 1, round cross section for cellular rubber sponge backing.

2.4.2 PVC

Conform to ASTM D1667, Grade VO 12, open-cell foam, round cross section for Polyvinyl chloride (PVC) backing.

2.4.3 Synthetic Rubber

Conform to ASTM C509, Option I, Type I preformed rods or tubes for Synthetic rubber backing.

2.4.4 Neoprene

Conform to ASTM D1056, closed cell expanded neoprene cord Type 2, Class C, Grade 2C2 for Neoprene backing.

2.4.5 Butyl Rubber Based

Provide Butyl Rubber Based Sealants of single component, solvent release, color as selected, conforming to ASTM C1311.

2.4.6 Silicon Rubber Base

Provide Silicon Rubber Based Sealants of single component, solvent release, color as selected, conforming to ASTM C920, Non-sag, Type 1, Grade 1, Class 25.

2.5 CAULKING

Conform to ASTM D2452 and ASTM D2453, Type 1, for Oil- and resin-based caulking.

2.6 CLEANING SOLVENTS

Provide type(s) recommended by the sealant manufacturer.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Clean surfaces from dirt frost, moisture, grease, oil, wax, lacquer, paint, or other foreign matter that would tend to destroy or impair adhesion. Remove oil and grease with solvent. Surfaces must be wiped dry with clean cloths. When resealing an existing joint, remove existing caulk or sealant prior to applying new sealant. For surface types not listed below, contact sealant manufacturer for specific recommendations.

3.1.1 Steel Surfaces

Remove loose mill scale by sandblasting or, if sandblasting is impractical or would damage finish work, scraping and wire brushing. Remove protective
coatings by sandblasting or using a residue-free solvent.

3.1.2 Aluminum or Bronze Surfaces

Remove temporary protective coatings from surfaces that will be in contact with sealant. When masking tape is used as a protective coating, remove tape and any residual adhesive just prior to sealant application. For removing protective coatings and final cleaning, use nonstaining solvents recommended by the manufacturer of the item(s) containing aluminum or bronze surfaces.

3.1.3 Concrete and Masonry Surfaces

Where surfaces have been treated with curing compounds, oil, or other such materials, remove materials by sandblasting or wire brushing. Remove laitance, efflorescence and loose mortar from the joint cavity.

3.1.4 Wood Surfaces

Keep wood surfaces to be in contact with sealants free of splinters and sawdust or other loose particles.

3.2 SEALANT PREPARATION

Do not add liquids, solvents, or powders to the sealant. Mix multicomponent elastomeric sealants in accordance with manufacturer's instructions.

3.3 APPLICATION

3.3.1 Joint Width-To-Depth Ratios

a. Acceptable Ratios:

<table>
<thead>
<tr>
<th>JOINT WIDTH</th>
<th>JOINT DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
</tbody>
</table>

For metal, glass, or other nonporous surfaces:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 inch (minimum)</td>
<td>1/4 inch</td>
<td>1/4 inch</td>
</tr>
<tr>
<td>over 1/4 inch</td>
<td>1/2 of width</td>
<td>Equal to width</td>
</tr>
</tbody>
</table>

For wood, concrete, masonry, stone, or :

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 inch (minimum)</td>
<td>1/4 inch</td>
<td>1/4 inch</td>
</tr>
<tr>
<td>over 1/4 inch to 1/2 inch</td>
<td>1/4 inch</td>
<td>Equal to width</td>
</tr>
<tr>
<td>over 1/2 inch to 2 inch</td>
<td>1/2 inch</td>
<td>5/8 inch</td>
</tr>
<tr>
<td>Over 2 inch</td>
<td>As recommended by sealant manufacturer</td>
<td></td>
</tr>
</tbody>
</table>

b. Unacceptable Ratios: Where joints of acceptable width-to-depth ratios have not been provided, clean out joints to acceptable depths and grind or cut to acceptable widths without damage to the adjoining work.
Grinding is not required on metal surfaces.

3.3.2 Masking Tape

Place masking tape on the finish surface on one or both sides of a joint cavity to protect adjacent finish surfaces from primer or sealant smears. Remove masking tape within 10 minutes after joint has been filled and tooled.

3.3.3 Backstops

Install backstops dry and free of tears or holes. Tightly pack the back or bottom of joint cavities with backstop material to provide a joint of the depth specified. Install backstops in the following locations:

a. Where indicated.

b. Where backstop is not indicated but joint cavities exceed the acceptable maximum depths specified in paragraph entitled, "Joint Width-to-Depth Ratios".

3.3.4 Primer

Immediately prior to application of the sealant, clean out loose particles from joints. Where recommended by sealant manufacturer, apply primer to joints in concrete masonry units, wood, and other porous surfaces in accordance with sealant manufacturer's instructions. Do not apply primer to exposed finish surfaces.

3.3.5 Bond Breaker

Provide bond breakers to the back or bottom of joint cavities, as recommended by the sealant manufacturer for each type of joint and sealant used, to prevent sealant from adhering to these surfaces. Carefully apply the bond breaker to avoid contamination of adjoining surfaces or breaking bond with surfaces other than those covered by the bond breaker.

3.3.6 Sealants

Provide a sealant compatible with the material(s) to which it is applied. Do not use a sealant that has exceeded shelf life or has jelled and can not be discharged in a continuous flow from the gun. Apply the sealant in accordance with the manufacturer's printed instructions with a gun having a nozzle that fits the joint width. Force sealant into joints to fill the joints solidly without air pockets. Tool sealant after application to ensure adhesion. Make sealant uniformly smooth and free of wrinkles. Upon completion of sealant application, roughen partially filled or unfilled joints, apply sealant, and tool smooth as specified. Apply sealer over the sealant when and as specified by the sealant manufacturer.

3.4 PROTECTION AND CLEANING

3.4.1 Protection

Protect areas adjacent to joints from sealant smears. Masking tape may be used for this purpose if removed 5 to 10 minutes after the joint is filled.
3.4.2 Final Cleaning

Upon completion of sealant application, remove remaining smears and stains and leave the work in a clean and neat condition.

a. Masonry and Other Porous Surfaces: Immediately scrape off fresh sealant that has been smeared on masonry and rub clean with a solvent as recommended by the sealant manufacturer. Allow excess sealant to cure for 24 hour then remove by wire brushing or sanding.

b. Metal and Other Non-Porous Surfaces: Remove excess sealant with a solvent-moistened cloth.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016)
Structural Welding Code – Steel

ASTM INTERNATIONAL (ASTM)

ASTM C612 (2014) Mineral Fiber Block and Board Thermal Insulation

ASTM E1300 (2012a; E 2012) Determining Load Resistance of Glass in Buildings

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.115 (2014) Hardware Preparation in Steel Doors and Steel Frames

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 105 (2016) Standard for Installation of Smoke Door Assemblies and Other Opening Protectives

NFPA 80 (2016) Standard for Fire Doors and Other Opening Protectives

STEEL DOOR INSTITUTE (SDI/DOOR)

SDI/DOOR 113 (2001; R2006) Standard Practice for Determining the Steady State Thermal Transmittance of Steel Door and Frame Assemblies

SDI/DOOR A250.11 (2001) Recommended Erection Instructions for Steel Frames

SDI/DOOR A250.4 (2011) Test Procedure and Acceptance Criteria for Physical Endurance for Steel Doors and Hardware Reinforcing

SDI/DOOR A250.6 (2003; R2009) Recommended Practice for Hardware Reinforcing on Standard Steel Doors and Frames

SDI/DOOR A250.8 (2003; R2008) Recommended Specifications for Standard Steel Doors and Frames

UNDERWRITERS LABORATORIES (UL)

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Doors

Frames

Accessories

Show elevations, construction details, metal gages, hardware provisions, method of glazing, and installation details.
Schedule of doors
Schedule of frames
Submit door and frame locations.
SD-03 Product Data
Doors
Frames
Accessories
Submit manufacturer's descriptive literature for doors, frames, and accessories. Include data and details on door construction, panel (internal) reinforcement, insulation, and door edge construction. When "custom hollow metal doors" are provided in lieu of "standard steel doors," provide additional details and data sufficient for comparison to SDI/DOOR A250.8 requirements.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver doors, frames, and accessories undamaged and with protective wrappings or packaging. Strap knock-down frames in bundles. Provide temporary steel spreaders securely fastened to the bottom of each welded frame. Store doors and frames on platforms under cover in clean, dry, ventilated, and accessible locations, with 1/4 inch airspace between doors. Remove damp or wet packaging immediately and wipe affected surfaces dry. Replace damaged materials with new.

PART 2 PRODUCTS

2.1 STANDARD STEEL DOORS

SDI/DOOR A250.8, except as specified otherwise. Prepare doors to receive door hardware as specified in Section 08 71 00. Undercut where indicated. Exterior doors shall have top edge closed flush and sealed to prevent water intrusion. Doors shall be 1-3/4 inch thick, unless otherwise indicated. Provide exterior glazing in accordance with ASTM F2248 and ASTM E1300.

2.1.1 Classification - Level, Performance, Model
2.1.1.1 Heavy Duty Doors

SDI/DOOR A250.8, Level 2, physical performance Level B, Model 1, with core construction as required by the manufacturer for interior doors and for exterior doors, of size(s) and design(s) indicated. Where vertical stiffener cores are required, the space between the stiffeners shall be filled with mineral board insulation. Provide Level 2 for all doors.

2.2 CUSTOM HOLLOW METAL DOORS

Provide custom hollow metal doors where nonstandard steel doors are indicated. At the Contractor's option, custom hollow metal doors may be provided in lieu of standard steel doors. Door size(s), design(s), materials, construction, gages, and finish shall be as specified for standard steel doors and shall comply with the requirement of NAAMM HMMA HMM. Fill all spaces in doors with insulation. Close top and bottom edges with steel channels not lighter than 16 gage. Close tops of exterior doors
flush with an additional channel and seal to prevent water intrusion. Prepare doors to receive hardware specified in Section 08 71 00 DOOR HARDWARE. Undercut doors where indicated. Doors shall be 1-3/4 inch thick, unless otherwise indicated.

2.3 INSULATED STEEL DOOR SYSTEMS

At the option of the Contractor, insulated steel doors and frames may be provided in lieu of Level 1 standard steel doors and frames. Door size(s), design, and material shall be as specified for standard steel doors. Insulated steel doors shall have a core of polyurethane foam and an R factor of 10.0 or more (based on a k value of 0.16); face sheets, edges, and frames of galvanized steel not lighter than 23 gage, 16 gage, and 16 gage respectively; magnetic weatherstripping; nonremovable-pin hinges; thermal-break aluminum threshold; and vinyl door bottom. Doors and frames shall receive phosphate treatment, rust-inhibitive primer, and baked acrylic enamel finish. Doors shall have been tested in accordance with SDI/DOOR A250.4 and shall have met the requirements for Level C. Prepare doors to receive specified hardware. Doors shall be 1-3/4 inch thick. Provide insulated steel doors and frames where shown.

2.4 SOUND RATED STEEL DOORS

Doors shall have a Sound Transmission Class (STC) as indicated on the drawings.

2.5 ACCESSORIES

2.5.1 Louvers

2.5.1.1 Interior Louvers

SDI/DOOR 111, Louvers shall be stationary sightproof and lightproof type where scheduled. Louvers for lightproof doors shall not transmit light. Detachable moldings on room or non security side of door; on security side of door, moldings to be integral part of louver. Form louver frames of 20 gage steel and louver blades of a minimum 24 gage. Louvers for lightproof doors shall have minimum of 20 percent net-free opening. Sightproof louvers to be inverted "V" blade design with minimum 55 and inverted blade design with minimum 40 percent net-free opening.

2.5.1.2 Exterior Louvers

Louvers shall be inverted "Y" type with minimum of 35 percent net-free opening. Weld or tenon louver blades to continuous channel frame and weld assembly to door to form watertight assembly. Form louvers of hot-dip galvanized steel of same gage as door facings. Louvers shall have steel-framed insect screens secured to room side and readily removable. Provide aluminum wire cloth, 18 by 18 or 18 by 16 inch mesh, for insect screens. Net-free louver area to be before screening.

2.5.2 Astragals

For pairs of exterior steel doors which will not have aluminum astragals or removable mullions, as specified in Section 08 71 00 DOOR HARDWARE provide overlapping steel astragals with the doors. For interior pairs of fire rated and smoke control doors, provide stainless steel astragals complying with NFPA 80 for fire rated assemblies and NFPA 105 for smoke control assemblies.
2.5.3 Moldings

Provide moldings around glass of interior and exterior doors and louvers of interior doors. Provide nonremovable moldings on outside of exterior doors and on corridor side of interior doors. Other moldings may be stationary or removable. Secure inside moldings to stationary moldings, or provide snap-on moldings. Muntins shall interlock at intersections and shall be fitted and welded to stationary moldings.

2.6 INSULATION CORES

Insulated cores shall be of type specified, and provide an apparent U-factor of .48 in accordance with SDI/DOOR 113 and shall conform to:

a. Rigid Cellular Polyisocyanurate Foam: ASTM C591, Type I or II, foamed-in-place or in board form, with oxygen index of not less than 22 percent when tested in accordance with ASTM D2863; or

b. Rigid Polystyrene Foam Board: ASTM C578, Type I or II; or

c. Mineral board: ASTM C612, Type I.

2.7 STANDARD STEEL FRAMES

SDI/DOOR A250.8, Level 1, except as otherwise specified. Form frames to sizes and shapes indicated, with welded corners. Provide steel frames for doors, transoms, sidelights, mullions, cased openings, and interior glazed panels, unless otherwise indicated.

2.7.1 Welded Frames

Provide welded frames at steel stud wall construction and new masonry wall construction. Grout full all frames constructed in masonry walls.

Continuously weld frame faces at corner joints. Mechanically interlock or continuously weld stops and rabbets. Grind welds smooth.

Weld frames in accordance with the recommended practice of the Structural Welding Code Sections 1 through 6, AWS D1.1/D1.1M and in accordance with the practice specified by the producer of the metal being welded.

2.7.2 Knock-Down Frames

Provide knock down frames for frame replacement in masonry walls. Grout full all frames constructed in masonry walls.

Design corners for simple field assembly by concealed tenons, splice plates, or interlocking joints that produce square, rigid corners and a tight fit and maintain the alignment of adjoining members. Provide locknuts for bolted connections.

2.7.3 Mullions and Transom Bars

Mullions and transom bars shall be closed or tubular construction and be a member with heads and jambs butt-welded thereto. Bottom of door mullions shall have adjustable floor anchors and spreader connections.
2.7.4 Stops and Beads

Form stops and beads from 20 gage steel. Provide for glazed and other openings in standard steel frames. Secure beads to frames with oval-head, countersunk Phillips self-tapping sheet metal screws or concealed clips and fasteners. Space fasteners approximately 12 to 16 inch on center. Miter molded shapes at corners. Butt or miter square or rectangular beads at corners.

2.7.5 Terminated Stops

Where indicated, terminate interior door frame stops 6 inch above floor.

2.7.6 Cased Openings

Fabricate frames for cased openings of same material, gage, and assembly as specified for metal door frames, except omit door stops and preparation for hardware.

2.7.7 Anchors

Provide anchors to secure the frame to adjoining construction. Provide steel anchors, zinc-coated or painted with rust-inhibitive paint, not lighter than 18 gage.

2.7.7.1 Wall Anchors

Provide at least three anchors for each jamb. For frames which are more than 7.5 feet in height, provide one additional anchor for each jamb for each additional 2.5 feet or fraction thereof.

a. Masonry: Provide anchors of corrugated or perforated steel straps or 3/16 inch diameter steel wire, adjustable or T-shaped;

b. Stud partitions: Weld or otherwise securely fasten anchors to backs of frames. Design anchors to be fastened to closed steel studs with sheet metal screws, and to open steel studs by wiring or welding;

c. Completed openings: Secure frames to previously placed concrete or masonry with expansion bolts in accordance with SDI/DOOR 111; and

d. Solid plaster partitions: Secure anchors solidly to back of frames and tie into the lath. Provide adjustable top strut anchors on each side of frame for fastening to structural members or ceiling construction above. Size and type of strut anchors shall be as recommended by the frame manufacturer.

2.7.7.2 Floor Anchors

Provide floor anchors drilled for 3/8 inch anchor bolts at bottom of each jamb member. Where floor fill occurs, terminate bottom of frames at the indicated finished floor levels and support by adjustable extension clips resting on and anchored to the structural slabs.

2.8 FIRE AND SMOKE DOORS AND FRAMES

NFPA 80 and NFPA 105 and this specification. The requirements of NFPA 80
and NFPA 105 shall take precedence over details indicated or specified.

2.8.1 Labels

Fire doors and frames shall bear the label of Underwriters Laboratories (UL), Factory Mutual Engineering and Research (FM), or Warnock Hersey International (WHI) attesting to the rating required. Testing shall be in accordance with NFPA 252 or UL 10C. Labels shall be metal with raised letters, and shall bear the name or file number of the door and frame manufacturer. Labels shall be permanently affixed at the factory to frames and to the hinge edge of the door. Door labels shall not be painted.

2.8.2 Oversized Doors

For fire doors and frames which exceed the size for which testing and labeling are available, furnish certificates stating that the doors and frames are identical in design, materials, and construction to a door which has been tested and meets the requirements for the class indicated.

2.8.3 Astragal on Fire and Smoke Doors

On pairs of labeled fire doors, conform to NFPA 80 and UL requirements. On smoke control doors, conform to NFPA 105.

2.9 WEATHERSTRIPPING

As specified in Section 08 71 00 DOOR HARDWARE.

2.10 HARDWARE PREPARATION

Provide minimum hardware reinforcing gages as specified in SDI/DOOR A250.6. Drill and tap doors and frames to receive finish hardware. Prepare doors and frames for hardware in accordance with the applicable requirements of SDI/DOOR A250.8 and SDI/DOOR A250.6. For additional requirements refer to ANSI/BHMA A156.115. Drill and tap for surface-applied hardware at the project site. Build additional reinforcing for surface-applied hardware into the door at the factory. Locate hardware in accordance with the requirements of SDI/DOOR A250.8, as applicable. Punch door frames to receive a minimum of two rubber or vinyl door silencers on lock side of single doors and one silencer for each leaf at heads of double doors. Set lock strikes out to provide clearance for silencers.

2.11 FINISHES

2.11.1 Factory-Primed Finish

All surfaces of doors and frames shall be thoroughly cleaned, chemically treated and factory primed with a rust inhibiting coating as specified in SDI/DOOR A250.8, or paintable A25 galvannealed steel without primer. Where coating is removed by welding, apply touchup of factory primer.

2.11.2 Electrolytic Zinc-Coated Anchors and Accessories

Provide electrolytically deposited zinc-coated steel in accordance with ASTM A879/A879M, Commercial Quality, Coating Class A. Phosphate treat and factory prime zinc-coated surfaces as specified in SDI/DOOR A250.8.
2.12 FABRICATION AND WORKMANSHIP

Finished doors and frames shall be strong and rigid, neat in appearance, and free from defects, waves, scratches, cuts, dents, ridges, holes, warp, and buckle. Molded members shall be clean cut, straight, and true, with joints coped or mitered, well formed, and in true alignment. Dress exposed welded and soldered joints smooth. Design door frame sections for use with the wall construction indicated. Corner joints shall be well formed and in true alignment. Conceal fastenings where practicable.

2.12.1 Grouted Frames

Grout all masonry frames. Fill the stops with strips of rigid insulation to keep the grout out of the stops and to facilitate installation of stop-applied head and jamb seals and silencers.

2.13 PROVISIONS FOR GLAZING

Materials are specified in Section 08 81 00, GLAZING.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Frames

Set frames in accordance with SDI/DOOR A250.11. Plumb, align, and brace securely until permanent anchors are set. Anchor bottoms of frames with expansion bolts or powder-actuated fasteners. Build in or secure wall anchors to adjoining construction.

3.1.2 Doors

Hang doors in accordance with clearances specified in SDI/DOOR A250.8. After erection and glazing, clean and adjust hardware.

3.1.3 Fire and Smoke Doors and Frames

Install fire doors and frames, including hardware, in accordance with NFPA 80. Install fire rated smoke doors and frames in accordance with NFPA 80 and NFPA 105.

3.2 PROTECTION

Protect doors and frames from damage. Repair damaged doors and frames prior to completion and acceptance of the project or replace with new, as directed. Wire brush rusted frames until rust is removed. Clean thoroughly. Apply an all-over coat of rust-inhibitive paint of the same type used for shop coat.

3.3 CLEANING

Upon completion, clean exposed surfaces of doors and frames thoroughly. Remove mastic smears and other unsightly marks.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASCE 7 (2010; Errata 2011; Supp 1 2013) Minimum Design Loads for Buildings and Other Structures

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASME INTERNATIONAL (ASME)

ASME B29.400 (2001; R 2013) Combination, "H" Type Mill Chains, and Sprockets

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
- Overhead Coiling Doors
- Counterbalancing Mechanism
- Manual Door Operators
- Bottom Bars
- Guides
- Mounting Brackets
- Overhead Drum
- Hood
Installation Drawings

SD-03 Product Data
Overhead Coiling Doors
Hardware
Counterbalancing Mechanism
Manual Door Operators

SD-05 Design Data
Overhead Coiling Doors
Hardware
Counterbalancing Mechanism
Manual Door Operators

SD-10 Operation and Maintenance Data
Operation and Maintenance Manuals
Materials
Devices
Procedures
Manufacture's Brochures
Parts Lists

SD-11 Closeout Submittals
Warranty

1.3 QUALITY CONTROL

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver doors to the jobsite wrapped in a protective covering with the brands and names clearly marked thereon. Store doors in an adequately ventilated dry location that is free from dirt and dust, water, or other contaminants. Store in a manner that permits easy access for inspection and handling.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Doors to be coiling type, with interlocking slats, complete with anchoring and door hardware, guides, hood, and operating mechanisms, and designed for use on openings as indicated. Use grease-sealed or self-lubricating bearings for rotating members.
2.1.1 Design Requirements

2.1.1.1 Overhead Coiling Door Detail Shop Drawings

Provide installation drawings for overhead coiling door assemblies which show: elevations of each door type, shape and thickness of materials, finishes, details of joints and connections, details of guides and fittings, rough opening dimensions, location and description of hardware, anchorage locations, and counterbalancing mechanism and door operator details. Include a schedule showing the location of each door with the drawings.

2.1.2 Performance Requirements

2.1.2.1 Wind Loading

Design and fabricate door assembly to withstand the wind loading pressure of at least 20 pounds per square foot with a maximum deflection of 1/120 of the opening width. Provide test data showing compliance with ASTM E330/E330M. Sound engineering principles may be used to interpolate or extrapolate test results to door sizes not specifically tested. Ensure complete assembly meets or exceeds the requirements of ASCE 7.

2.1.2.2 Operational Cycle Life

Design all portions of the door, hardware and operating mechanism that are subject to movement, wear, or stress fatigue to operate through a minimum number of 10 cycles per day. One complete cycle of door operation is defined as when the door is in the closed position, moves to the fully open position, and returns to the closed position.

2.2 COMPONENTS

2.2.1 Overhead Coiling Doors

2.2.1.1 Curtain Materials and Construction

Provide curtain slats fabricated from aluminum sheets conforming to ASTM B209, or ASTM B221 extrusions, alloy and tempering standard from manufacturer for type of use and finish indicated; with a thickness of 0.050 inch. Fabricate doors from interlocking cold-rolled slats, with section profiles as specified, designed to withstand the specified wind loading. Ensure the provided slats are continuous without splices for the width of the door.

Provide slats filled with manufacturer's standard thermal insulation complying with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, according to ASTM E84. Enclose insulation completely within slat faces on interior surface of slats.

2.2.1.2 Insulated Curtains

Form Curtains from manufacturer's standard shapes of interlocking slats. Supply slat system with a minimum R-value of 4 when calculated in accordance with ASHRAE FUN IP. Slats to consist of a polystyrene core not less than 11/16-inch thick, completely enclosed within metal facings. Ensure the exterior face of slats are the same gauge as specified for curtains. Select an interior face not lighter than 0.0219-inches. The
insulated slat assembly requires a flame spread rating of not more than 25
and a smoke development factor of not more than 50 when tested in
accordance with ASTM E84.

2.2.1.3 Curtain Bottom Bar

Install curtain bottom bars as pairs of angles from the manufacturer's
standard steel, stainless and aluminum extrusions not less than 2.0 by
2.0-inches by 0.188-inch. Ensure steel extrusions conform to ASTM A36/A36M.
Stainless steel extrusions conforming to ASTM A666, Type 304. Aluminum
extrusions conforming to ASTM B221. Galvanize angles and fasteners in
accordance with ASTM A653/A653M and ASTM A924/A924M. Coat welds and
abrasions with paint conforming to ASTM A780/A780M.

2.2.1.4 Vision Panels

Provide complete manufacturer's standard vision panels assembly consisting
of clear acrylic glazing panels or fire-rated glass as required for the
type door. Set panels in a neoprene channel with a galvanized-steel frame
not less than 0.0359-inch uncoated thickness.

2.2.1.5 Locks

Provide end and/or wind locks of Grade B cast steel conforming to
ASTM A27/A27M, galvanized in accordance with ASTM A653/A653M,
ASTM A153/A153M and ASTM A924/A924M. Secure locks at every other curtain
slat.

2.2.1.6 Weather Stripping

Ensure weather-stripping at the door-head and jamb is 1/8-inch thick sheet
of natural or neoprene rubber with air baffles. Secure weather stripping
to the insides of hoods with galvanized-steel fasteners through continuous
galvanized-steel pressure bars at least 5/8-inch wide and 1/8-inch thick.

Ensure threshold weather-stripping is 1/8-inch thick sheet natural or
neoprene rubber secured to the bottom bars.

Provide weather-stripping of natural or neoprene rubber conforming to

2.2.1.7 Locking Devices

Ensure slide bolt engages through slots in tracks for locking by padlock,
located on both left and right jamb sides, operable from coil side.

Provide a locking device assembly which includes cylinder lock,
spring-loaded dead bolt, operating handle, cam plate, and adjustable
locking bars to engage through slots in tracks.

Provide chain lock keeper suitable for a standard padlock.

2.2.1.8 Safety Interlock

Equip power-operated doors with safety interlock switch to disengage power
supply when door is locked.
2.2.1.9 Overhead Drum

Fabricate drums from nominal 0.040-inch thick aluminum sheet complying with ASTM B209. Aluminum of alloy and temper recommended by manufacturer. Select finish for type of use and finish indicated.

2.2.2 Hardware

Ensure all hardware conforms to ASTM A153/A153M, ASTM A307, ASTM F568M, and ASTM A27/A27M.

2.2.2.1 Guides

Fabricate curtain jamb guides from the manufacturer's standard angles or channels of same material and finish as curtain slats unless otherwise indicated. Provide guides with sufficient depth and strength to retain curtain, and to withstand loading. Ensure curtain operates smoothly. Slot bolt holes for track adjustment.

Fabricate with aluminum angles. Provide windlock bars of same material when windlocks are required to meet specified wind load. Flare the top of inner and outer guide angles outwards to form bellmouth for smooth entry of curtain into guides. Provide removable guide stoppers to prevent over travel of curtain and bottom bar.

2.2.2.2 Equipment Supports

Fabricate door-operating equipment supports from the manufacturer's standard steel shapes and plates conforming to ASTM A36/A36M, galvanized in accordance with ASTM A653/A653M and ASTM A924/A924M. Size the shapes and plates in accordance with the industry standards for the size, weight, and type of door installation.

2.2.2.3 Hood

Provide a hood with a minimum aluminum 22-gauge B&S sheet metal, flanged at top for attachment to header and flanged at bottom to provide longitudinal stiffness. The hood encloses the curtain coil and counterbalance mechanism.

2.2.3 Counterbalancing Mechanism

Counterbalance doors by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted, around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed or self-lubricating bearings for rotating members.

2.2.3.1 Brackets

Provide the manufacturer's standard mounting brackets with one located at each end of the counterbalance barrel conforming to ASTM A48/A48M. Provide brackets of either cast iron or cold-rolled steel.

2.2.3.2 Counterbalance Barrels

Fabricate spring barrel of manufacturer's standard hot-formed, structural-quality, welded or seamless carbon-steel pipe, conforming to ASTM A53/A53M. Ensure the barrel is of sufficient diameter and wall thickness to support rolled-up curtain without distortion of slats. Limit
barrel deflection to not more than 0.03 inch per foot of span under full load.

a. Barrel

Provide steel pipe capable of supporting curtain load with maximum deflection of 0.03 inches per foot of width.

b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of door. Ensure that effort to operate manually operated units does not exceed 25 lbs. Provide wheel for applying and adjusting spring torque.

2.2.3.3 Spring Balance

Install one or more oil-tempered, heat-treated steel helical torsion springs within the barrel, capable of producing sufficient torque to assure easy operation of the door curtain. Provide and size springs to counterbalance weight of curtain, with uniform adjustment accessible from outside barrel. Secure ends of springs to barrel and shaft with cast-steel barrel plugs.

2.2.3.4 Torsion Rod for Counter Balance

Fabricate rod from the manufacturer's standard cold-rolled steel, sized to hold fixed spring ends and carry torsional load.

2.2.3.5 Counterbalance Shaft Assembly

a. Barrel

Provide steel pipe capable of supporting the curtain load with maximum deflection of 0.03 inches per foot of width.

b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of door. Ensure that maximum effort to operate does not exceed 25 pounds. Provide wheel for applying and adjusting spring torque.

2.2.4 Manual Door Operators

2.2.4.1 Manual Chain-Hoist Door Operators

Provide door operators which consist of an endless steel hand chain, chain-pocket wheel, guard, and a geared reduction unit with a maximum lifting force of 30 lbf. Required pull for operation cannot exceed 35 pounds.

Provide chain hoists with a self-locking mechanism allowing the curtain to be stopped at any point in its upward or downward travel and to remain in that position until moved to the fully open or closed position. Provide hand chains of cadmium-plated alloy steel conforming to ASME B29.400. Ensure yield point of the chain is at least three times the required hand-chain pull.
Provide chain sprocket wheels of cast iron conforming to ASTM A48/A48M.

2.2.5 Surface Finishing

Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. Noticeable variations in the same metal component are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved samples and are assembled or installed to minimize contrast.

PART 3 EXECUTION

3.1 INSTALLATION

Install overhead coiling door assembly, anchors and inserts for guides, brackets, motors, switches, hardware, and other accessories in accordance with approved detail drawings and manufacturer's written instructions. Upon completion of installation, ensure doors are free from all distortion.

Install overhead coiling doors, motors, hoods, and operators at the mounting locations as indicated for each door in the contract documents and as required by the manufacturer.

Install overhead coiling doors, switches, and controls along accessible routes in compliance with regulatory requirements for accessibility and as required by the manufacturer.

3.1.1 Field Painted Finish

Ensure field painted steel doors and frames are in accordance with Section and manufacturer's written instructions. Protect weather stripping from paint. Ensure finishes are free of scratches or other blemishes.

3.2 ADJUSTING AND CLEANING

3.2.1 Acceptance Provisions

After installation, adjust hardware and moving parts. Lubricate bearings and sliding parts as recommended by manufacturer to provide smooth operating functions for ease movement, free of warping, twisting, or distortion of the door assembly.

Adjust seals to provide weather-tight fit around entire perimeter.

Engage a factory-authorized service representative to perform startup service and checks according to manufacturer's written instructions.

Test the door opening and closing operation when activated by controls or alarm-connected fire-release system. Adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Reset door-closing mechanism after successful test.

Test and make final adjustment of new doors at no additional cost to the Government.
3.2.1.1 Maintenance and Adjustment

Not more than 90 calendar days after completion and acceptance of the project, examine, lubricate, test, and re-adjust doors as required for proper operation.

3.2.1.2 Cleaning

Clean aluminum doors in accordance with manufacturer's approved instructions.

3.3 CLOSEOUT ACTIVITIES

3.3.1 Warranty

Furnish a written guarantee that the helical spring and counterbalance mechanism are free from defects in material and workmanship for not less than two years after completion and acceptance of the project.

Warrant that upon notification by the Government, any defects in material, workmanship, and door operation are immediately correct within the same time period covered by the guarantee, at no cost to the Government.

3.3.2 Operation And Maintenance

Submit 6 copies of the Operation and Maintenance Manuals 30 calendar days prior to testing the Overhead Coiling Door Assemblies. Update and resubmit data for final approval no later than 30 calendar days prior to contract completion.

Submit Operation and Maintenance Manuals for Overhead Coiling Door Assemblies, including the following items:

- Materials
- Devices
- Manual Door Operators
- Hood
- Counterbalancing Mechanism
- Painting
- Procedures
- Manufacture's Brochures
- Parts Lists

Provide operation and maintenance manuals which are consistent with manufacturer's standard brochures, schematics, printed instructions, operating procedures, and safety precautions. Provide test data that is legible and of good quality.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

a. Provide and install Blast Mitigation window units in accordance with Bill of Quantities, of size and design as delineated in drawings. This shall include glazing, closure trim, hardware, anchors, and fasteners. All products shall be furnished preglazed at the factory except for storefront and curtainwalls.

b. The Conditions of the Contract, and all Sections of Division 1, are hereby made a part of this Section.

c. Section Includes: Factory glazed windows complete with insect screens, reinforcing, shims, anchors, and attachment devices.

d. Coordinate work with that of all construction contractors affecting or affected by work of this Contract. Cooperate with such contractors to assure the steady progress of the Work.

e. Conduct field testing of windows when specified in Division 1 by an independent lab using AAMA field test procedures.

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 4-010-01 (2003; Change 1) DoD Minimum Antiterrorism Standards for Buildings

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

AAMA/NWWDA 101/I.S.2 (1997) Aluminum, Vinyl (PVC) and Wood Windows and Glass Doors

ASTM INTERNATIONAL (ASTM)

ASTM E 283 (2004) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls,
and Doors Under Specified Pressure Differences Across the Specimen

ASTM E 773 (2001) Accelerated Weathering of Sealed Insulating Glass Units

ASTM E 774 (1997) Classification of the Durability of Sealed Insulating Glass Units

ASTM E 1300 (2004e1) Determining Load Resistance of Glass in Buildings

1.1.1 QUALIFICATIONS

The Contractor shall select a manufacturer, capable of providing required quality and quantities in accordance with the approved contract schedule. All windows in this project shall be designed and manufactured by a firm conforming to the requirements listed in this specification.

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

 SD-02 Shop Drawings
 Schedule of windows;
 Submit with drawings indicating location of each window unit.

 SD-03 Product Data
 Windows
 Weatherstripping
 Glass
 Fasteners
 Accessories
 Subframe
 Hardware

Data on windows consisting of catalog cuts, brochures, circulars, specifications and product data that show complete dimensions and completely describe overpressure ratings, rebound ratings, windows, frames,
anchors, hardware, and accessories. Submit installation details and
instructions for each type of window proposed.

Blast Resistance Certification Test Reports

SD-05 Design Data

Fastener Design Calculations

1.3 QUALITY ASSURANCE

a. Standards: Comply with applicable recommended specification(s) of
recognized national or international industry standards for window
materials. The window manufacturer will be participating members of the
American Architectural Manufacturers Association (AAMA) and have certified
products in their window certification program.

b. Prior Production History: Provide a description of the products
produced by the manufacturer which shows prior design, engineering, testing
and production of glazed operable units, in similar or exceeding quality,
quantity and schedule requirements for the period of at least the last
three years prior to the Notice to Proceed.

1.3.1 FIELD MEASUREMENTS

The Contractor shall field verify applicable existing conditions and
dimensions as required for correct installation, and shall record field
dimensions and quantities on the submitted shop drawings.

1.3.2 Labels

Each window unit shall bear a certification label from an independent,
nationally recognized testing organization validating that the product
complies with AAMA/NWWDA 101/1.S.2 for the type, grade, and performance
class specified.

1.3.3 Certification

a. Submit shock tube or arena blast resistance certification test reports
from an independent laboratory substantiating performance of system as
listed in section. Provide pre and post blast loading photographs and
video of the tested units and include analysis and interpretation of test
results.

b. Submit certified test laboratory reports by independent laboratory
substantiating performance of system as listed in paragraph 1.5.2 of this
specification. Include other supportive data as required or as necessary
including AAMA certification

1.4 DELIVERY, STORAGE, AND HANDLING

a. The Contractor shall deliver all components, and assemblies to a
government provided storage site near the project site in accordance with
the approved project schedule. Contractor shall protect windows and
associated materials in accordance with the manufacturer's recommendations
and shall replace with new any windows damaged during contractor delivery,
contractor storage, or contractor installation.

b. Protect units adequately against damage from the elements, construction
activities and other hazards before, during and after installation

1.5 PROTECTION

Protect finished surfaces during shipping and handling using the manufacturer's standard method, except do not apply coatings or lacquers on surfaces to receive caulking and glazing compounds.

1.5.1 WARRANTY

Insulating glass units shall be guaranteed not to develop material obstruction to vision as a result of dust or film formation on the inner glass surface caused by failure of the hermetic seal or loss of dehydration, other than through glass breakage, within a 10-year period following installation. Window units shall be provided with manufacturer's standard 10-year warranty from time of installation. Installation shall be performed by a certified installer and in conformance with manufacturer's warranty conditions.

1.5.2 SYSTEM PERFORMANCE REQUIREMENTS

Blast Mitigation: Provide window units capable to provide "Low level of protection" or better as defined in the DoD Anti Terrorism Construction Standard UFC 4-010-01 or at the design blast load of 6 psi peak reflected pressure and 30 psi-msec peak reflected impulse. Refer to drawing AT101 for additional parameters and site planning information.

Department of Defense (DoD) Antiterrorism / Force Protection Construction Standards UFC 4-010-01 "United Facilities Criteria (UFC) DoD Antiterrorism Standards for Buildings". Compliance must be shown by submitting calculations as follows:

- Calculations must be signed by a licensed Professional Engineer.
- The calculations must comply with all of the "B" paragraphs and other minimum requirements of the UFC standards latest issue.

a. Air Infiltration Test: Not exceed 0.30 cubic feet per minute per foot of crack length when tested at a pressure of 6.24 psf. Perform tests in accordance with ASTM E 283 with the sash in a closed and locked position.

b. Water Resistance Test: Subject window unit to a water resistance test in accordance with ASTM E 331 and E547 with no water passing the interior face of the window frame and no leakage as defined in the test method. Mount the glazed unit in its vertical position continuously supported around the perimeter and the sash placed in the fully closed and locked position. When a static pressure of 10.00 pounds per square foot has been stabilized, apply five gallons of water per square foot of window area to the exterior face of the unit for a period of 15 minutes.

c. Structural: Requirements for aluminum windows, terminology and standards of performance, and fabrication and workmanship are those specified and recommended in AAMA/WDMA 101/I.S.2 and applicable general recommendations published by AAMA. Conform to more stringent of specified standards and following:

d. Uniform Load Deflection Test: ASTM E 330 at 50 pounds per square foot: No member deflection more than 1/175 of its span. Maintain test load for a period of 10 seconds resulting in no glass breakage, permanent damage of
fasteners, hardware parts, support arms, actuating mechanisms or any other damage causing the window to be inoperable.

e. Uniform Load Structural Test: Apply a minimum exterior and interior uniform load of 75.0 pounds per square foot to the entire outside surface of the test unit. Maintain this test load for a period of 10 seconds. Results: No glass breakage, permanent damage of fasteners, hardware parts, support arms, actuating mechanisms, or any other damage causing the window to be inoperable. And no permanent deformation of any frame or vent member in excess of 0.2 percent of its span.

1.6.4.3 Life Cycle Test: Per AAMA/WDMA 101/I.S.2 and AAMA 910, provide proof that the product meets the criteria including passing air and water tests at the conclusion of the cycle tests.

f. Energy / Thermal

g. Condensation Resistance Factor: Test in accordance with AAMA 1503 standards and tests of thermal performance resulting in a CRF of no less than 48 using Clear-Clear insulating glass.

h. "U" Value Tests: (Co-efficient of Heat Transfer): Test in accordance with AAMA 1503 Thermal Transmittance of Conduction with a 15 mph perpendicular dynamic wind: Maximum 0.67 BTU/hr/ft2/F using Clear-Clear insulating glass.

i. Acoustic / Sound Transmission

j. Sound Transmission Coefficient (STC): Test in accordance with ASTM E90-02 with a minimum STC value of 35.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Windows

WINDOW TYPE A - BLAST RESISTANT Single hung aluminum window as scheduled on the drawings and specified herein.

WINDOW TYPE B - STANDARD Single hung aluminum window as scheduled on the drawings and specified herein WITH EXCEPTION TO THE BLAST RESISTANT FEATURES.

a. Windows shall be factory assembled and glazed. Windows shall be thermally-broken aluminum and shall conform to the appropriate referenced standards or comparable approved standards. Windows and trim shall be of the type and size indicated and shall fully comply with the architectural drawings. Windows shall be cleaned, properly prepared, pretreated, and coated with the specified finish.

b. Thermal Barrier: Provides a continuous uninterrupted thermal barrier around the entire perimeter of the frame and all sash and not be bridged by any metal conductors at any point. Provide manufacturer's standard construction which has been tested to demonstrate resistance to thermal conductance and condensation and has been tested to show adequate strength per AAMA 505.

c. Windows shall be constructed per national or international industry standards. Frame members shall be accurately formed and coped to their
respective intersecting parts. All surfaces shall be smooth. The glazing bite shall conform to GANA guide lines unless otherwise demonstrated through testing.

2.1.2 Glass and Glazing

a. General: The glass shall be pre-glazed by the window manufacturer. The glass shall conform to all requirements of ASM C 1036. Glass thickness shall meet or exceed the values given in ASTM E 1300 and UFC 4-010-01 for the design pressure rating of the project.

b. Insulating Glass Units: Nominal 1 inch thick Insulating glass units shall have polyisobutylene primary seal with two-part silicone secondary seals. Insulating glass units shall conform to ASTM E 773 and ASTM E 774 Class CBA and the specified energy and structural performance requirements.

c. Laminated Glass: The internal/external pane of the IG unit shall be laminated clear glass with a PVB interlayer of not less than 0.060" thick. The laminated glass will conform to all requirements of the latest version of UFC 4-010-01.

2.1.3 Calking and Sealing

a. Sealants: Provide suitable type in accordance with applicable portions of GANA-GM. Setting materials shall match the window finish, be non-staining, and not require painting. Other materials that will be exposed to view and unpainted shall be black, white or neutral color as specified by the architect. Provide structural silicone glazing compound with a low modulus and blast tested.

b. Glazing gaskets: Provide glazing gaskets made of EPDM. Gaskets shall be inserted into ready-made grooves in the aluminum sections.

c. Glazing Accessories: Provide glazing accessories as required to supplement the accessories provided with the items to be glazed and to provide a complete installation, including glazing points, clips, shims, angles, beads, setting blocks, and spacer strips. No ferrous metal accessories, except for stainless steel, will be exposed in the finished work.

2.2 FABRICATION

Conform to AAMA/NWWDA 101/I.S.2 and to the requirements specified herein.

2.2.1 Corners and Reinforcement

Corners of PVC frames and sashes shall be mechanically fixed and sealed or welded. Reinforce frames and sash as necessary to meet the requirements for the performance classes or grades specified herein.

2.2.2 Adjustability

Ventilating sash shall be adjustable vertically and horizontally to ensure smooth operation.

2.2.3 Hardware

All exterior hardware shall be constructed of corrosion-resistant materials. Provide manufacturer's standard hardware utilizing the same
2.2.4 Weatherstripping

Provide for ventilating sections of windows to ensure a weathertight seal meeting the infiltration requirements specified in AAMA/NWWDA 101/I.S.2. Provide easily replaceable factory-applied weatherstripping.

2.2.5 Finish

Window finishes shall be shop-applied and will conform to all requirements of the selected standard below. Window finishes or finish systems shall have a minimum 5-year warranty. The finishes and associated warranty shall be standard from the manufacturer and the same as available to all buyers. The color and gloss of finishes shall be as specified by the ROICC Office.

Provide manufacturer's standard 2 coat Fluoropolymer 70% Kynar baked on, electrostatically applied enamel coating. Color to be selected from manufacturer's standard colors as selected by the ROICC Office, applied over manufacturer's standard substrate preparation including cleaning, degreasing, and chromate conversion coating. Finish shall meet or exceed AAMA 2605. Finish shall have a 15-year warranty.

2.2.6 Fasteners

Fasteners shall be provided of a material in accordance with AAMA/WDMA 101/I.S.2, warranted by the manufacturer to be non-corrosive and compatible with the window members, trim, hardware, anchors and other components. Submit blast resistant Fastener design calculations signed by a licensed Professional Engineer.

2.2.7 Anchors, Clips and Window Accessories

a. Anchors, clips, stops and other accessories shall be provided to comply with AAMA/WDMA 101/I.S.2 and AAMA 907. Provide units and anchorage mechanism with sufficient strength to withstand required blast design pressure and strength for specified load conditions as per UFC criteria. Fasteners, clips and other accessories shall be capable of delivering blast and rebound reactions to the adjacent structure.

PART 3 EXECUTION

3.1 PREPARATION

a. All rough opening dimensions shall be field verified prior to fabrication.

b. Perform operations as necessary to prepare openings for proper installation and operation of new retrofit units or new construction units.

c. Verify openings are in accordance with shop drawings and Architects Drawings.

3.2 INSTALLATION

a. Comply with manufacturer's specifications and recommendations for
installation of window units, hardware, operators and other components of work. In no case shall attachment to structure or to components of the window system be through or affect the thermal barriers of the window units. All anchor installations shall be in compliance with manufacturer's instructions for method, size and spacing of fasteners. Set sill members and other members in bed of compound as shown, or with joint fillers or gaskets as shown, to provide watertight construction. Seal units following installation and as required to provide watertight system.

b. Set units plumb, level and true to line, without warp or rack of frames or sash. Anchor securely in place. Separate aluminum and other corrodbile surfaces from sources of corrosion or electrolytic action.

c. Wedge fiberglass insulation between frames of new windows and construction to remain, or between frames and new receptor as applicable. Compress fiberglass to no less than 50 percent of original thickness.

d. Seal window frames in accordance with the architect's drawings; manufacturer's approved installation drawings and instructions.

3.3 ADJUST and Clean

a. Adjust operating vent and hardware to provide tight fit at contact points and at weatherstripping, for smooth operation and weather-tight closure.

b. Clean aluminum surfaces promptly after installation of windows, exercising care to avoid damage to protective coatings and finishes. Remove excess glazing and sealant compounds, dirt, and other substances. Lubricate hardware and moving parts.

c. Clean glass promptly after installation of windows. Remove glazing and sealant compound, dirt and other substances.

d. Existing windows and other materials removed from site become property of the Contractor who shall promptly remove same and legally dispose of at no additional cost to the Owner.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

BHMA A156.1 (2006) Butts and Hinges
BHMA A156.13 (2005) Mortise Locks & Latches, Series 1000
BHMA A156.16 (2002) Auxiliary Hardware
BHMA A156.18 (2006) Materials and Finishes
BHMA A156.2 (2003) Bored and Preassembled Locks and Latches
BHMA A156.21 (2006) Thresholds
BHMA A156.22 (2005) Door Gasketing and Edge Seal Systems
BHMA A156.3 (2001) Exit Devices
BHMA A156.4 (2000) Door Controls - Closers
BHMA A156.5 (2001) Auxiliary Locks & Associated Products
BHMA A156.6 (2005) Architectural Door Trim
BHMA A156.7 (2003) Template Hinge Dimensions
BHMA A156.8 (2005) Door Controls - Overhead Stops and Holders
1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES.

SD-02 Shop Drawings
 Hardware schedule
 Keying system

SD-03 Product Data
 Hardware items

SD-08 Manufacturer's Instructions
 Installation

SD-10 Operation and Maintenance Data
 Hardware Schedule items, Data Package 1
 Submit data package in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

SD-11 Closeout Submittals
 Key Bitting

1.3 HARDWARE SCHEDULE

Prepare and submit hardware schedule in the following form:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Mfr. Name</th>
<th>UL Mark (If fire BHMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publi-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Hardware | Quan- | Type | Catalog No. | Con- | Designa- |
| Item | tity Size | Finish No. | Symbols listed | trol | tion |

SECTION 08 71 00 Page 2
1.4 KEY BITTING CHART REQUIREMENTS

Submit key bitting charts to the Contracting Officer prior to completion of the work. Include:

a. Complete listing of all keys (AA1, AA2, etc.).
b. Complete listing of all key cuts (AA1-123456, AA2-123458).
c. Tabulation showing which key fits which door.
d. Copy of floor plan showing doors and door numbers.
e. Listing of 20 percent more key cuts than are presently required in each master system.

1.5 QUALITY ASSURANCE

1.5.1 Hardware Manufacturers and Modifications

Provide, as far as feasible, locks, hinges, and closers of one lock, hinge, or closer manufacturer's make. Modify hardware as necessary to provide features indicated or specified.

1.5.2 Keying Shop Drawing Coordination Meeting

Prior to the submission of the key shop drawing, the Contracting Officer, Contractor, Door Hardware subcontractor, using Activity and Base Locksmith shall meet to discuss key requirements for the facility.

1.6 DELIVERY, STORAGE, AND HANDLING

Deliver hardware in original individual containers, complete with necessary appurtenances including fasteners and instructions. Mark each individual container with item number as shown in hardware schedule. Deliver permanent keys and removable cores to the Contracting Officer, either directly or by certified mail. Deliver construction master keys with the locks.

PART 2 PRODUCTS

2.1 TEMPLATE HARDWARE

Provide hardware to be applied to metal or to prefinished doors manufactured to template. Promptly furnish template information or templates to door and frame manufacturers. Conform to BHMA A156.7 for template hinges. Coordinate hardware items to prevent interference with other hardware.

2.2 HARDWARE FOR FIRE DOORS AND EXIT DOORS

Provide all hardware necessary to meet the requirements of NFPA 80 for fire doors and NFPA 101 for exit doors, as well as to other requirements indicated, even if such hardware is not specifically mentioned under paragraph entitled "Hardware Schedule." Provide the label of Underwriters
Laboratories, Inc. for such hardware listed in UL Bld Mat Dir or labeled and listed by another testing laboratory acceptable to the Contracting Officer.

2.3 HARDWARE ITEMS

Clearly and permanently mark with the manufacturer's name or trademark, hinges, pivots, locks, latches, exit devices, bolts and closers where the identifying mark will be visible after the item is installed. For closers with covers, the name or trademark may be beneath the cover.

2.3.1 Hinges

BHMA A156.1, 4-1/2 by 4-1/2 inch unless otherwise indicated. Construct loose pin hinges for exterior doors and reverse-bevel interior doors so that pins will be nonremovable when door is closed. Other antifriction bearing hinges may be provided in lieu of ball-bearing hinges.

2.3.2 Locks and Latches

2.3.2.1 Slide Bolt Padlock Latch

The slide bolt shall have the following:

1. 1/2" dia. Nickel Plated Bolt with 5/8" throw.
3. Inside Cover Plate: Stainless Steel
4. Strike: 13 Gauge (.089) Stainless Steel 4-7/8" x 1/1-4" w/lip (ASA).
5. Outside Plate: 13 GA (.089) Stainless Steel
6. 3/8" dia. Hole for Padlock Shackle.
8. Finish: US32D.

2.3.2.2 Card Key System

Provide card key type access units for specialized entries as required by the program. Provide lithium battery powered, magnetic strip keycard locksets that are ANSI/BHMA A156.13, Series 1000, Grade 1, mortise, tamper resistant, UL listed with 1 inch throw deadbolt, 3/4 inch throw latch bolt,
auxiliary dead-locking latch, and 2 3/4" inch backset. The latch bolt and the dead bolt shall be operated simultaneously by rotating inside lever. Locks with mechanical override lock cylinders are required. Use of newly issued keycard automatically re-keys the lock and voids the previous keycard. The lock shall re-lock immediately after outside lever is turned and latch retracted. Locks shall have memory that is capable of recording up to 140 entries into each room, identification of the keycard used to access the room, the date and time of entry. Entry information of the lock shall be retrievable by a data key that can be inserted into the lock and then taken to the front desk printer to display information. Provide a laptop computer with 2 GB memory and a 160 GB hard drive, printer, encoder and programming cables for programming keys. Provide a box of 500 PVC cards. The Contractor shall provide all necessary components for a complete operational system, ready to use by the Government.

System shall be capable of accepting a minimum of 12 keycard access levels, security auditing and computer interfacing with the existing or new management system.

Provide a minimum of a half day of training on site user instruction on the use and maintenance of the system. Training location, time and persons involved shall be coordinated with the government.

Provide a single point of contact customer service representative accessible by telephone with a 10-digit telephone number without additional dialing hierarchies except that a maximum 4-digit extension is permissible. On-site service shall be provided within 3 hours from request within the first 12 months of occupancy.

Provide a 5-year parts and labor warranty.

2.3.2.3 Bored Locks and Latches

BHMA A156.2, Series 4000, Grade 1.

2.3.2.4 Auxiliary Locks

BHMA A156.5, Grade 1 with concealed mounting screws.

2.3.3 Exit Devices

BHMA A156.3, Grade 1. Provide adjustable strikes for rim type and vertical rod devices. Provide open back strikes for pairs of doors with mortise and vertical rod devices. Provide escutcheons, not less than 7 by 2-1/4 inch.

2.3.4 Cylinders and Cores

Provide cylinders and cores for new locks, including locks provided under other sections of this specification. Provide cylinders and cores with seven pin tumblers. All locks shall have interchangeable cores from Best Lock Corp., Arrow Lock Corp., Falcon Lock, or Eagle. Rim cylinders, mortise cylinders, and knobs of bored locksets shall have interchangeable
cores which are removable by special control keys. Engrave on or stamp into the metal of each interchangeable core with a key control symbol in a concealed place on the core.

2.3.5 Keying System

Provide a master keying system for each floor of the building. Provide construction interchangeable cores. Provide key cabinet as specified.

2.3.6 Lock Trim

Cast, forged, or heavy wrought construction and commercial plain design.

2.3.6.1 Knobs and Roses

Conform to the minimum test requirements of BHMA A156.2 and BHMA A156.13 for knobs, roses, and escutcheons. For unreinforced knobs, roses, and escutcheons, provide 0.050 inch thickness. For reinforced knobs, roses, and escutcheons, provide outer shell of 0.035 inch thickness, and combined thickness of 0.070 inch, except for knob shanks, which are 0.060 inch thick.

2.3.6.2 Lever Handles

Provide lever handles in lieu of knobs. Conform to the minimum requirements of BHMA A156.13 for mortise locks of lever handles for exit devices. Provide lever handle locks with a breakaway feature (such as a weakened spindle or a shear key) to prevent irreparable damage to the lock when force in excess of that specified in BHMA A156.13 is applied to the lever handle. Provide lever handles return to within 1/2 inch of the door face.

2.3.6.3 Texture

Provide knurled or abrasive coated knobs or lever handles where specified in paragraph entitled "Hardware Schedule".

2.3.7 Keys

Furnish one file key, one duplicate key, and one working key for each key
change. Furnish one additional working key for each lock of each keyed-alike group. Furnish a quantity of key blanks equal to 20 percent of the total number of file keys. Stamp each key with appropriate key control symbol and "U.S. property - Do not duplicate." Do not place room number on keys.

2.3.8 Door Bolts

2.3.9 Closers

BHMA A156.4, Series C02000, Grade 1, with PT 4C. Provide with brackets, arms, mounting devices, fasteners, full size covers, except at storefront mounting, and other features necessary for the particular application. Size closers in accordance with manufacturer's recommendations, or provide multi-size closers, Sizes 1 through 6, and list sizes in the Hardware Schedule. Provide manufacturer's 10 year warranty.

2.3.9.1 Identification Marking

Engrave each closer with manufacturer's name or trademark, date of manufacture, and manufacturer's size designation located to be visible after installation.

2.3.10 Overhead Holders

BHMA A156.8.

2.3.11 Architectural Door Trim

BHMA A156.6. Door pulls shall be 1 inch diameter, 12 inches center to center with 1-3/4 inch clearance, stainless steel finish.

2.3.12 Door Protection Plates

BHMA A156.6.

2.3.12.1 Sizes of Armor Mop and Kick Plates

2 inch less than door width for single doors; one inch less than door width for pairs of doors. Provide 10 inch kick plates for flush doors. Provide a minimum 36 inch armor plates for flush doors and completely cover
lower panels of panel doors, except 16 inch high armor plates on fire doors. Provide 6 inch mop plates.

2.3.13 Edge Guards

BHMA A156.6, stainless steel, of same height as armor plates. Apply to lock stile.

2.3.14 Door Stops and Silencers

BHMA A156.16. Silencers Type L03011. Provide three silencers for each single door, two for each pair. Door stops Type L02251 for walls where practical and Type L02141 for floors only when necessary.

2.3.15 Thresholds

BHMA A156.21. Use J35100, with vinyl or silicone rubber insert in face of stop, for exterior doors opening out, unless specified otherwise.

2.3.16 Weather Stripping Gasketing

BHMA A156.22. Provide the type and function designation where specified in paragraph entitled "Hardware Schedule". Provide a set to include head and jamb seals, sweep strips, and, for pairs of doors, astragals. Air leakage of weather stripped doors not to exceed 1.25 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E 283. Provide weather stripping with one of the following:

2.3.16.1 Extruded Aluminum Retainers

Extruded aluminum retainers not less than 0.050 inch wall thickness with vinyl, neoprene, silicone rubber, or polyurethane inserts. Provide bronze anodized aluminum.

2.3.16.2 Interlocking Type

Zinc or bronze not less than 0.018 inch thick.

2.3.16.3 Spring Tension Type

Spring bronze or stainless steel not less than 0.008 inch thick.

2.3.17 Lightproofing and Soundproofing Gasketing

BHMA A156.22. Include adjustable doorstops at head and jambs and an automatic door bottom per set, both of extruded aluminum, bronze anodized, surface applied, with vinyl fin seals between plunger and housing. Provide doorstops with solid neoprene tube, silicone rubber, or closed-cell sponge gasket. Furnish door bottoms with adjustable operating rod and silicone
rubber or closed-cell sponge neoprene gasket. Doorstops mitered at corners. Provide the type and function designation where specified in paragraph entitled "Hardware Sets".

2.3.18 Rain Drips

Extruded aluminum, not less than 0.08 inch thick, bronze anodized. Set drips in sealant and fasten with stainless steel screws.

2.3.18.1 Door Rain Drips

Approximately 1-1/2 inch high by 5/8 inch projection. Align bottom with bottom edge of door.

2.3.18.2 Overhead Rain Drips

Approximately 1-1/2 inch high by 2-1/2 inch projection, with length equal to overall width of door frame. Align bottom with door frame rabbet.

2.3.19 Special Tools

Provide special tools, such as spanner and socket wrenches and dogging keys, required to service and adjust hardware items.

2.4 FASTENERS

Provide fasteners of proper type, quality, size, quantity, and finish with hardware. Provide stainless steel or nonferrous metal fasteners that are exposed to weather. Provide fasteners of type necessary to accomplish a permanent installation.

2.5 FINISHES

BHMA A156.18. Provide hardware in BHMA 630 finish (satin stainless steel), unless specified otherwise. Provide items not manufactured in stainless steel in BHMA 626 finish (satin chromium plated) over brass or bronze, except aluminum paint finish for surface door closers, and except BHMA 652 finish (satin chromium plated) for steel hinges. Provide hinges for exterior doors in stainless steel with BHMA 630 finish or chromium plated brass or bronze with BHMA 626 finish. Furnish exit devices in BHMA 626 finish in lieu of BHMA 630 finish except where BHMA 630 is specified under paragraph entitled "Hardware Sets". Match exposed parts of concealed closers to lock and door trim. Match hardware finish for aluminum doors to the doors.

2.6 KEY CABINET AND CONTROL SYSTEM

BHMA A156.5, Type required to yield a capacity (number of hooks) 50 percent greater than the number of key changes used for door locks.
PART 3 EXECUTION

3.1 INSTALLATION

Install hardware in accordance with manufacturers' printed installation instructions. Fasten hardware to wood surfaces with full-threaded wood screws or sheet metal screws. Provide machine screws set in expansion shields for fastening hardware to solid concrete and masonry surfaces. Provide toggle bolts where required for fastening to hollow core construction. Provide through bolts where necessary for satisfactory installation.

3.1.1 Weather Stripping Installation

Handle and install weather stripping to prevent damage. Provide full contact, weather-tight seals. Operate doors without binding.

3.1.1.1 Stop-Applied Weather Stripping

Fasten in place with color-matched sheet metal screws not more than 9 inch on center after doors and frames have been finish painted.

3.1.1.2 Interlocking Type Weather Stripping

Provide interlocking, self-adjusting type on heads and jambs and flexible hook type at sills. Nail weather stripping to door one inch on center and to heads and jambs at 4 inch on center.

3.1.1.3 Spring Tension Type Weather Stripping

Provide spring tension type on heads and jambs. Provide bronze nails with bronze, stainless steel nails with stainless steel. Space nails not more than 1-1/2 inch on center.

3.1.2 Threshold Installation

Extend thresholds the full width of the opening and notch end for jamb stops. Set thresholds in a full bed of sealant and anchor to floor with cadmium-plated, countersunk, steel screws in expansion sleeves.

3.2 FIRE DOORS AND EXIT DOORS

Install hardware in accordance with NFPA 80 for fire doors, NFPA 101 for exit doors.

3.3 HARDWARE LOCATIONS

SDI/DOOR A250.8, unless indicated or specified otherwise.

b. Mop Plates: Bottom flush with bottom of door.

3.4 KEY CABINET AND CONTROL SYSTEM

Locate where directed. Tag one set of file keys and one set of duplicate keys. Place other keys in appropriately marked envelopes, or tag each key. Furnish complete instructions for setup and use of key control.
system. On tags and envelopes, indicate door and room numbers or master or grand master key.

3.5 FIELD QUALITY CONTROL

After installation, protect hardware from paint, stains, blemishes, and other damage until acceptance of work. Submit notice of testing 15 days before scheduled, so that testing can be witnessed by the Contracting Officer. Adjust hinges, locks, latches, bolts, holders, closers, and other items to operate properly. Demonstrate that permanent keys operate respective locks, and give keys to the Contracting Officer. Correct, repair, and finish, as directed, errors in cutting and fitting and damage to adjoining work.

3.6 HARDWARE SETS
Provide hardware for aluminum doors under this section. Deliver Hardware templates and hardware, except field-applied hardware to the aluminum door and frame manufacturer for use in fabricating the doors and frames.

<table>
<thead>
<tr>
<th>Set Number</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HW-1 Typical Sleeping Room Entry

<table>
<thead>
<tr>
<th>1 1/2 Pair</th>
<th>Hinges</th>
<th>A5111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Card Key System</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Door Viewer</td>
<td>L03221</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>C02051</td>
</tr>
<tr>
<td>1</td>
<td>Dome Stop</td>
<td>L02141</td>
</tr>
<tr>
<td>1</td>
<td>Kickplate</td>
<td>J102</td>
</tr>
<tr>
<td>1 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Door Rain Drip</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-2 Typical Sleeping Room Bathroom Doors

<table>
<thead>
<tr>
<th>1 1/2 Pair</th>
<th>Hinges</th>
<th>A5111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F76</td>
</tr>
<tr>
<td>1</td>
<td>Auxiliary Dead Lock</td>
<td>E2151</td>
</tr>
<tr>
<td>1</td>
<td>Wall Stop</td>
<td>L02251</td>
</tr>
<tr>
<td>3</td>
<td>Silencers</td>
<td>L03011</td>
</tr>
</tbody>
</table>

HW-3 Typical Sleeping Room Closet Doors

<table>
<thead>
<tr>
<th>1 1/2 Pair</th>
<th>Hinges</th>
<th>A5111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slide bolt Padlock Latch</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OH Holder</td>
<td>C02541</td>
</tr>
<tr>
<td>3</td>
<td>Silencers</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-4 Exterior Mech Single

<table>
<thead>
<tr>
<th>1 1/2 Pair</th>
<th>Hinges</th>
<th>A5111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F86</td>
</tr>
<tr>
<td>1</td>
<td>OH Holder</td>
<td>C02541</td>
</tr>
<tr>
<td>1 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Door Rain Drip</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-5 Laundry, Lounge Entry

<table>
<thead>
<tr>
<th>1 1/2 Pair</th>
<th>Hinges</th>
<th>A5111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F109</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>C02051</td>
</tr>
<tr>
<td>1</td>
<td>Wall Stop</td>
<td>L02251</td>
</tr>
<tr>
<td>1</td>
<td>Kickplate</td>
<td>J102</td>
</tr>
</tbody>
</table>

HW-6 Corridor Toilet

<table>
<thead>
<tr>
<th>1 1/2 Pair</th>
<th>Hinges</th>
<th>A5111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F76</td>
</tr>
<tr>
<td>1</td>
<td>Kickplate</td>
<td>J102</td>
</tr>
<tr>
<td>3</td>
<td>Silencers</td>
<td>L03011</td>
</tr>
</tbody>
</table>

HW-7 Storage, Electrical
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 Pair</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F86</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>CO2051</td>
</tr>
<tr>
<td>3</td>
<td>Silencers</td>
<td>L03011</td>
</tr>
</tbody>
</table>

HW-8 Corridor Passage Door

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 Pair</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Push Plate</td>
<td>J301</td>
</tr>
<tr>
<td>1</td>
<td>Pull Plate</td>
<td>J405</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>CO2051</td>
</tr>
<tr>
<td>1</td>
<td>Wall Stop</td>
<td>L02011</td>
</tr>
<tr>
<td>1</td>
<td>Kickplate</td>
<td>J102</td>
</tr>
<tr>
<td>1</td>
<td>Door Rain Drip</td>
<td>As Specified</td>
</tr>
<tr>
<td>1 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-9 Corridor Exterior Door

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 Pair</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F75</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>CO2051</td>
</tr>
<tr>
<td>1</td>
<td>Wall Stop</td>
<td>L02251</td>
</tr>
<tr>
<td>1</td>
<td>Kickplate</td>
<td>J102</td>
</tr>
<tr>
<td>1 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-10 Duty Office Entry Door

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 Pair</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F109</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>CO2051</td>
</tr>
<tr>
<td>3</td>
<td>Silencers</td>
<td>L03011</td>
</tr>
</tbody>
</table>

HW-11 Mechanical Double Door

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Pair</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F86</td>
</tr>
<tr>
<td>1</td>
<td>Double Dummy Trim</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Flushbolts</td>
<td>L04081</td>
</tr>
<tr>
<td>2</td>
<td>OH Holder</td>
<td>C02541</td>
</tr>
<tr>
<td>1 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
<tr>
<td>2</td>
<td>Door Rain Drip</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-12 Exterior Chase Door

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 Pair</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F86</td>
</tr>
<tr>
<td>1</td>
<td>Wall/Stop</td>
<td>L02251</td>
</tr>
<tr>
<td>1 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Door Rain Drip</td>
<td>As Specified</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-13 Interior Chase Door

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 Pair</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F86</td>
</tr>
<tr>
<td>1</td>
<td>Closer</td>
<td>C42021</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Code</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1</td>
<td>Wall Stop</td>
<td>L02251</td>
</tr>
<tr>
<td>1 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW 14 Laundry Chase Access Door

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>1</td>
<td>Lockset</td>
<td>F86</td>
</tr>
<tr>
<td>1</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
<tr>
<td>1 set</td>
<td>Draft Control Gasketing</td>
<td>BHMA A 156.22</td>
</tr>
</tbody>
</table>

HW-15 Mechanical Double Door with Exit Device

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Hinges</td>
<td>A5111</td>
</tr>
<tr>
<td>2</td>
<td>Exit Device</td>
<td>88L</td>
</tr>
<tr>
<td>1</td>
<td>Removable mullion</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OH Holder</td>
<td>C02541</td>
</tr>
<tr>
<td>2 set</td>
<td>Weatherstripping</td>
<td>As Specified</td>
</tr>
<tr>
<td>2</td>
<td>Door Rain Drip</td>
<td>As Specified</td>
</tr>
<tr>
<td>2</td>
<td>Threshold</td>
<td>As Specified</td>
</tr>
</tbody>
</table>

HW-16 Mechanical Yard Gate

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 set</td>
<td>Multi point padlock (min. 4 locks) slide bolt welded to gate</td>
</tr>
<tr>
<td></td>
<td>Stymielock, Everlock SLX-4, Tayhope, or approved equivalent</td>
</tr>
</tbody>
</table>

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ASTM INTERNATIONAL (ASTM)

ASTM C509 (2006; R 2011) Elastomeric Cellular Preformed Gasket and Sealing Material

ASTM C864 (2005; R 2011) Dense Elastomeric Compression Seal Gaskets, Setting Blocks, and Spacers

ASTM D2287 (2012) Nonrigid Vinyl Chloride Polymer and Copolymer Molding and Extrusion Compounds

ASTM E1300 (2012a; E 2012) Determining Load Resistance of Glass in Buildings

ASTM E2226 (2015a) Standard Practice for Application of Hose Stream
1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Drawings showing complete details of the proposed setting methods, mullion details, edge blocking, size of openings, frame details, materials, and types and thickness of glass.

SD-03 Product Data

Insulating Glass

Exterior Glazing - performance documentation for all glass types
Glazing Accessories

Manufacturer's descriptive product data, handling and storage recommendations, installation instructions, and cleaning instructions.

SD-04 Samples

Insulating Glass

Glazing Compound

Glazing Tape

Sealant

Two 8 by 10 inch samples of each of the following: tinted glass, patterned glass, heat-absorbing glass, and insulating glass units.

Three samples of each indicated material. Samples of plastic sheets must be minimum 5 by 7 inches.

SD-07 Certificates

Insulating Glass

Certificates stating that the glass meets the specified requirements. Labels or manufacturers marking affixed to the glass will be accepted in lieu of certificates.

SD-08 Manufacturer's Instructions

Setting and Sealing Materials

Glass Setting

Submit glass manufacturer's recommendations for setting and sealing materials and for installation of each type of glazing material specified.

SD-11 Closeout Submittals

1.3 SYSTEM DESCRIPTION

Fabricate and install watertight and airtight glazing systems to withstand thermal movement and wind loading without glass breakage, gasket failure, deterioration of glazing accessories, or defects in the work. Glazed panels must comply with the safety standards, in accordance with ANSI Z97.1, and comply with indicated wind/snow loading in accordance with ASTM E1300.
1.4 DELIVERY, STORAGE, AND HANDLING

Deliver products to the site in unopened containers, labeled plainly with manufacturers' names and brands. Store glass and setting materials in safe, enclosed dry locations and do not unpack until needed for installation. Handle and install materials in a manner that will protect them from damage.

1.5 ENVIRONMENTAL REQUIREMENTS

Do not start glazing work until the outdoor temperature is above 40 degrees F and rising, unless procedures recommended by the glass manufacturer and approved by the Contracting Officer are made to warm the glass and rabbet surfaces. Provide ventilation to prevent condensation of moisture on glazing work during installation. Do not perform glazing work during damp or rainy weather.

1.6 WARRANTY

1.6.1 Warranty for Insulating Glass Units

Warranty insulating glass units against development of material obstruction to vision (such as dust, fogging, or film formation on the inner glass surfaces) caused by failure of the hermetic seal, other than through glass breakage, for a 10-year period following acceptance of the work. Provide new units for any units failing to comply with terms of this warranty within 45 working days after receipt of notice from the Government.

1.6.2 Warranty for Polycarbonate Sheet

For a 5-year period following acceptance of the work:

a. Warranty Type I, Class A (UV stabilized) sheets against breakage;

b. Warranty Type III (coated, mar-resistant) sheets against breakage and against coating delamination;

c. Warranty Type IV (coated sheet) against breakage and against yellowing;

d. Warranty extruded polycarbonate profile sheet against breakage.

For a 10-year period following acceptance of the work, warranty Type IV against yellowing and loss of light transmission.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

2.2 GLASS

ASTM C1036, unless specified otherwise. In doors and sidelights, provide safety glazing material conforming to 16 CFR 1201.

2.2.1 Clear Glass

For interior glazing (i.e., pass and observation windows), 1/4 inch thick glass should be used.

Type I, Class 1 (clear), Quality q4 (A). Provide for glazing openings not
indicated or specified otherwise. Use double-strength sheet glass or 1/8 inch float glass for openings up to and including 15 square feet, 3/16 inch for glazing openings over 15 square feet but not over 30 square feet, and 1/4 inch for glazing openings over 30 square feet but not over 45 square feet.

2.2.2 Annealed Glass

Annealed glass must be Type I transparent flat type, Class 1 - clear, Quality q3 - glazing select, 85 percent light transmittance, 90 percent shading coefficient, conforming to ASTM C1036. Color must be clear.

2.2.3 Wired Glass

Provide UL listed glass for fire-rated windows rated for 45 minutes when tested in accordance with ASTM E2226. Wired glass must be Type II flat type, Class 1 - translucent, Quality q8 - glazing, Form 1 - wired and polished both sides, 85 percent light transmittance, 90 percent shading coefficient, conforming to ASTM C1036. Wire mesh must be polished stainless steel Mesh 2 - square. Wired glass for fire-rated windows must bear an identifying UL label or the label of a nationally recognized testing agency, and be rated for 45 minutes when tested in accordance with NFPA 257. Wired glass for fire-rated doors must be tested as part of a door assembly in accordance with NFPA 252.

2.2.4 Patterned Glass

Type II, Class 1 (translucent), Form 3 (patterned), Quality q7 (decorative), Finish f1 (patterned one side), Pattern p1 (linear), inch thick.

2.2.5 Laminated Glass

ASTM C1172, Kind LA fabricated from two nominal 1/8 inch pieces of Type I, Class 1, Quality q3, flat annealed transparent glass conforming to ASTM C1036. Flat glass must be laminated together with a minimum of 0.030 inch thick, clear polyvinyl butyral interlayer with a total nominal thickness of 1/4 inch.

2.2.6 Bullet-Resisting Glass

Fabricated from Type I, Class 1, Quality q3 glass with polyvinyl butyral plastic interlayers between the layers of glass and listed by UL MEAPD as bullet resisting, with a power rating of High--Rifle in accordance with UL 752. Provide where indicated.

2.2.7 One-Way Vision Glass (Transparent Mirrors)

Type I, Class 1, Quality q1, 1/4 inch thick, coated on one face with a hard, adherent film of chromium or other approved coating of equal durability. Glass must transmit not less than 5 percent or more than 11 percent of total incident visible light and must reflect from the front surface of the coating not less than 45 percent of the total incident visible light. Provide as indicated.

2.2.8 Tempered Glass

ASTM C1048, Kind FT (fully tempered), Condition A (uncoated), Type I, Class 1 (transparent), Quality q3, 1/4 inch thick, 85 percent light
transmittance, 90 percent shading coefficient conforming to ASTM C1048 and GANA Standards Manual. Color must be clear. Provide where and wherever safety glazing material is indicated or specified.

2.3 INSULATING GLASS UNITS

2.3.1 Buildings

The inner light must be ASTM C1172, clear annealed flat glass Type I, Class I, Quality q3. The outer light must be ASTM C1036, Type I, Class 2 (tinted heat absorbing), 2 (solar-reflective), Quality q4, 1/4 inch thick.

2.3.2 Low Emissivity Insulating Glass

Interior and exterior glass panes for Low-E insulating units must be Type I annealed flat glass, Class 2-tinted with anti-reflective low-emissivity coating on No. 2 surface (inside surface of exterior pane), Quality q3 - glazing select, conforming to ASTM C1036. Glass performance must be U value maximum of .24 Btu/hr-ft²-F, Solar Heat Gain Coefficient (SHGC) maximum of .38. Color must be gray.

2.4 SETTING AND SEALING MATERIALS

Provide as specified in the GANA Glazing Manual, IGMA TM-3000, IGMA TB-3001, and manufacturer's recommendations, unless specified otherwise herein. Do not use metal sash putty, nonskinning compounds, nonresilient preformed sealers, or impregnated preformed gaskets. Materials exposed to view and unpainted must be gray or neutral color.

2.4.1 Putty and Glazing Compound

Provide glazing compound as recommended by manufacturer for face-glazing metal sash. Putty must be linseed oil type. Do not use putty and glazing compounds with insulating glass or laminated glass.

2.4.2 Glazing Compound

Use for face glazing metal sash. Do not use with insulating glass units or laminated glass.

2.4.3 Sealants

Provide elastomeric and structural sealants.

2.4.3.1 Elastomeric Sealant

ASTM C920, Type S, Grade NS, Class 12.5, Use G. Use for channel or stop glazing metal sash. Sealant must be chemically compatible with setting blocks, edge blocks, and sealing tapes, with sealants used in manufacture of insulating glass units. Color of sealant must be white.

2.4.3.2 Structural Sealant

ASTM C1184, Type S.
2.4.4 Preformed Channels

Neoprene, vinyl, or rubber, as recommended by the glass manufacturer for the particular condition.

2.4.5 Sealing Tapes

Preformed, semisolid, PVC-based material of proper size and compressibility for the particular condition, complying with ASTM D2287. Use only where glazing rabbet is designed for tape and tape is recommended by the glass or sealant manufacturer. Provide spacer shims for use with compressible tapes. Tapes must be chemically compatible with the product being set.

2.4.6 Setting Blocks and Edge Blocks

Closed-cell neoprene setting blocks must be dense extruded type conforming to ASTM C509 and ASTM D395, Method B, Shore A durometer between 70 and 90. Edge blocking must be Shore A durometer of 50 (plus or minus 5). Provide silicone setting blocks when blocks are in contact with silicone sealant. Profiles, lengths and locations must be as required and recommended in writing by glass manufacturer. Block color must be black.

2.4.7 Glazing Gaskets

Glazing gaskets must be extruded with continuous integral locking projection designed to engage into metal glass holding members to provide a watertight seal during dynamic loading, building movements and thermal movements. Glazing gaskets for a single glazed opening must be continuous one-piece units with factory-fabricated injection-molded corners free of flashing and burrs. Glazing gaskets must be in lengths or units recommended by manufacturer to ensure against pull-back at corners. Provide glazing gasket profiles as recommended by the manufacturer for the intended application.

2.4.7.1 Fixed Glazing Gaskets

Fixed glazing gaskets must be closed-cell (sponge) smooth extruded compression gaskets of cured elastomeric virgin neoprene compounds conforming to ASTM C509, Type 2, Option 1.

2.4.7.2 Wedge Glazing Gaskets

Wedge glazing gaskets must be high-quality extrusions of cured elastomeric virgin neoprene compounds, ozone resistant, conforming to ASTM C864, Option 1, Shore A durometer between 65 and 75.

2.4.7.3 Aluminum Framing Glazing Gaskets

Glazing gaskets for aluminum framing must be permanent, elastic, non-shrinking, non-migrating, watertight and weathertight.

2.4.8 Accessories

Provide as required for a complete installation, including glazing points, clips, shims, angles, beads, and spacer strips. Provide noncorroding metal accessories. Provide primer-sealers and cleaners as recommended by the glass and sealant manufacturers.
PART 3 EXECUTION

Any materials that show visual evidence of biological growth due to the presence of moisture must not be installed on the building project.

3.1 PREPARATION

Preparation, unless otherwise specified or approved, must conform to applicable recommendations in the GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, IGMA TM-3000, and manufacturer's recommendations. Determine the sizes to provide the required edge clearances by measuring the actual opening to receive the glass. Grind smooth in the shop glass edges that will be exposed in finish work. Leave labels in place until the installation is approved, except remove applied labels on heat-absorbing glass and on insulating glass units as soon as glass is installed. Securely fix movable items or keep in a closed and locked position until glazing compound has thoroughly set.

3.2 GLASS SETTING

Shop glaze or field glaze items to be glazed using glass of the quality and thickness specified or indicated. Glazing, unless otherwise specified or approved, must conform to applicable recommendations in the GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, IGMA TM-3000, and manufacturer's recommendations. Aluminum windows, wood doors, and wood windows may be glazed in conformance with one of the glazing methods described in the standards under which they are produced, except that face puttying with no bedding will not be permitted. Handle and install glazing materials in accordance with manufacturer's instructions. Use beads or stops which are furnished with items to be glazed to secure the glass in place. Verify products are properly installed, connected, and adjusted.

3.2.1 Sheet Glass

Cut and set with the visible lines or waves horizontal.

3.2.2 Patterned Glass

Set glass with one patterned surface with smooth surface on the weather side. When used for interior partitions, place the patterned surface in same direction in all openings.

3.2.3 Insulating Glass Units

Do not grind, nip, or cut edges or corners of units after the units have left the factory. Springing, forcing, or twisting of units during setting will not be permitted. Handle units so as not to strike frames or other objects. Installation must conform to applicable recommendations of IGMA TB-3001 and IGMA TM-3000.

3.2.4 Installation of Wire Glass

Install glass for fire doors in accordance with installation requirements of NFPA 80.

3.2.5 Installation of Laminated Glass

Sashes which are to receive laminated glass must be weeped to the outside to allow water drainage into the channel.
3.3 CLEANING

Clean glass surfaces and remove labels, paint spots, putty, and other defacement as required to prevent staining. Glass must be clean at the time the work is accepted.

3.4 PROTECTION

Protect glass work immediately after installation. Identify glazed openings with suitable warning tapes, cloth or paper flags, attached with non-staining adhesives. Protect reflective glass with a protective material to eliminate any contamination of the reflective coating. Place protective material far enough away from the coated glass to allow air to circulate to reduce heat buildup and moisture accumulation on the glass. Remove and replace glass units which are broken, chipped, cracked, abraded, or otherwise damaged during construction activities with new units.

-- End of Section --
This Page is Intentionally Left Blank
SECTION 08 91 00

METAL WALL LOUVERS

05/11

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 500-D (2012) Laboratory Methods of Testing Dampers for Rating

AMCA 511 (2013) Certified Ratings Program for Air Control Devices

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Wall louvers
SD-03 Product Data
 Metal Wall Louvers
SD-04 Samples
 Wall louvers

1.3 DELIVERY, STORAGE, AND PROTECTION

Deliver materials to the site in an undamaged condition. Carefully store materials off the ground to provide proper ventilation, drainage, and protection against dampness. Louvers shall be free from nicks, scratches, and blemishes. Replace defective or damaged materials with new.

1.4 DETAIL DRAWINGS

Show all information necessary for fabrication and installation of wall louvers. Indicate materials, sizes, thicknesses, fastenings, and profiles.

1.5 COLOR SAMPLES

Colors of finishes for wall louvers shall closely approximate colors indicated. Where color is not indicated, submit the manufacturer's standard colors to the Contracting Officer for selection.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Galvanized Steel Sheet
 ASTM A653/A653M, coating designation G90.

2.1.2 Aluminum Sheet
 ASTM B209, alloy 3003 or 5005 with temper as required for forming.

2.1.3 Extruded Aluminum
 ASTM B221, alloy 6063-T5 or -T52.

2.1.4 Cold Rolled Steel Sheet
 ASTM A1008/A1008M, Class 1, with matte finish. Use for interior louvers only.
2.2 METAL WALL LOUVERS

Weather resistant type, with bird screens and made to withstand a wind load of not less than 40 pounds per square foot. Wall louvers shall bear the AMCA certified ratings program seal for air performance and water penetration in accordance with AMCA 500-D and AMCA 511. The rating shall show a water penetration of 0.20 or less ounce per square foot of free area at a free velocity of 800 feet per minute.

2.2.1 Extruded Aluminum Louvers

Fabricated of extruded 6063-T5 or -T52 aluminum with a wall thickness of not less than 0.081 inch.

2.2.2 Mullions and Mullion Covers

Same material and finish as louvers. Provide mullions for all louvers more than 5 feet in width at not more than 5 feet on centers. Provide mullion covers on both faces of joints between louvers.

2.2.3 Screens and Frames

For aluminum louvers, provide 1/2 inch square mesh, 14 or 16 gage aluminum or 1/4 inch square mesh, 16 gage aluminum bird screening. For steel louvers, provide 1/2 inch square mesh, 12 or 16 gage zinc-coated steel; 1/2 inch square mesh, 16 gage copper; or 1/4 inch square mesh, 16 gage zinc-coated steel or copper bird screening. Mount screens in removable, rewirable frames of same material and finish as the louvers.

2.3 FASTENERS AND ACCESSORIES

Provide stainless steel screws and fasteners for aluminum louvers and zinc-coated or stainless steel screws and fasteners for steel louvers. Provide other accessories as required for complete and proper installation.

2.4 FINISHES

2.4.1 Aluminum

Exposed aluminum surfaces shall be factory finished with an anodic coating. Color shall be as indicated. Louvers for each building shall have the same finish.

2.4.1.1 Anodic Coating

Clean exposed aluminum surfaces and provide an anodized finish conforming to AA DAF45 and AAMA 611. Finish shall be:

b. Architectural Class I (0.7 mil or thicker), designation AA-M10-C22-A44, electrolytically deposited color anodized.

2.4.1.2 Organic Coating

Clean and prime exposed aluminum surfaces. Provide a high-performance finish in accordance with AAMA 2605 with total dry film thickness of not less than 1.2 mil, color as selected.
PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Wall Louvers

Install using stops or moldings, flanges, strap anchors, or jamb fasteners as appropriate for the wall construction and in accordance with manufacturer's recommendations.

3.1.2 Screens and Frames

Attach frames to louvers with screws or bolts.

3.2 PROTECTION FROM CONTACT OF DISSIMILAR MATERIALS

3.2.1 Copper or Copper-Bearing Alloys

Paint copper or copper-bearing alloys in contact with dissimilar metal with heavy-bodied bituminous paint or separate with inert membrane.

3.2.2 Aluminum

Where aluminum contacts metal other than zinc, paint the dissimilar metal with a primer and two coats of aluminum paint.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C645 (2014) Nonstructural Steel Framing Members

ASTM C841 (2003; R 2013) Installation of Interior Lathing and Furring

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

UNDERWRITERS LABORATORIES (UL)

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Metal support systems
Submit for the erection of metal framing, furring, and ceiling suspension systems. Indicate materials, sizes, thicknesses, and fastenings.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the job site and store in ventilated dry locations. Storage area shall permit easy access for inspection and handling. If materials are stored outdoors, stack materials off the ground, supported on a level platform, and fully protected from the weather. Handle materials carefully to prevent damage. Remove damaged items and provide new items.

PART 2 PRODUCTS

2.1 MATERIALS

Provide steel materials for metal support systems with galvanized coating ASTM A653/A653M, G-60; aluminum coating ASTM A463/A463M, T1-25; or a 55-percent aluminum-zinc coating. Provide support systems and attachments per AISC 341 in seismic zones.

2.1.1 Materials for Attachment of Lath

2.1.1.1 Suspended and Furred Ceiling Systems and Wall Furring

ASTM C841, and ASTM C847.

2.1.1.2 Non-loadbearing Wall Framing

NAAMM EMLA 920.

2.1.2 Materials for Attachment of Gypsum Wallboard

2.1.2.1 Suspended and Furred Ceiling Systems

ASTM C645.

2.1.2.2 Nonload-Bearing Wall Framing and Furring

ASTM C645, but not thinner than 0.0329 inch thickness. The ASTM certified third party testing statement for equivalent thicknesses shall not apply.

2.1.2.3 Furring Structural Steel Columns

ASTM C645. Steel (furring) clips and support angles listed in UL Fire Resistance may be provided in lieu of steel studs for erection of gypsum wallboard around structural steel columns.

2.1.2.4 Z-Furring Channels with Wall Insulation

Not lighter than 26 gage galvanized steel, Z-shaped, with 1-1/4 inch and 3/4 inch flanges and 1 1/2 inch furring depth.
PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Systems for Attachment of Lath

3.1.1.1 Suspended and Furred Ceiling Systems and Wall Furring

ASTM C841, except as indicated otherwise.

3.1.1.2 Non-loadbearing Wall Framing

NAAMM EMLA 920, except provide framing members 16 inches o.c. unless indicated otherwise.

3.1.2 Systems for Attachment of Gypsum Wallboard

3.1.2.1 Suspended and Furred Ceiling Systems

ASTM C754, except provide framing members 16 inches o.c. unless indicated otherwise.

3.1.2.2 Non-loadbearing Wall Framing and Furring

ASTM C754, except as indicated otherwise.

3.1.2.3 Furring Structural Steel Columns

Install studs or galvanized steel clips and support angles for erection of gypsum wallboard around structural steel columns in accordance with the UL Fire Resistance, design number(s) indicated.

3.1.2.4 Z-Furring Channels with Wall Insulation

Install Z-furring channels vertically spaced not more than 24 inches o.c. Locate Z-furring channels at interior and exterior corners in accordance with manufacturer's printed erection instructions. Fasten furring channels to masonry and concrete walls with powder-driven fasteners or hardened concrete steel nails through narrow flange of channel. Space fasteners not more than 24 inches o.c.

3.2 ERECTION TOLERANCES

Provide framing members which will be covered by finish materials such as wallboard, plaster, or ceramic tile set in a mortar setting bed, within the following limits:

a. Layout of walls and partitions: 1/4 inch from intended position;

b. Plates and runners: 1/4 inch in 8 feet from a straight line;

c. Studs: 1/4 inch in 8 feet out of plumb, not cumulative; and

d. Face of framing members: 1/4 inch in 8 feet from a true plane.

Provide framing members which will be covered by ceramic tile set in dry-set mortar, latex-portland cement mortar, or organic adhesive within the following limits:
a. Layout of walls and partitions: 1/4 inch from intended position;

b. Plates and runners: 1/8 inch in 8 feet from a straight line;

c. Studs: 1/8 inch in 8 feet out of plumb, not cumulative; and

d. Face of framing members: 1/8 inch in 8 feet from a true plane.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI A108.11 (1992; Reaffirmed 2005) Specifications for Interior Installation of Cementitious Backer Units

ASTM INTERNATIONAL (ASTM)

ASTM C1002 (2014) Standard Specification for Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs

ASTM C475/C475M (2015) Joint Compound and Joint Tape for Finishing Gypsum Board

ASTM C954 (2015) Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness

ASTM D2394 (2005; R 2011) Simulated Service Testing
of Wood and Wood-Base Finish Flooring

GYPSUM ASSOCIATION (GA)

GA 214 (2010) Recommended Levels of Gypsum Board Finish

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Moisture Resistant Impact Resistant Gypsum Board Accessories
Submit for each type of gypsum board and for cementitious backer units.

Joint Treatment Materials

SD-04 Samples

SD-07 Certificates
Asbestos Free Materials
Certify that gypsum board types, gypsum backing board types, cementitious backer units, and joint treating materials do not contain asbestos.

SD-11 Closeout Submittals
1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials in the original packages, containers, or bundles with each bearing the brand name, applicable standard designation, and name of manufacturer, or supplier.

1.3.2 Storage

Keep materials dry by storing inside a sheltered building. Where necessary to store gypsum board and cementitious backer units outside, store off the ground, properly supported on a level platform, and protected from direct exposure to rain, snow, sunlight, and other extreme weather conditions. Provide adequate ventilation to prevent condensation. Store per manufacturer's recommendations for allowable temperature and humidity range. Do not store panels near materials that may offgas or emit harmful fumes, such as kerosene heaters, fresh paint, or adhesives.

1.3.3 Handling

Neatly stack gypsum board and cementitious backer units flat to prevent sagging or damage to the edges, ends, and surfaces.

1.4 ENVIRONMENTAL CONDITIONS

1.4.1 Temperature

Maintain a uniform temperature of not less than 50 degrees F in the structure for at least 48 hours prior to, during, and following the application of gypsum board, cementitious backer units, and joint treatment materials, or the bonding of adhesives.

1.4.2 Exposure to Weather

Protect gypsum board and cementitious backer unit products from direct exposure to rain, snow, sunlight, and other extreme weather conditions.

1.5 QUALIFICATIONS

Furnish type of gypsum board work specialized by the installer with a minimum of 3 years of documented successful experience.

PART 2 PRODUCTS

2.1 MATERIALS

Conform to specifications, standards and requirements specified. Provide gypsum board types, gypsum backing board types, cementitious backing units, and joint treating materials manufactured from asbestos free materials only.

2.1.1 Gypsum Board

ASTM C1396/C1396M.

2.1.1.1 Regular

48 inch wide, 5/8 inch thick, tapered edges.
2.1.2 Moisture Resistant Impact Resistant Gypsum Board

48 inch wide, 5/8 inch thick, tapered edges.
Reinforced gypsum panel with imbedded fiber mesh or lexan backing testing in accordance with the following tests. Hard body impact test must attain a Level 2 performance in accordance with ASTM C1629/C1629M. Provide fasteners that meet manufacturer requirements and specifications stated within this section. Impact resistant gypsum board, when tested in accordance with ASTM E84, have a flame spread rating of 25 or less and a smoke developed rating of 50 or less for .

Humidified Deflection (ASTM C473, ASTM C1658): Not more than 1/8 inch.
Mold Resistance (ASTM D3273): 10, in a test as manufactured.
Microbial Resistance (ASTM D6329): Will not support microbial growth.
Abuse Resistance (ASTM C1629):
 a. Surface Abrasion: Level 3.
 b. Surface Indentation: Level 1.

2.1.2.1 Structural Failure Test

ASTM E695 or ASTM D2394 for structural failure (drop penetration). ASTM E695 using a 60 lb sand filled leather bag, resisting no less than 300 ft. lb. cumulative impact energy before failure or ASTM D2394 using 5.5 inch hemispherical projectile resisting no less than 264 ft. lb. before failure. Provide test specimen stud spacing a minimum 16 inch on center.

2.1.2.2 Indentation Test

ASTM D5420 or ASTM D1037 for indentation resistance. ASTM D5420 using a 32 oz weight with a 5/8 inch hemispherical impacting head dropped once 3 feet creating not more than 0.137 inch indentation or ASTM D1037 using no less than 470 lb weight applied to the 0.438 inch diameter ball to create not more than a 0.0197 inch indentation depth.

2.1.3 Joint Treatment Materials

ASTM C475/C475M. Use all purpose joint and texturing compound containing inert fillers and natural binders, including lime compound. Pre-mixed compounds shall be free of antifreeze, vinyl adhesives, preservatives, biocides and other slow releasing compounds.

2.1.3.1 Embedding Compound

Specifically formulated and manufactured for use in embedding tape at gypsum board joints and compatible with tape, substrate and fasteners.

2.1.3.2 Finishing or Topping Compound

Specifically formulated and manufactured for use as a finishing compound.
2.1.3.3 All-Purpose Compound

Specifically formulated and manufactured to serve as both a taping and a finishing compound and compatible with tape, substrate and fasteners.

2.1.3.4 Setting or Hardening Type Compound

Specifically formulated and manufactured for use with fiber glass mesh tape.

2.1.3.5 Joint Tape

Use cross-laminated, tapered edge, reinforced paper, or fiber glass mesh tape recommended by the manufacturer.

2.1.4 Fasteners

2.1.4.1 Nails

ASTM C514.

2.1.4.2 Screws

ASTM C1002, Type "G", Type "S" or Type "W" steel drill screws for fastening gypsum board to gypsum board, wood framing members and steel framing members less than 0.033 inch thick. ASTM C954 steel drill screws for fastening gypsum board to steel framing members 0.033 to 0.112 inch thick. Provide cementitious backer unit screws with a polymer coating.

2.1.4.3 Staples

No. 16 USS gage flattened galvanized wire staples with 7/16 inch wide crown outside measurement and divergent point for base ply of two-ply gypsum board application. Use as follows:

<table>
<thead>
<tr>
<th>Length of Legs</th>
<th>Thickness of Gypsum Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/8 inches</td>
<td>1/2 inch</td>
</tr>
<tr>
<td>1-1/4 inches</td>
<td>5/8 inch</td>
</tr>
</tbody>
</table>

2.1.5 Accessories

ASTM C1047. Fabricate from corrosion protected steel or plastic designed for intended use. Accessories manufactured with paper flanges are not acceptable. Flanges shall be free of dirt, grease, and other materials that may adversely affect bond of joint treatment. Provide prefinished or job decorated materials.

2.1.6 Water

Provide clean, fresh, and potable water.
PART 3 EXECUTION

3.1 EXAMINATION

3.1.1 Framing and Furring

Verify that framing and furring are securely attached and of sizes and spacing to provide a suitable substrate to receive gypsum board and cementitious backer units. Verify that all blocking, headers and supports are in place to support plumbing fixtures and to receive soap dishes, grab bars, towel racks, and similar items. Do not proceed with work until framing and furring are acceptable for application of gypsum board and cementitious backer units.

3.2 APPLICATION OF GYPSUM BOARD

Apply gypsum board to framing and furring members in accordance with ASTM C840 or GA 216 and the requirements specified. Apply gypsum board with separate panels in moderate contact; do not force in place. Stagger end joints of adjoining panels. Neatly fit abutting end and edge joints. Use gypsum board of maximum practical length; select panel sizes to minimize waste. Cut out gypsum board to make neat, close, and tight joints around openings. In vertical application of gypsum board, provide panels in lengths required to reach full height of vertical surfaces in one continuous piece. Lay out panels to minimize waste; reuse cutoffs whenever feasible. Surfaces of gypsum board and substrate members may not be bonded together with an adhesive. Treat edges of cutouts for plumbing pipes, screwheads, and joints with water-resistant compound as recommended by the gypsum board manufacturer. Provide type of gypsum board for use in each system specified herein as indicated.

3.2.1 Application of Gypsum Board to Steel Framing and Furring

Apply in accordance with ASTM C840, System VIII or GA 216.

3.2.2 Exterior Application

Apply exterior gypsum board (such as at soffits) in accordance with ASTM C840, System XI or GA 216.

3.2.3 Glass Mat Covered or Fiber Reinforced Gypsum Sheathing

Apply gypsum sheathing in accordance to gypsum association publications GA 253. Follow gypsum sheathing manufacturer's requirements of design details for joints and fasteners and be properly installed to protect the substrate from moisture intrusion. Do not leave exposed surfaces of the gypsum sheathing beyond the manufacturer's recommendation without a weather barrier cladding. Provide continuous asphalt impregnated building felt over sheathing surface in shingle fashion with edges and ends lapped a minimum of 6 inch. Property flash the openings. Seal all joints, seams, and penetrations with a compatible silicone sealant.

3.2.4 Floating Interior Angles

Minimize framing by floating corners with single studs and drywall clips. Locate the attachment fasteners adjacent to ceiling and wall intersections in accordance with ASTM C840, System XII or GA 216, for single-ply and two-ply applications of gypsum board to wood framing.
3.2.5 Control Joints

Install expansion and contraction joints in ceilings and walls in accordance with ASTM C840, System XIII or GA 216.

3.2.6 Application of Impact Resistant Gypsum Board

Apply in accordance with applicable system of ASTM C840 as specified or GA 216. Follow manufacturers written instructions on how to cut, drill and attach board.

3.3 APPLICATION OF CEMENTITIOUS BACKER UNITS

3.3.1 Application

In wet areas (tubs, shower enclosures, saunas, steam rooms, gang shower rooms), apply cementitious backer units in accordance with ANSI A108.11. Place a 15 lb asphalt impregnated, continuous felt paper membrane behind cementitious backer units, between backer units and studs or base layer of gypsum board. Place membrane with a minimum 6 inch overlap of sheets laid shingle style.

3.3.2 Joint Treatment

ANSI A108.11.

3.4 FINISHING OF GYPSUM BOARD

Tape and finish gypsum board in accordance with ASTM C840, GA 214 and GA 216. Finish plenum areas above ceilings to Level 1 in accordance with GA 214. Finish water resistant gypsum backing board, ASTM C1396/C1396M, to receive ceramic tile to Level 2 in accordance with GA 214. Finish walls and ceilings to receive a heavy-grade wall covering or heave textured finish before painting to Level 3 in accordance with GA 214. Finish walls and ceilings without critical lighting to receive flat paints, light textures, or wall coverings to Level 4 in accordance with GA 214. Unless otherwise specified, finish all gypsum board walls, partitions and ceilings to Level 5 in accordance with GA 214. Provide joint, fastener depression, and corner treatment. Tool joints as smoothly as possible to minimize sanding and dust. Do not use fiber glass mesh tape with conventional drying type joint compounds; use setting or hardening type compounds only. Provide treatment for water-resistant gypsum board as recommended by the gypsum board manufacturer. Protect workers, building occupants, and HVAC systems from gypsum dust.

3.4.1 Uniform Surface

Wherever gypsum board is to receive eggshell, semigloss or gloss paint finish, or where severe, up or down lighting conditions occur, finish gypsum wall surface in accordance to GA 214 Level 5. In accordance with GA 214 Level 5, apply a thin skim coat of joint compound to the entire gypsum board surface, after the two-coat joint and fastener treatment is complete and dry.

3.5 SEALING

Seal openings around pipes, fixtures, and other items projecting through gypsum board and cementitious backer units as specified in Section 07 92 00 JOINT SEALANTS. Apply material with exposed surface flush with gypsum board.
or cementitious backer units.

3.6 PATCHING

Patch surface defects in gypsum board to a smooth, uniform appearance, ready to receive finishes.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI A118.10 (2012) American National Standards Specifications for Waterproofing

ASTM INTERNATIONAL (ASTM)

ASTM C648 (2004; R 2009) Breaking Strength of Ceramic Tile

MARBLE INSTITUTE OF AMERICA (MIA)

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Tile
Setting-Bed
Mortar, Grout, and Adhesive
Reinforcing Wire Fabric
Sealants

SD-04 Samples

Tile
Grout
Thresholds

SD-06 Test Reports

Membrane Waterproofing

SD-08 Manufacturer's Instructions

Maintenance Instructions
Sealants

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the project site in manufacturer's original unopened containers with seals unbroken and labels and hallmarks intact. Protect materials from weather, and store them under cover in accordance with manufacturer's printed instructions.

1.4 ENVIRONMENTAL REQUIREMENTS

Do not perform ceramic tile work unless the substrate and ambient temperature is at least 50 degrees F and rising. Maintain temperature above 50 degrees F while the work is being performed and for at least 7 days after completion of the work. When temporary heaters are used, ventilate the area to the outside to avoid carbon dioxide damage to new tilework.

1.5 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1-year period.
1.6 EXTRA MATERIALS

Supply an extra 2 percent of each type tile used in clean and marked cartons.

PART 2 PRODUCTS

2.1 TILE

Furnish tiles that comply with ANSI A137.1 and are standard grade tiles. Provide a minimum breaking strength of 125 lbs. for wall tile and 250 lbs. for floor tile in accordance with ASTM C648. Provide exterior building tile for cold climate projects that is approved by the manufacturer for exterior use when tested in accordance with ASTM C1026. Provide floor tiles with a wet dynamic coefficient of friction (DCOF) value of 0.06 or greater when tested in accordance with ANSI A137.1 requirements. For materials like tile, accessories, and transition strips submit samples for each style/color used that is of sufficient size to show color range, pattern, type and joints. Submit manufacturer's catalog data.

2.1.1 Porcelain Tile

Furnish unglazed porcelain tile, with color extending uniformly through the body of the tile. Provide nominal tile size of 6 by 6 inch and 5/16 inch thick. Provide a 0.50 percent maximum water absorption in accordance with ASTM C373. Provide 3/16 inch grout joints, submit samples for approval of each type as indicated on finish schedule.

2.1.2 Mosaic Tile

Furnish unglazed, mosaic tile composed of porcelain. Provide nominal tile size of 3 X 3 inch. Provide porcelain mosaics with a water absorption up to 0.50 percent when tested in accordance with ASTM C373. Provide 1/8 inch grout joints. Submit samples for approval for each type indicated on finish schedule.

2.2 SETTING-BED

Submit manufacturer's catalog data. Compose the setting-bed of Latex modified thin-set as recommended by the tile manufacturer's written installation instructions.

2.2.1 Metal Lath

Conform to ASTM C847 for flat expanded type metal lath, and weighing a minimum 2.5 pound/square yard.

2.2.2 Reinforcing Wire Fabric

Conform to ASTM A1064/A1064M for wire fabric. Provide 2 by 2 inch mesh, 16/16 wire or 1-1/2 by 2 inch mesh, 16/13 wire.

2.3 WATER

Provide potable water.

2.4 MORTAR, GROUT, AND ADHESIVE

Conform to the following for mortar, grout, adhesive, and sealant:
2.4.1 Latex Modified Thin-set Cement Mortar

TCNA Hdbk. As required by tile manufacturer.

2.4.2 Porcelain Tile Grout

TCNA Hdbk; Provide premium-grade, pre-blended, polymer-modified sand portland cement grout suitable for grout joints indicated.

2.4.3 Adhesive

TCNA Hdbk, Type I. Water-resistant. Comply with applicable regulations regarding toxic and hazardous materials and as required by shower shelving, manufacturer's written installation instructions.

2.4.4 Sealants

Comply with applicable regulations regarding toxic and hazardous materials and as recommended by the Grout manufacturer. Grout sealant must not change the color or alter the appearance of the grout. Submit product data and manufacturer's instructions.

2.4.5 Cementitious Backer Board

Provide cementitious backer units, for use as tile substrate, in accordance with TCNA Hdbk. Furnish 1/2 inch thick cementitious backer units.

2.5 THRESHOLDS

Provide thresholds between tile resilient flooring. Provide types as recommended by flooring manufacturer for both edges and transitions of flooring materials specified.

2.5.1 Marble

Categorize marble Group A as classified by MIA Design Manual. Provide a fine sand-rubbed finish marble, gray in color as approved by the Contracting Officer. Provide minimum 12.0 marble abrasion when tested in accordance with ASTM C241/C241M

2.5.2 Solid Surface

Provide solid surface transitions appropriate for conditions. Reference SECTION 06 61 16 SOLID SURFACING FABRICATIONS for specifications color to match shower shelving units as indicated on finish schedule.

2.6 MEMBRANE MATERIALS

2.7 COLOR, TEXTURE, AND PATTERN

Provide color, pattern and texture as indicated on the finish schedule. Color listed is not intended to limit the selection of equal colors from other manufacturers.
PART 3 EXECUTION

3.1 PREPARATORY WORK AND WORKMANSHIP

Inspect surface to receive tile in conformance to the requirements of TCNA Hdbk for surface conditions for the type setting bed specified and for workmanship. Provide variations of tiled surfaces that fall within maximum values shown below:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>WALLS</th>
<th>FLOORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry-Set Mortar</td>
<td>1/8 inch in 8 ft.</td>
<td>1/8 inch in 10 ft.</td>
</tr>
<tr>
<td>Adhesives</td>
<td>1/8 inch in 8 ft.</td>
<td>1/16 inch in 3 ft.</td>
</tr>
<tr>
<td>Latex Portland Cement Mortar</td>
<td>1/8 inch in 8 ft.</td>
<td>1/8 inch in 10 ft.</td>
</tr>
</tbody>
</table>

3.2 GENERAL INSTALLATION REQUIREMENTS

Do not start tile work until roughing in for mechanical and electrical work has been completed and tested, and built-in items requiring membrane waterproofing have been installed and tested. Close space, in which tile is being set, to traffic and other work. Keep closed until tile is firmly set. Do not start floor tile installation in spaces requiring wall tile until after wall tile has been installed. Apply tile in colors and patterns indicated in the area shown on the drawings. Install tile with the respective surfaces in true even planes to the elevations and grades shown. Provide special shapes as required for sills, jambs, recesses, offsets, external corners, and other conditions to provide a complete and neatly finished installation. Solidly back tile bases and coves with mortar.

3.3 INSTALLATION OF WALL TILE

Install wall tile in accordance with the TCNA Hdbk, method W222 and as recommended by the manufacturer for the type of tile. Install thinner wall tile flush with thicker wall tile applied on same wall and provide installation materials as recommended by the tile and setting materials manufacturer's to achieve flush installation. Provide a waterproof membrane per ANSI A118.10 in showers.

3.3.1 Latex-Modified Thin-set Cement Mortar

Use Latex-Modified Thin-set Cement to install tile in accordance with tile manufacturer's written installation instructions.

3.3.2 Adhesive

Conform to manufacturer's installation instructions for the adhesive installation of shower shelves.
3.3.3 Ceramic Tile Grout

Prepare and install ceramic tile grout in accordance with TCNA Hdbk. Provide and apply manufacturer's standard product for sealing grout joints in accordance with manufacturer's recommendations.

3.4 INSTALLATION OF FLOOR TILE

Install floor tile in toilets in accordance with TCNA Hdbk method F122 on the first floor and F122A on the second and third floors. Install floor tile in the showers in accordance with TCNA Hdbk method F121. Install shower receptors in accordance with TCNA Hdbk method B415.

3.4.1 Latex-Modified Thin-set Mortar Bed

Install floor tile over mortar bed as recommended by the manufacturer's written instructions..

3.4.2 Ceramic Tile Grout

Prepare and install ceramic tile grout in accordance with TCNA Hdbk. Provide and apply manufacturer's standard product for sealing grout joints in accordance with manufacturer's recommendations.

3.4.3 Waterproofing

Shower pans are specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE. C

Provide as required by TCNA Hdbk and ANSI A118.10.

3.4.4 Concrete Fill

Provide a 3500 psi concrete fill mix to dry as consistency as practicable. Compose concrete fill by volume of 1 part Portland cement to 3 parts fine aggregate to 4 parts coarse aggregate, and mix with water to as dry a consistency as practicable. Spread, tamp, and screed concrete fill to a true plane, and pitch to drains or levels as shown. Thoroughly damp concrete fill before applying setting-bed material. Reinforce concrete fill with one layer of reinforcement, with the uncut edges lapped the width of one mesh and the cut ends and edges lapped a minimum 2 inch. Tie laps together with 18 gauge wire every 10 inch along the finished edges and every 6 inch along the cut ends and edges. Provide reinforcement with support and secure in the centers of concrete fills. Provide a continuous mesh; except where expansion joints occur, cut mesh and discontinue across such joints. Provide reinforced concrete fill under the setting-bed where the distance between the under-floor surface and the finished tiles floor surface is a minimum of 2 inches, and of the same thickness that the mortar setting-bed over the concrete fill with the thickness required in the specified TCNA Hdbk method.

3.5 INSTALLATION OF THRESHOLDS

Install thresholds where indicated, in a manner similar to that of the ceramic tile floor and as recommended by the manufacturer. Provide thresholds full width of the opening. Install head joints at ends not exceeding 1/4 inch in width and grouted full.

3.6 TEST OF MEMBRANE WATERPROOFING

Prior to concealment, plug the drain and cover membrane waterproofing on
horizontal surfaces over finished spaces with 4 inches of ponded water for 24 hours to test watertightness. Make careful measurement of the water level at the beginning and end of the 24-hour period. If water level falls, drain the water, and thoroughly dry and inspect the waterproofing membrane. Make repairs or replacement, as directed, and repeat test. The test results shall be presented to the Contracting Officer before work is performed which conceals the membrane waterproofing for each shower on the second and third floors of the building.

3.7 EXPANSION JOINTS

Form and seal joints as specified in Section 07 92 00 JOINT SEALANTS.

3.7.1 Walls

Provide expansion joints at control joints in backing material. Wherever backing material changes, install an expansion joint to separate the different materials.

3.7.2 Floors

Provide expansion joints over construction joints, control joints, and expansion joints in concrete slabs. Provide expansion joints where tile abuts restraining surfaces such as perimeter walls, curbs and columns and at intervals of 24 to 36 feet each way in large interior floor areas and 12 to 16 feet each way in large exterior areas or areas exposed to direct sunlight or moisture. Extend expansion joints through setting-beds and fill.

3.8 CLEANING AND PROTECTING

Upon completion, thoroughly clean tile surfaces in accordance with manufacturer's approved cleaning instructions. Do not use acid for cleaning glazed tile. Clean floor tile with resinous grout or with factory mixed grout in accordance with printed instructions of the grout manufacturer. After the grout has set, provide a protective coat of a noncorrosive soap or other approved method of protection for tile wall surfaces. Cover tiled floor areas with building paper before foot traffic is permitted over the finished tile floors. Provide board walkways on tiled floors that are to be continuously used as passageways by workmen. Replace damaged or defective tiles. Submit copy of manufacturer's printed maintenance instructions.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C423 (2009a) Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

ASTM C834 (2014) Latex Sealants

ASTM E1264 (2014) Acoustical Ceiling Products

ASTM E1414/E1414M (2011a; E 2014) Airborne Sound Attenuation Between Rooms Sharing a Common Ceiling Plenum

ASTM E1477 (1998a; R 2013) Luminous Reflectance Factor of Acoustical Materials by Use of Integrating-Sphere Reflectometers

ASTM E795 (2005; R 2012) Mounting Test Specimens During Sound Absorption Tests

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 3-310-04 (2013) Seismic Design for Buildings

UNDERWRITERS LABORATORIES (UL)

1.2 SYSTEM DESCRIPTION

Provide sound controlling units mechanically mounted on a ceiling suspension system for acoustical treatment. The unit size, texture, finish, and color must be as specified. The location and extent of acoustical treatment shall be as shown on the approved detail drawings. Submit drawings showing suspension system, method of anchoring and fastening, details, and reflected ceiling plan. Coordinate with paragraph RECLAMATION PROCEDURES for reclamation of mineral fiber acoustical ceiling panels to be removed from the job site.

1.2.1 Ceiling Attenuation Class and Test

Provide a ceiling system with an attenuation class (CAC) of 35 for all spaces when determined in accordance with ASTM E1414/E1414M. Provide fixture attenuators over light fixtures and other ceiling penetrations, and provide acoustical blanket insulation adjacent to partitions, as required to achieve the specified CAC. Provide test ceiling continuous at the partition and assembled in the suspension system in the same manner that the ceiling will be installed on the project.

1.2.2 Ceiling Sound Absorption

Determine the Noise Reduction Coefficient (NRC) in accordance with ASTM C423 Test Method.

1.2.3 Light Reflectance

Determine light reflectance factor in accordance with ASTM E1477 Test Method.

1.2.4 Other Submittals Requirements

The following shall be submitted:

a. Manufacturer's data indicating percentage of recycle material in acoustic ceiling tiles to verify affirmative procurement compliance.

b. Total weight and volume quantities of acoustic ceiling tiles with recycle material.

c. Manufacturer's catalog showing UL classification of fire-rated ceilings giving materials, construction details, types of floor and roof constructions to be protected, and UL design number and fire protection time rating for each required floor or roof construction and acoustic ceiling assembly.

d. Reports by an independent testing laboratory attesting that acoustical ceiling systems meet specified sound transmission requirements. Data attesting to conformance of the proposed system to Underwriters Laboratories requirements for the fire endurance rating listed in UL Fire Resistance may be submitted in lieu of test reports.

e. Certificate attesting that the mineral based acoustical units furnished for the project contain recycled material and showing an estimated percent of such material.
1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Approved Detail Drawings
SD-03 Product Data
 Other Submittals Requirements
 Acoustical Units
SD-04 Samples
 Acoustical Units
 Acoustic Ceiling Tiles
SD-06 Test Reports
 Other Submittals Requirements
 Ceiling Attenuation Class and Test
SD-07 Certificates
 Other Submittals Requirements
 Acoustical Units
 Acoustic Ceiling Tiles

1.4 DELIVERY, STORAGE. AND HANDLING

Deliver materials to the site in the manufacturer's original unopened containers with brand name and type clearly marked. Carefully handle and store materials in dry, watertight enclosures. Immediately before installation, store acoustical units for not less than 24 hours at the same temperature and relative humidity as the space where they will be installed in order to assure proper temperature and moisture acclimation.

1.5 ENVIRONMENTAL REQUIREMENTS

Maintain a uniform temperature of not less than 60 degrees F nor more than 85 degrees F and a relative humidity of not more than 70 percent for 24 hours before, during, and 24 hours after installation of acoustical units.

1.6 SCHEDULING

Complete and dry interior finish work such as plastering, concrete and terrazzo work before ceiling installation. Complete mechanical, electrical, and other work above the ceiling line; install and start operating heating, ventilating, and air conditioning systems in order to maintain temperature and humidity requirements.

1.7 WARRANTY

Provide manufacturer's 30 year system warranty. Include an agreement to repair or replace acoustical panels that fail within the warranty period in the standard performance guarantee or warranty. Failures include, but are not limited to, sagging and warping of panels; rusting and manufacturers
defects of grid system.

PART 2 PRODUCTS

2.1 ACOUSTICAL UNITS

Submit two samples of each type of acoustical unit and each type of suspension grid tee section showing texture, finish, and color. Conform acoustical units to ASTM E1264, Class A, and the following requirements:

2.1.1 Affirmative Procurement

Mineral Wool, Cellulose, and Laminated Paperboard used in acoustic ceiling tiles are materials listed in the EPA's Comprehensive Procurement Guidelines (CPG) (http://www.epa.gov/cpg/). EPA's recommended Recovered Materials Content Levels for Mineral Wool, Cellulose, Structural Fiberboard and Laminated Paperboard are:

<table>
<thead>
<tr>
<th>Product</th>
<th>Material</th>
<th>Percent of Post Consumer Materials</th>
<th>Percent of Total Recovered Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminate Paperboard</td>
<td>Post Consumer Paper</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rock Wool</td>
<td>Slag</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>Post Consumer Paper</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

a. The recommended recovered materials content levels are based on the weight (not volume) of materials in the insulating core only.

b. Submit recycled material content data for acoustic ceiling tiles indicating compliance with affirmative procurement.

c. Submit total weight and volume quantities of acoustic ceiling tiles with recycle material.

2.1.2 Units for Exposed-Grid System A

2.1.2.1 Type

IV (non-asbestos mineral fiber with membrane-faced overlay)

2.1.2.2 Flame Spread

Class A, 25 or less

2.1.2.3 Pattern

E Form 2

2.1.2.4 Minimum NRC

0.75 for all locations when tested on mounting Type E-400 of ASTM E795.

2.1.2.5 Minimum Light Reflectance Coefficient

LR-1, 0.85 or greater
2.1.2.6 Nominal Size
24 by 24 by 3/4 inch

2.1.2.7 Edge Detail
Reveal (tegular, beveled)

2.1.2.8 Finish
Factory-applied standard finish.

2.1.2.9 Minimum CAC
35

2.2 SUSPENSION SYSTEM

Provide standard exposed-grid 15/16 inch width flange suspension system conforming to ASTM C635/C635M for intermediate-duty systems. Provide surfaces exposed to view of aluminum or steel with a factory-applied white baked-enamel finish. Provide wall molding having a flange of not less than 7/8 inch. Provide inside and outside corner caps at corners. Suspended ceiling framing system must have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. Provide a suspension system with a maximum deflection of 1/360 of the span length. Conform seismic details to the guidance in UFC 3-310-04 and ASTM E580/E580M.

2.3 HANGERS

Provide hangers and attachment capable of supporting a minimum 300 pound ultimate vertical load without failure of supporting material or attachment.

2.3.1 Wires
Conform wires to ASTM A641/A641M, Class 1, 0.08 inch (12 gauge) in diameter. Space wires not more than 48 inches on center.

2.4 ACCESS PANELS

Provide access panels that match adjacent acoustical units, designed and equipped with suitable framing and fastenings for removal and replacement without damage. Size panel to be not less than 12 by 12 inch or more than 12 by 24 inch.

a. Attach an identification plate of 0.032 inch thick aluminum, 3/4 inch in diameter, stamped with the letters "AP" and finished the same as the unit, near one corner on the face of each access panel.

b. Identify ceiling access panel by a number utilizing white identification plates or plastic buttons with contrasting numerals. Provide plates or buttons of minimum 1 inch diameter and securely attached to one corner of each access unit. Provide a typewritten card framed under glass listing the code identification numbers and corresponding system descriptions listed above. Mount the framed card where directed and furnish a duplicate card to the Contracting Officer. Code identification system is as follows:

1 Fire detection/alarm system
2 Air conditioning controls
3 Plumbing system
4 Heating and steam systems
5 Air conditioning duct system
6 Sprinkler system
7 Intercommunication system
8 Program entertainment
9 Telephone junction boxes

2.5 FINISHES

Use manufacturer's standard textures, patterns and finishes as specified for acoustical units and suspension system members. Treat ceiling suspension system components to inhibit corrosion.

2.6 ACOUSTICAL SEALANT

Conform acoustical sealant to ASTM C834, nonstaining.

PART 3 EXECUTION

3.1 INSTALLATION

Examine surfaces to receive directly attached acoustical units for unevenness, irregularities, and dampness that would affect quality and execution of the work. Rid areas, where acoustical units will be cemented, of oils, form residue, or other materials that reduce bonding capabilities of the adhesive. Complete and dry interior finish work such as plastering, concrete, and terrazzo work before installation. Complete and approve mechanical, electrical, and other work above the ceiling line prior to the start of acoustical ceiling installation. Provide acoustical work complete with necessary fastenings, clips, and other accessories required for a complete installation. Do not expose mechanical fastenings in the finished work. Lay out hangers for each individual room or space. Provide hangers to support framing around beams, ducts, columns, grilles, and other penetrations through ceilings. Keep main runners and carrying channels clear of abutting walls and partitions. Provide at least two main runners for each ceiling span. Wherever required to bypass an object with the hanger wires, install a subsuspension system so that all hanger wires will be plumb.

3.1.1 Suspension System

Install suspension system in accordance with ASTM C636/C636M and as specified herein. Do not suspend hanger wires or other loads from underside of steel decking.

3.1.1.1 Plumb Hangers

Install hangers plumb and not pressing against insulation covering ducts and pipes. Where lighting fixtures are supported from the suspended
ceiling system, provide hangers at a minimum of four hangers per fixture and located not more than 6 inch from each corner of each fixture.

3.1.1.2 Splayed Hangers

Where hangers must be splayed (sloped or slanted) around obstructions, offset the resulting horizontal force by bracing, countersplaying, or other acceptable means.

3.1.2 Wall Molding

Provide wall molding where ceilings abut vertical surfaces. Install corner caps. Secure wall molding not more than 3 inch from ends of each length and not more than 16 inch on centers between end fastenings. Provide wall molding springs at each acoustical unit in semi-exposed or concealed systems.

3.1.3 Acoustical Units

Install acoustical units in accordance with the approved installation instructions of the manufacturer. Ensure that edges of acoustical units are in close contact with metal supports, with each other, and in true alignment. Arrange acoustical units so that units less than one-half width are minimized. Hold units in exposed-grid system in place with manufacturer's standard hold-down clips, if units weigh less than 1 psf or if required for fire resistance rating.

3.1.4 Caulking

Seal all joints around pipes, ducts or electrical outlets penetrating the ceiling. Apply a continuous ribbon of acoustical sealant on vertical web of wall or edge moldings.

3.2 CEILING ACCESS PANELS

Locate ceiling access panels directly under the items which require access.

3.3 CLEANING

Following installation, clean dirty or discolored surfaces of acoustical units and leave them free from defects. Remove units that are damaged or improperly installed and provide new units as directed.

3.4 RECLAMATION PROCEDURES

Neatly stack ceiling tile, designated for recycling by the Contracting Officer, on 4 by 4 foot pallets not higher than 4 foot. Panels must be completely dry. Shrink wrap and symmetrically stack pallets on top of each other without falling over.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM F1861 (2008; E 2012; R 2012) Resilient Wall Base

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SYSTEM DESCRIPTION

1.2.1 Fire Resistance Requirements

Provide a critical radiant flux of not less than 0.45 watts per square centimeter (Class 1) for flooring in corridors and exits when tested in accordance with ASTM E648 or NFPA 253.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Resilient Flooring and Accessories
 Resilient Wall Base

SD-03 Product Data
 Resilient Flooring and Accessories
 Adhesives

SD-04 Samples
 Resilient Flooring and Accessories
 Resilient Wall Base

SD-08 Manufacturer's Instructions
Installation

SD-10 Operation and Maintenance Data

Resilient Flooring and Accessories

Resilient Wall Base

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the building site in original unopened containers bearing the manufacturer's name, style name, pattern color name and number, production run, project identification, and handling instructions. Delivery materials at least 48 hours before installation so that materials can acclimate to the jobsite temperature. Store materials in a clean, dry, secure, and well-ventilated area with ambient air temperature maintained above 68 degrees F and below 85 degrees F, stacked according to manufacturer's recommendations. Protect materials from the direct flow of heat from hot-air registers, radiators and other heating fixtures and appliances. Observe ventilation and safety procedures specified in the MSDS. Do not store near materials that may offgas or emit harmful fumes, such as kerosene heaters, fresh paint, or adhesives.

1.5 ENVIRONMENTAL REQUIREMENTS

Maintain areas to receive resilient flooring at a temperature above 65 degrees F and below 85 degrees F for 3 days before application, during application and 2 days after application, unless otherwise directed by the flooring manufacturer for the flooring being installed. Maintain a minimum temperature of 55 degrees F thereafter. Provide adequate ventilation to remove moisture from area and to comply with regulations limiting concentrations of hazardous vapors.

1.6 SCHEDULING

Schedule resilient flooring application after the completion of all other finishing operations. During sparkling and/or painting, the substrate shall be covered to prevent contamination or staining, which can cause adhesion failure or product discoloration.

1.7 WARRANTY

Provide solid vinyl plank manufacturer's standard 20 year performance guarantees or warranties that covers material and labor. Provide resilient wall base manufacturer's standard warranty of 2 years.

PART 2 PRODUCTS

2.1 RESILIENT WALL BASE

2.2 ADHESIVES

Provide adhesives for flooring, base and accessories that are required by the flooring manufacturer for each type of flooring installation; and
comply with local indoor air quality standards. Provide adhesives for base and accessories that are required by the manufacturer. Submit manufacturer's descriptive data, documentation stating physical characteristics, and mildew and germicidal characteristics. Provide safety data sheets (SDS) for all primers and adhesives to the Contracting Officer. Highlight VOC emissions.

2.3 CAULKING AND SEALANTS

Provide caulking and sealants in accordance with Section 07 92 00 JOINT SEALANTS.

2.4 MANUFACTURER'S COLOR, PATTERN AND TEXTURE

Provide color, pattern and texture for resilient flooring and accessories as indicated on the drawings. Color listed is not intended to limit the selection of equal colors from other manufacturers. Provide flooring in any one continuous area or replacement of damaged flooring in continuous area from same production run with same shade and pattern. Submit scaled drawings indicating patterns (including location of patterns and colors) and dimensions. Submit manufacturer's descriptive data and three samples of each indicated color and type of flooring, base, mouldings, and accessories sized a minimum 2-1/2 by 4 inch. Submit Data Package 1 in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

PART 3 EXECUTION

3.1 EXAMINATION

Examine and verify that site conditions are in agreement with the design package. Report all conditions that will prevent a proper installation. Do not take any corrective action without written permission from the Government. Work will proceed only when conditions have been corrected and accepted by the installer. Submit manufacturer's printed installation instructions for all flooring materials and accessories, including preparation of substrate, seaming techniques, and recommended adhesives.

3.2 PLACING WALL BASE

Install wall base in accordance with manufacturer's printed installation instructions. Prepare and apply adhesives in accordance with manufacturer's printed directions. Tighten base joints and make even with adjacent resilient flooring. Fill voids along the top edge of base at masonry walls with caulk. Roll entire vertical surface of base with hand roller, and press toe of base with a straight piece of wood to ensure proper alignment. Avoid excess adhesive in corners.

3.3 CLEANING

Immediately upon completion of installation of flooring in a room or an area, dry/clean the flooring and adjacent surfaces to remove all surplus adhesive. Clean flooring as recommended in accordance with manufacturer's printed maintenance instructions. No sooner than 5 days after installation, wash flooring with a nonalkaline cleaning solution, rinse thoroughly with clear cold water, and, except for rubber flooring and stair treads, risers and stringers, vinyl and other flooring not requiring polish finish by manufacturer, apply the number of coats of polish in accordance with manufacturer's written instructions. Clean and maintain all other flooring as recommended by the manufacturer.
3.4 PROTECTION

From the time of installation until acceptance, protect flooring from damage as recommended by the flooring manufacturer. Remove and replace flooring which becomes damaged, loose, broken, or curled and wall base which is not tight to wall or securely adhered.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C580 (2002; R 2012) Flexural Strength and Modulus of Elasticity of Chemical-Resistant Mortars, Grouts, Monolithic Surfacing, and Polymer Concretes

ASTM D2047 (2011) Static Coefficient of Friction of Polish-Coated Floor Surfaces as Measured by the James Machine

ASTM D2369 (2010; E 2011) Volatile Content of Coatings

ASTM D4259 (1988; R 2012) Standard Practice for Abrading Concrete

ASTM G53 (1996) Operating Light- and Water-Exposure Apparatus (Fluorescent UV-Condensation Type) for Exposure of Nonmetallic Materials

1.2 ADMINISTRATIVE REQUIREMENTS

1.2.1 Product Data

Within 30 days of contract award, submit manufacturer's catalog data for
the following items:

a. Epoxy-Resin Binder/Matrix
b. Cured Epoxy Binder
c. Aggregate (Quartz)
d. Surface Sealing Coat (Urethane Sealer)
e. Topcoat (Satin Urethane Top Coat)

1.2.2 Design Mix Data

Within 30 days of contract award, submit design mix data for the following items, including a complete list of ingredients and admixtures:

a. Epoxy-Resin Binder/Matrix
b. Cured Epoxy Binder
c. Surface Sealing Coat (Urethane Sealer)
d. Topcoat (Satin Urethane Top Coat)

Ensure applicable test reports verify the mix has been successfully tested and meets design requirements.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Installation Drawings

SD-03 Product Data
 Manufacturer's Catalog Data

SD-04 Samples
 Hardboard Mounted Epoxy Flooring
 Floor Topping

SD-05 Design Data
 Design Mix Data

SD-07 Certificates
 Listing of Product Installations
 Referenced Standards Certificates

SD-11 Closeout Submittals
Warranty

1.4 DELIVERY, STORAGE, AND HANDLING

Protect materials from weather, soil, and damage during delivery, storage, and construction. Deliver materials in original packages, containers, or bundles bearing brand name and name of material.

Maintain materials used in the installation of floor topping at a temperature between 65 and 85 degrees F.

1.5 QUALITY CONTROL

Prior to commencement of work, submit referenced standards certificates for the following, showing conformance with the referenced standards contained in this section:

a. Epoxy-Resin Binder/Matrix
b. Cured Epoxy Binder
c. Aggregate (Quartz)
d. Surface Sealing Coat (Urethane)
e. Topcoat (Satin Urethane)

1.5.1 Qualifications

Submit a listing of product installations for heavy duty epoxy flooring including identification of at least 5 units, similar to those proposed for use, that have been in successful service for a minimum period of 5 years. Identify purchaser, address of installation, service organization, and date of installation.

Ensure floor system applicators are experienced in the application of troweled decorative quartz aggregate thin-set floor topping.

1.5.2 Sampling

Submit hardboard mounted epoxy flooring samples not less than 12-inch square for each required color.

Provide panels showing nominal thickness of finished toppings, color, and texture of finished surfaces. Finished floor toppings and the approved samples are to match in color and texture.

1.6 WARRANTY

Submit a 2 year written warranty for all materials and installation work.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Provide Resinous Flooring with a nominal thickness of 3/16 inch comprised of a two part epoxy primer and base coat, double broadcast quartz aggregate, an aliphatic urethane seal coat and a top coat of three
component urethane.

Submit installation drawings for heavy duty epoxy flooring systems clearly designating the areas of application and the installation plan. Include in the installation plan, methods to control sand and dust if sand blasting is required.

2.2 MATERIALS

2.2.1 Decorative Quartz:

Percent Solids, 100 ASTM D2369
Completely light stable over the normal life of the coating

2.2.2 Resin for Seed Coats: A Two-Component Epoxy

Volatile Organic Compound (VOC), ASTM D3960
0.04 lb/gal or 4 g/L
Tensile Strength, ASTM D2370
8,000 psi or 55,200 kPa
Percent Elongation, ASTM D2370
5%

2.2.3 Seal Coat: Thick Coat Urethane. A Two-Component Urethane

Volatile Organic Compound (VOC), ASTM D3960
0.09 lb/gal or 100 g/L
Tensile Strength, ASTM D2370
7,000 psi or 48,300 kPa
Percent Elongation, ASTM D2370
7%

2.2.4 Top Coating: Satin Urethane Topcoat. A three-component moisture-cure urethane.

Volatile Organic Compound (VOC), ASTM D3960
0.71 lb/gal or 86 g/L
Abrasion Resistance, ASTM D4060
18 mg loss @ 1000 revolutions
Tensile Strength, ASTM D2370
6,250 psi or 43.092 MPa
Percent Elongation, ASTM D2370
6% (resin only)
Percent Solids (by wt.)
Part A - 99.35%
Part B - 59.23%
Part C - 100%
Mixed - 94%

2.3 Physical Properties

Provide flooring system in which physical properties of topping including aggregate, when tested in accordance with standards or procedures referenced below, are as follows:

Compressive Strength (ASTM D695) 9,000 psi
Tensile Strength (ASTM D2370) 2,500 psi
Flexural Strength (ASTM C580) 5,000 psi
Hardness (ASTM D2240/Shore D Durometer) 80-85 @ 0 sec
Bond Strength (ASTM D4541) 400 psi
Abrasion Resistance (ASTM D4060, Tabor Abraser) 70-90 mg loss
Coefficient of Friction (ASTM D2047) .52
Resistance to Yellowing (ASTM G53) <20 after 1000 consecutive hours
Cure Rate allow
9 hours for foot traffic
(at 77°F/25°C)
24 hours for light traffic
14 days for normal operations

PART 3 EXECUTION

3.1 PREPARATION

Prior to applying resinous flooring material, inspect substrate and immediately report any unsatisfactory conditions that exist and repair.

3.1.1 Safety Precautions

Prior to application in confined spaces of toppings and coatings containing flammable or toxic properties, institute safety precautions and provide forced ventilation to ensure that vapor concentration is kept at acceptable limits as recommended by the manufacturer of the product.

Erect "NO SMOKING" signs, and prohibit smoking or use of spark- or flame-producing devices within 50 feet of any mixing or placing operation involving flammable materials.

Provide personnel required to handle, mix, or apply toppings containing toxic or flammable properties with such items of personal protective equipment and apparel for eye, skin, and respiratory protection as are recommended by the manufacturer of the product. Ensure all personnel are trained in the appropriate use and wearing of personal protection equipment.

Accomplish sand blasting under approved controlled conditions with respect to sand and dust control to prevent damage to personnel and facility.

3.1.2 Protection of Adjacent Surfaces

In addition to the protection of adjacent surfaces during installation, provide areas used to store and mix materials with a protective covering under the materials. After application of the sealer coats, protect finished flooring during the remainder of the construction period. In areas of expected minimum or moderate traffic, cover floors with 70-pound kraft paper, with strips taped together and edges secured to prevent roll-up. Place vegetable fiberboard, plywood, or other suitable material
that does not mar the flooring over the paper to protect areas used as passages by workmen and areas subject to floor damage because of subsequent building operations. Upon completion of construction, remove the protection, clean flooring and, where necessary, repair, reseal, or both, at no additional cost to the Government.

3.1.3 Concrete Subfloor

3.1.3.1 Existing Concrete Floors

Clean existing concrete floors, by mechanical means to remove hard troweled or contaminated areas in conformance with ASTM D4259, and ensure concrete is free of all paint, sealers, curing agents, oil, grease, moisture, dirt, laitance or any other contaminants. Remove any loose or corroded segments of existing concrete and patch with a grouting compound as recommended by the resinous flooring manufacturer. Fill all cracks with an elastomeric jointing compound compatible with the resinous flooring system used.

3.1.4 Mixing Of Materials

Select job mix proportions on the trial batch proportions used to prepare the floor topping samples as submitted and approved.

Use mechanical equipment for mixing of materials in accordance with the manufacturer's instructions.

Use rotating paddle-type masonry mortar mixers for preblending the aggregate and addition of the mixed epoxy resin binder. Ensure mixing times are as recommended by the materials supplier(s), provided mixing times result in homogeneous mixtures. Limit quantity of material mixed at one time to that which can be applied and finished within the working life of the mixtures. Verify temperature of materials at the time of mixing are between 65 and 85 degrees F.

3.2 APPLICATION

3.2.1 Areas of Application

Remove equipment prior to installation of material unless directed otherwise by the Contracting Officer. Cover and/or mask surfaces not to receive the epoxy floor topping, such as equipment or cabinets installed prior to surface-preparation efforts and adjacent to the flooring installation. Apply in a uniform, uninterrupted surface except at joints if indicated.

3.2.2 Application of Prime Coat and Troweling

Install all coatings and aggregate in strict accordance with manufacturer's requirements, including temperature and humidity.

Combine the epoxy binder components A and B in the proportions specified by the manufacturer to form a clear compatible system immediately on mixing. Cure combined components to a clear film possessing a glossy, non-greasy surface at relative humidities less than 70 percent.

Ensure prepared subfloor surface is dry and at a temperature of not less than 65 degrees F or more than 90 degrees F when application of the floor topping is initiated. Immediately prior to application of the
prime/scratch coat on the prepared surface, remove dust or other loose particles by blowing with compressed air or vacuum cleaned. Use only an air compressor equipped with an efficient oil-water trap to prevent oil contamination or wetting of surface.

Prior to application of the prime/scratch coat, fill cracks in the concrete, and make provisions to keep control or expansion joints open. Apply a thin roller coat of the epoxy binder specified to the prepared subfloor as a prime coat. As an aid to placing, compacting, and finishing the floor topping, form a scratch coat by sprinkling a minimum quantity of the quartz aggregate on the prime coat surface immediately following the prime coat application.

Place the floor topping prior to final gelling of the prime/scratch coat. Immediately after the materials are mixed as specified, dump the mixture in the placement area and spread to prolong troweling life. Screed or rough trowel placed materials to the specified thickness and then compact by the use of a smooth roller prior to finish troweling to a nominal thickness of 3/16-inch plus or minus 1/16-inch. Ensure all finished surfaces are free of ridges, hollows (bird-baths), trowel marks, and smoothness varies no more than 1/8-inch when tested with an 8-foot straightedge. Make provisions to maintain the work areas in a relatively dust-free environment during curing of the topping. Floor must be level; aggregate cannot be ground down.

3.2.3 Sealer Coat

After the floor topping has set firmly (approximately 6 to 16 hours depending on subfloor temperature) in a relatively dust-free environment, apply a single coat of the sealer coat, by means of squeegee, then backroll to provide a pore-free, easy-to-clean surface. At the time of sealer application, ensure the surface is dust-free. Depending on relative humidity, allow the applied sealer to cure to a tack-free condition in 2 to 4 hours. Maintain topping areas in a relatively dust-free environment during curing of the sealer coats.

3.2.4 Top Coat

Apply Satin Urethane Top Coat within recoat window or sand epoxy and thoroughly clean before application.

3.3 FIELD QUALITY CONTROL

3.3.1 Repairing

Remove and replace damaged or unacceptable portions of completed work with new work to match adjacent surfaces at no additional cost to the Government.

3.4 ADJUSTING AND CLEANING

Clean surfaces of the new work, and adjacent surfaces soiled as a result of the work. Remove all equipment, surplus materials, and rubbish associated with the work from the site.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH)

ACGIH 0100 (2001; Supplements 2002-2008)
Documentation of the Threshold Limit Values and Biological Exposure Indices

ASTM INTERNATIONAL (ASTM)

ASTM D4263 (1983; R 2012) Indicating Moisture in Concrete by the Plastic Sheet Method

ASTM F1869 (2011) Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride

MASTER PAINTERS INSTITUTE (MPI)

MPI 1 (Oct 2009) Aluminum Paint

MPI 101 (Oct 2009) Epoxy Anti-Corrosive Metal Primer

MPI 107 (Oct 2009) Rust Inhibitive Primer (Water-Based)

MPI 108 (Oct 2009) High Build Epoxy Coating, Low Gloss
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI 116</td>
<td>(Oct 2009) Epoxy Block Filler</td>
</tr>
<tr>
<td>MPI 134</td>
<td>(Oct 2009) Galvanized Primer (Waterbased)</td>
</tr>
<tr>
<td>MPI 147</td>
<td>(Oct 2009) Institutional Low Odor / VOC Interior Latex, Semi-Gloss, MPI Gloss Level 5</td>
</tr>
<tr>
<td>MPI 21</td>
<td>(Oct 2009) Heat Resistant Enamel, Gloss (up to 205 degrees C and 400 degrees F), MPI Gloss Level 6</td>
</tr>
<tr>
<td>MPI 23</td>
<td>(Oct 2009) Surface Tolerant Metal Primer</td>
</tr>
<tr>
<td>MPI 39</td>
<td>(Oct 2009) Interior Latex-Based Wood Primer</td>
</tr>
<tr>
<td>MPI 4</td>
<td>(Oct 2009) Interior/Exterior Latex Block Filler</td>
</tr>
<tr>
<td>MPI 42</td>
<td>(Oct 2009) Latex Stucco and Masonry Textured Coating</td>
</tr>
<tr>
<td>MPI 47</td>
<td>(Oct 2009) Interior Alkyd, Semi-Gloss, MPI Gloss Level 5</td>
</tr>
<tr>
<td>MPI 50</td>
<td>(Oct 2009) Interior Latex Primer Sealer</td>
</tr>
<tr>
<td>MPI 57</td>
<td>(Oct 2009) Interior Oil Modified Urethane Clear Satin</td>
</tr>
<tr>
<td>MPI 77</td>
<td>(Oct 2009) Epoxy Gloss</td>
</tr>
<tr>
<td>MPI 79</td>
<td>(Oct 2009) Alkyd Anti-Corrosive Metal Primer</td>
</tr>
<tr>
<td>MPI 94</td>
<td>(Oct 2009) Exterior Alkyd, Semi-Gloss, MPI Gloss Level 5</td>
</tr>
<tr>
<td>MPI 95</td>
<td>(Oct 2009) Quick Drying Primer for Aluminum</td>
</tr>
</tbody>
</table>

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSPC 7/NACE No.4</td>
<td>(2007; E 2004) Brush-Off Blast Cleaning</td>
</tr>
</tbody>
</table>
SSPC PA 1 (2000; E 2004) Shop, Field, and Maintenance Painting of Steel

SSPC SP 1 (2015) Solvent Cleaning

SSPC SP 10/NACE No. 2 (2007) Near-White Blast Cleaning

SSPC SP 12/NACE No.5 (2002) Surface Preparation and Cleaning of Metals by Waterjetting Prior to Recoating

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

U.S. ARMY CORPS OF ENGINEERS (USACE)

U.S. DEPARTMENT OF DEFENSE (DOD)

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.1000 Air Contaminants
1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

The current MPI, "Approved Product List" which lists paint by brand, label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use a subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI Approved Products List is acceptable.

Samples of specified materials may be taken and tested for compliance with specification requirements.

SD-03 Product Data

Coating

Manufacturer's Technical Data Sheets

SD-04 Samples

Materials
Color

Submit manufacturer's samples of paint colors. Cross reference color samples to color scheme as indicated.

SD-07 Certificates

Applicator's qualifications

SD-08 Manufacturer's Instructions

Application instructions
Mixing

Detailed mixing instructions, minimum and maximum application temperature and humidity, potlife, and curing and drying times between coats.

Manufacturer's Material Safety Data Sheets

Submit manufacturer's Material Safety Data Sheets for coatings, solvents, and other potentially hazardous materials, as defined in FED-STD-313.
SD-10 Operation and Maintenance Data

Coatings:

Preprinted cleaning and maintenance instructions for all coating systems shall be provided.

SD-11 Closeout Submittals

Materials

1.3 APPLICATOR'S QUALIFICATIONS

1.3.1 Contractor Qualification

Submit the name, address, telephone number, FAX number, and e-mail address of the contractor that will be performing all surface preparation and coating application. Submit evidence that key personnel have successfully performed surface preparation and application of coatings on a minimum of three similar projects within the past three years. List information by individual and include the following:

a. Name of individual and proposed position for this work.
b. Information about each previous assignment including:
c. Position or responsibility
d. Employer (if other than the Contractor)
e. Name of facility owner
f. Mailing address, telephone number, and telex number (if non-US) of facility owner
g. Name of individual in facility owner's organization who can be contacted as a reference
h. Location, size and description of structure
i. Dates work was carried out
j. Description of work carried out on structure

1.4 QUALITY ASSURANCE

1.4.1 Field Samples and Tests

The Contracting Officer may choose up to two coatings that have been delivered to the site to be tested at no cost to the Government. Take samples of each chosen product as specified in the paragraph "Sampling Procedures." Test each chosen product as specified in the paragraph "Testing Procedure." Products which do not conform, shall be removed from the job site and replaced with new products that conform to the referenced specification. Testing of replacement products that failed initial testing shall be at no cost to the Government.
1.4.1.1 Sampling Procedure

The Contracting Officer will select paint at random from the products that have been delivered to the job site for sample testing. The Contractor shall provide one quart samples of the selected paint materials. The samples shall be taken in the presence of the Contracting Officer, and labeled, identifying each sample. Provide labels in accordance with the paragraph "Packaging, Labeling, and Storage" of this specification.

1.5 REGULATORY REQUIREMENTS

1.5.1 Environmental Protection

In addition to requirements specified elsewhere for environmental protection, provide coating materials that conform to the restrictions of the local Air Pollution Control District and regional jurisdiction. Notify Contracting Officer of any paint specified herein which fails to conform.

1.5.2 Lead Content

Do not use coatings having a lead content over 0.06 percent by weight of nonvolatile content.

1.5.3 Chromate Content

Do not use coatings containing zinc-chromate or strontium-chromate.

1.5.4 Asbestos Content

Materials shall not contain asbestos.

1.5.5 Mercury Content

Materials shall not contain mercury or mercury compounds.

1.5.6 Silica

Abrasive blast media shall not contain free crystalline silica.

1.5.7 Human Carcinogens

Materials shall not contain ACGIH 0100 confirmed human carcinogens (A1) or suspected human carcinogens (A2).

1.6 PACKAGING, LABELING, AND STORAGE

Paints shall be in sealed containers that legibly show the contract specification number, designation name, formula or specification number, batch number, color, quantity, date of manufacture, manufacturer's formulation number, manufacturer's directions including any warnings and special precautions, and name and address of manufacturer. Pigmented paints shall be furnished in containers not larger than 5 gallons. Paints and thinners shall be stored in accordance with the manufacturer's written directions, and as a minimum, stored off the ground, under cover, with sufficient ventilation to prevent the buildup of flammable vapors, and at temperatures between 40 to 95 degrees F.
1.7 SAFETY AND HEALTH

Apply coating materials using safety methods and equipment in accordance with the following:

Work shall comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis as specified in Section 01 35 29 GOVERNMENT SAFETY REQUIREMENTS and in Appendix A of EM 385-1-1. The Activity Hazard Analysis shall include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.

1.7.1 Safety Methods Used During Coating Application

Comply with the requirements of SSPC PA Guide 3.

1.7.2 Toxic Materials

To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:

a. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.

b. 29 CFR 1910.1000.

c. ACGIH 0100, threshold limit values.

d. The appropriate OSHA standard in 29 CFR 1910.1025 and 29 CFR 1926.62 for surface preparation on painted surfaces containing lead. Additional guidance is given in SSPC Guide 6 and SSPC Guide 7. Refer to drawings for list of hazardous materials located on this project. Contractor to coordinate paint preparation activities with this specification section.

1.8 ENVIRONMENTAL CONDITIONS

Comply, at minimum, with manufacturer recommendations for space ventilation during and after installation. Isolate area of application from rest of building when applying high-emission paints or coatings.

1.8.1 Coatings

Do not apply coating when air or substrate conditions are:

a. Less than 5 degrees F above dew point;

b. Below 50 degrees F or over 95 degrees F, unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.

1.9 LOCATION AND SURFACE TYPE TO BE PAINTED

1.9.1 Painting Included

Where a space or surface is indicated to be painted, include the following unless indicated otherwise.
a. Surfaces behind portable objects and surface mounted articles readily detachable by removal of fasteners, such as screws and bolts.

b. New factory finished surfaces that require identification or color coding and factory finished surfaces that are damaged during performance of the work.

c. Existing coated surfaces that are damaged during performance of the work.

1.9.1.1 Exterior Painting

Includes new surfaces, existing coated surfaces, of the building and appurtenances. Also included are existing coated surfaces made bare by cleaning operations.

1.9.1.2 Interior Painting

Includes new surfaces of the building and appurtenances as indicated and existing coated surfaces made bare by cleaning operations. Where a space or surface is indicated to be painted, include the following items, unless indicated otherwise.

a. Exposed columns, girders, beams, joists, and metal deck; and

b. Other contiguous surfaces.

1.9.2 Painting Excluded

Do not paint the following unless indicated otherwise.

a. Surfaces concealed and made inaccessible by panelboards, fixed ductwork, machinery, and equipment fixed in place.

b. Surfaces in concealed spaces. Concealed spaces are defined as enclosed spaces above suspended ceilings, furred spaces, attic spaces, crawl spaces, elevator shafts and chases.

c. Steel to be embedded in concrete.

d. Copper, stainless steel, aluminum, brass, and lead except existing coated surfaces.

e. Hardware, fittings, and other factory finished items.

1.9.3 Mechanical and Electrical Painting

Includes field coating of interior and exterior new surfaces.

a. Where a space or surface is indicated to be painted, include the following items unless indicated otherwise.

(1) Exposed piping, conduit, and ductwork;

(2) Supports, hangers, air grilles, and registers;

(3) Miscellaneous metalwork and insulation coverings.

b. Do not paint the following, unless indicated otherwise:
1.9.3.1 Fire Extinguishing Sprinkler Systems

Clean, pretreat, prime, and paint new fire extinguishing sprinkler systems including valves, piping, conduit, hangers, supports, miscellaneous metalwork, and accessories. Apply coatings to clean, dry surfaces, using clean brushes. Clean the surfaces to remove dust, dirt, rust, and loose mill scale. Immediately after cleaning, provide the metal surfaces with one coat primer per schedules. Shield sprinkler heads with protective covering while painting is in progress. Upon completion of painting, remove protective covering from sprinkler heads. Remove sprinkler heads which have been painted and replace with new sprinkler heads. Provide primed surfaces with the following:

a. Piping in Unfinished Areas: Provide primed surfaces with one coat of red alkyd gloss enamel applied to a minimum dry film thickness of 1.0 mil in attic spaces, spaces above suspended ceilings, crawl spaces, pipe chases, mechanical equipment room, and spaces where walls or ceiling are not painted or not constructed of a prefinished material.

b. Piping in Finished Areas: Provide primed surfaces with two coats of paint to match adjacent surfaces, except provide valves and operating accessories with one coat of red alkyd gloss enamel applied to a minimum dry film thickness of 1.0 mil.

1.9.4 Definitions and Abbreviations

1.9.4.1 Qualification Testing

Qualification testing is the performance of all test requirements listed in the product specification. This testing is accomplished by MPI to qualify each product for the MPI Approved Product List, and may also be accomplished by Contractor's third party testing lab if an alternative to Batch Quality Conformance Testing by MPI is desired.

1.9.4.2 Batch Quality Conformance Testing

Batch quality conformance testing determines that the product provided is the same as the product qualified to the appropriate product specification. This testing shall only be accomplished by MPI testing lab.

1.9.4.3 Coating

A film or thin layer applied to a base material called a substrate. A coating may be a metal, alloy, paint, or solid/liquid suspensions on various substrates (metals, plastics, wood, paper, leather, cloth, etc.). They may be applied by electrolysis, vapor deposition, vacuum, or mechanical means such as brushing, spraying, calendaring, and roller coating. A coating may be applied for aesthetic or protective purposes or both. The term "coating" as used herein includes emulsions, enamels, stains, varnishes, sealers, epoxies, and other coatings, whether used as primer, intermediate, or finish coat. The terms paint and coating are used interchangeably.
1.9.4.4 DFT or dft

Dry film thickness, the film thickness of the fully cured, dry paint or coating.

1.9.4.5 DSD

Degree of Surface Degradation, the MPI system of defining degree of surface degradation. Five (5) levels are generically defined under the Assessment sections in the MPI Maintenance Repainting Manual.

1.9.4.6 EPP

Environmentally Preferred Products, a standard for determining environmental preferability in support of Executive Order 13101.

1.9.4.7 EXT

MPI short term designation for an exterior coating system.

1.9.4.8 INT

MPI short term designation for an interior coating system.

1.9.4.9 micron / microns

The metric measurement for 0.001 mm or one/thousandth of a millimeter.

1.9.4.10 mil / mils

The English measurement for 0.001 in or one/thousandth of an inch, equal to 25.4 microns or 0.0254 mm.

1.9.4.11 mm

The metric measurement for millimeter, 0.001 meter or one/thousandth of a meter.

1.9.4.12 MPI Gloss Levels

MPI system of defining gloss. Seven (7) gloss levels (G1 to G7) are generically defined under the Evaluation sections of the MPI Manuals. Traditionally, Flat refers to G1/G2, Eggshell refers to G3, Semigloss refers to G5, and Gloss refers to G6.

Gloss levels are defined by MPI as follows:

<table>
<thead>
<tr>
<th>Gloss Level</th>
<th>Description</th>
<th>Units at 60 degrees</th>
<th>Units at 85 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Matte or Flat</td>
<td>0 to 5</td>
<td>10 max</td>
</tr>
<tr>
<td>G2</td>
<td>Velvet</td>
<td>0 to 10</td>
<td>10 to 35</td>
</tr>
<tr>
<td>G3</td>
<td>Eggshell</td>
<td>10 to 25</td>
<td>10 to 35</td>
</tr>
<tr>
<td>G4</td>
<td>Satin</td>
<td>20 to 35</td>
<td>35 min</td>
</tr>
<tr>
<td>G5</td>
<td>Semi-Gloss</td>
<td>35 to 70</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>Gloss</td>
<td>70 to 85</td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>High Gloss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gloss is tested in accordance with ASTM D523. Historically, the Government has used Flat (G1 / G2), Eggshell (G3), Semi-Gloss (G5), and Gloss (G6).

1.9.4.13 MPI System Number

The MPI coating system number in each Division found in either the MPI Architectural Painting Specification Manual or the Maintenance Repainting Manual and defined as an exterior (EXT/REX) or interior system (INT/RIN). The Division number follows the CSI Master Format.

1.9.4.14 Paint

See Coating definition.

1.9.4.15 REX

MPI short term designation for an exterior coating system used in repainting projects or over existing coating systems.

1.9.4.16 RIN

MPI short term designation for an interior coating system used in repainting projects or over existing coating systems.

PART 2 PRODUCTS

2.1 MATERIALS

Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents. Submit color samples for approval. Comply with applicable regulations regarding toxic and hazardous materials.

PART 3 EXECUTION

3.1 PROTECTION OF AREAS AND SPACES NOT TO BE PAINTED

Prior to surface preparation and coating applications, remove, mask, or otherwise protect, hardware, hardware accessories, machined surfaces, radiator covers, plates, lighting fixtures, public and private property, and other such items not to be coated that are in contact with surfaces to be coated. Following completion of painting, workmen skilled in the trades involved shall reinstall removed items. Restore surfaces contaminated by coating materials, to original condition and repair damaged items.

3.2 SURFACE PREPARATION

Remove dirt, splinters, loose particles, grease, oil, disintegrated coatings, and other foreign matter and substances deleterious to coating performance as specified for each substrate before application of paint or surface treatments. Oil and grease shall be removed prior to mechanical cleaning. Cleaning shall be programmed so that dust and other contaminants will not fall on wet, newly painted surfaces. Exposed ferrous metals such as nail heads on or in contact with surfaces to be painted with water-thinned paints, shall be spot-primed with a suitable corrosion-inhibitive primer capable of preventing flash rusting and compatible with the coating specified for the adjacent areas.
3.2.1 Additional Requirements for Preparation of Surfaces With Existing Coatings

Before application of coatings, perform the following on surfaces covered by soundly-adhered coatings, defined as those which cannot be removed with a putty knife:

a. Test existing finishes for lead before sanding, scraping, or removing. If lead is present, refer to paragraph Toxic Materials.

b. Wipe previously painted surfaces to receive solvent-based coatings, except stucco and similarly rough surfaces clean with a clean, dry cloth saturated with mineral spirits, ASTM D235. Allow surface to dry. Wiping shall immediately precede the application of the first coat of any coating, unless specified otherwise.

c. Sand existing glossy surfaces to be painted to reduce gloss. Brush, and wipe clean with a damp cloth to remove dust.

d. The requirements specified are minimum. Comply also with the application instructions of the paint manufacturer.

e. Previously painted surfaces specified to be repainted shall be thoroughly cleaned of all grease, dirt, dust or other foreign matter.

f. Blistering, cracking, flaking and peeling or other deteriorated coatings shall be removed.

g. Chalk shall be removed so that when tested in accordance with ASTM D4214, the chalk resistance rating is no less than 8.

h. Slick surfaces shall be roughened. Damaged areas such as, but not limited to, nail holes, cracks, chips, and spalls shall be repaired with suitable material to match adjacent undamaged areas.

i. Edges of chipped paint shall be feather edged and sanded smooth.

j. Rusty metal surfaces shall be cleaned as per SSPC requirements. Solvent, mechanical, or chemical cleaning methods shall be used to provide surfaces suitable for painting.

k. New, proposed coatings shall be compatible with existing coatings.

3.2.2 Existing Coated Surfaces with Minor Defects

Sand, spackle, and treat minor defects to render them smooth. Minor defects are defined as scratches, nicks, cracks, gouges, spalls, alligatoring, chalking, and irregularities due to partial peeling of previous coatings. Remove chalking by sanding so that when tested in accordance with ASTM D4214, the chalk rating is not less than 8.

3.2.3 Removal of Existing Coatings

Remove existing coatings from the following surfaces:

a. Surfaces containing large areas of minor defects;

b. Surfaces containing more than 20 percent peeling area; and
c. Surfaces designated by the Contracting Officer, such as surfaces where rust shows through existing coatings.

3.2.4 Substrate Repair

a. Repair substrate surface damaged during coating removal;

b. Sand edges of adjacent soundly-adhered existing coatings so they are tapered as smooth as practical to areas involved with coating removal; and

c. Clean and prime the substrate as specified.

3.3 PREPARATION OF METAL SURFACES

3.3.1 Existing and New Ferrous Surfaces

a. Ferrous Surfaces including Shop-coated Surfaces and Small Areas That Contain Rust, Mill Scale and Other Foreign Substances: Solvent clean or detergent wash in accordance with SSPC SP 1 to remove oil and grease. Where shop coat is missing or damaged, clean according to SSPC SP 2, SSPC SP 3, SSPC SP 6/NACE No.3, or SSPC SP 10/NACE No. 2. Brush-off blast remaining surface in accordance with SSPC 7/NACE No.4. Shop-coated ferrous surfaces shall be protected from corrosion by treating and touching up corroded areas immediately upon detection.

b. Surfaces With More Than 20 Percent Rust, Mill Scale, and Other Foreign Substances: Clean entire surface in accordance with SSPC SP 6/NACE No.3 /SSPC SP 12/NACE No.5 WJ-3 or SSPC SP 10/NACE No. 2/SSPC SP 12/NACE No.5 WJ-2.

3.3.2 Final Ferrous Surface Condition:

For tool cleaned surfaces, the requirements are stated in SSPC SP 2 and SSPC SP 3. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 3.

For abrasive blast cleaned surfaces, the requirements are stated in SSPC 7/NACE No.4, SSPC SP 6/NACE No.3, and SSPC SP 10/NACE No. 2. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 1.

For waterjet cleaned surfaces, the requirements are stated in SSPC SP 12/NACE No.5. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 4/NACE VIS 7.

3.3.3 Galvanized Surfaces

a. New or Existing Galvanized Surfaces With Only Dirt and Zinc Oxidation Products: Clean with solvent, steam, or non-alkaline detergent solution in accordance with SSPC SP 1. If the galvanized metal has been passivated or stabilized, the coating shall be completely removed by brush-off abrasive blast. New galvanized steel to be coated shall not be "passivated" or "stabilized" If the absence of hexavalent stain inhibitors is not documented, test as described in ASTM D6386, Appendix X2, and remove by one of the methods described therein.

b. Galvanized with Slight Coating Deterioration or with Little or No Rusting: Water jetting to SSPC SP 12/NACE No.5 WJ3 to remove loose
coating from surfaces with less than 20 percent coating deterioration and no blistering, peeling, or cracking. Use inhibitor as recommended by the coating manufacturer to prevent rusting.

c. Galvanized With Severe Deteriorated Coating or Severe Rusting: Spot abrasive blast rusted areas as described for steel in SSPC SP 6/NACE No.3, and waterjet to SSPC SP 12/NACE No.5, WJ3 to remove existing coating.

3.3.4 Non-Ferrous Metallic Surfaces

Aluminum and aluminum-alloy, lead, copper, and other nonferrous metal surfaces.

Surface Cleaning: Solvent clean in accordance with SSPC SP 1 and wash with mild non-alkaline detergent to remove dirt and water soluble contaminants.

3.3.5 Terne-Coated Metal Surfaces

Solvent clean surfaces with mineral spirits, ASTM D235. Wipe dry with clean, dry cloths.

3.3.6 Existing Surfaces with a Bituminous or Mastic-Type Coating

Remove chalk, mildew, and other loose material by washing with a solution of 1/2 cup trisodium phosphate, 1/4 cup household detergent, one quart 5 percent sodium hypochlorite solution and 3 quarts of warm water.

3.4 PREPARATION OF CONCRETE AND CEMENTITIOUS SURFACE

3.4.1 Concrete and Masonry

a. Curing: Concrete, stucco and masonry surfaces shall be allowed to cure at least 30 days before painting, except concrete slab on grade, which shall be allowed to cure 90 days before painting.

b. Surface Cleaning: Remove the following deleterious substances.

(1) Dirt, Chalking, Grease, and Oil: Wash new surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cup household detergent, and 4 quarts of warm water. Then rinse thoroughly with fresh water. For large areas, water blasting may be used.

(2) Fungus and Mold: Wash new, existing coated, and existing uncoated surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cup household detergent, 1 quart 5 percent sodium hypochlorite solution and 3 quarts of warm water. Rinse thoroughly with fresh water.

(3) Paint and Loose Particles: Remove by wire brushing.

(4) Efflorescence: Remove by scraping or wire brushing followed by washing with a 5 to 10 percent by weight aqueous solution of hydrochloric (muriatic) acid. Do not allow acid to remain on the surface for more than five minutes before rinsing with fresh water. Do not acid clean more than 4 square feet of surface, per workman, at one time.
(5) Removal of Existing Coatings: For surfaces to receive textured coating MPI 42, remove existing coatings including soundly adhered coatings if recommended by textured coating manufacturer.

c. Cosmetic Repair of Minor Defects: Repair or fill mortar joints and minor defects, including but not limited to spalls, in accordance with manufacturer's recommendations and prior to coating application.

d. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not to surfaces with droplets of water. Do not apply epoxies to damp vertical surfaces as determined by ASTM D4263 or horizontal surfaces that exceed 3 lbs of moisture per 1000 square feet in 24 hours as determined by ASTM F1869. In all cases follow manufacturers recommendations. Allow surfaces to cure a minimum of 30 days before painting.

3.4.2 Gypsum Board, Plaster, and Stucco

a. Surface Cleaning: Plaster and stucco shall be clean and free from loose matter; gypsum board shall be dry. Remove loose dirt and dust by brushing with a soft brush, rubbing with a dry cloth, or vacuum-cleaning prior to application of the first coat material. A damp cloth or sponge may be used if paint will be water-based.

b. Repair of Minor Defects: Prior to painting, repair joints, cracks, holes, surface irregularities, and other minor defects with patching plaster or spackling compound and sand smooth.

c. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not surfaces with droplets of water. Do not apply epoxies to damp surfaces as determined by ASTM D4263. New plaster to be coated shall have a maximum moisture content of 8 percent, when measured in accordance with ASTM D4444, Method A, unless otherwise authorized. In addition to moisture content requirements, allow new plaster to age a minimum of 30 days before preparation for painting.

3.5 PREPARATION OF WOOD AND PLYWOOD SURFACES

3.5.1 New and Existing Coated Plywood and Wood Surfaces, Except Floors:

a. Wood surfaces shall be cleaned of foreign matter.

 Surface Cleaning: Surfaces shall be free from dust and other deleterious substances and in a condition approved by the Contracting Officer prior to receiving paint or other finish. Do not use water to clean uncoated wood. Scrape to remove loose coatings. Lightly sand to roughen the entire area of previously enamel-coated wood surfaces.

b. Removal of Fungus and Mold: Wash existing coated surfaces with a solution composed of 3 ounces (2/3 cup) trisodium phosphate, 1 ounce (1/3 cup) household detergent, 1 quart 5 percent sodium hypochlorite solution and 3 quarts of warm water. Rinse thoroughly with fresh water.

c. Moisture content of the wood shall not exceed 12 percent as measured by a moisture meter in accordance with ASTM D4444, Method A, unless otherwise authorized.

d. Wood surfaces adjacent to surfaces to receive water-thinned paints shall be primed and/or touched up before applying water-thinned paints.
e. Cracks and Nailheads: Set and putty stop nailheads and putty cracks after the prime coat has dried.

f. Cosmetic Repair of Minor Defects:

 (1) Knots and Resinous Wood: Prior to application of coating, cover knots and stains with two or more coats of 3-pound-cut shellac varnish, plasticized with 5 ounces of castor oil per gallon. Scrape away existing coatings from knotty areas, and sand before treating. Prime before applying any putty over shellacked area.

 (2) Open Joints and Other Openings: Fill with whiting putty, linseed oil putty. Sand smooth after putty has dried.

 (3) Checking: Where checking of the wood is present, sand the surface, wipe and apply a coat of pigmented orange shellac. Allow to dry before paint is applied.

g. Prime Coat For New Exterior Surfaces: Prime coat trim before wood becomes dirty, warped, or weathered.

3.5.2 Interior Wood Surfaces, Stain Finish

Interior wood surfaces to receive stain shall be sanded. Oak and other open-grain wood to receive stain shall be given a coat of wood filler not less than 8 hours before the application of stain; excess filler shall be removed and the surface sanded smooth.

3.6 APPLICATION

3.6.1 Coating Application

Painting practices shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards. Apply coating materials in accordance with SSPC PA 1. SSPC PA 1 methods are applicable to all substrates, except as modified herein.

At the time of application, paint shall show no signs of deterioration. Uniform suspension of pigments shall be maintained during application.

Unless otherwise specified or recommended by the paint manufacturer, paint may be applied by brush, roller, or spray. Use trigger operated spray nozzles for water hoses. Rollers for applying paints and enamels shall be of a type designed for the coating to be applied and the surface to be coated. Wear protective clothing and respirators when applying oil-based paints or using spray equipment with any paints.

Paints, except water-thinned types, shall be applied only to surfaces that are completely free of moisture as determined by sight or touch.

Thoroughly work coating materials into joints, crevices, and open spaces. Special attention shall be given to insure that all edges, corners, crevices, welds, and rivets receive a film thickness equal to that of adjacent painted surfaces.

Each coat of paint shall be applied so dry film shall be of uniform thickness and free from runs, drops, ridges, waves, pinholes or other voids, laps, brush marks, and variations in color, texture, and finish.
Hiding shall be complete.

Touch up damaged coatings before applying subsequent coats. Interior areas shall be broom clean and dust free before and during the application of coating material.

Apply paint to new fire extinguishing sprinkler systems including valves, piping, conduit, hangers, supports, miscellaneous metal work, and accessories. Shield sprinkler heads with protective coverings while painting is in progress. Remove sprinkler heads which have been painted and replace with new sprinkler heads. For piping in unfinished spaces, provide primed surfaces with one coat of red alkyd gloss enamel to a minimum dry film thickness of 1.0 mil. Unfinished spaces include attic spaces, spaces above suspended ceilings, crawl spaces, pipe chases, mechanical equipment room, and space where walls or ceiling are not painted or not constructed of a prefinished material. For piping in finished areas, provide prime surfaces with two coats of paint to match adjacent surfaces, except provide valves and operating accessories with one coat of red alkyd gloss enamel. Upon completion of painting, remove protective covering from sprinkler heads.

a. Drying Time: Allow time between coats, as recommended by the coating manufacturer, to permit thorough drying, but not to present topcoat adhesion problems. Provide each coat in specified condition to receive next coat.

b. Primers, and Intermediate Coats: Do not allow primers or intermediate coats to dry more than 30 days, or longer than recommended by manufacturer, before applying subsequent coats. Follow manufacturer's recommendations for surface preparation if primers or intermediate coats are allowed to dry longer than recommended by manufacturers of subsequent coatings. Each coat shall cover surface of preceding coat or surface completely, and there shall be a visually perceptible difference in shades of successive coats.

c. Finished Surfaces: Provide finished surfaces free from runs, drops, ridges, waves, laps, brush marks, and variations in colors.

d. Thermosetting Paints: Topcoats over thermosetting paints (epoxies and urethanes) should be applied within the overcoating window recommended by the manufacturer.

3.6.2 Mixing and Thinning of Paints

Reduce paints to proper consistency by adding fresh paint, except when thinning is mandatory to suit surface, temperature, weather conditions, application methods, or for the type of paint being used. Obtain written permission from the Contracting Officer to use thinners. The written permission shall include quantities and types of thinners to use.

When thinning is allowed, paints shall be thinned immediately prior to application with not more than 1 pint of suitable thinner per gallon. The use of thinner shall not relieve the Contractor from obtaining complete hiding, full film thickness, or required gloss. Thinning shall not cause the paint to exceed limits on volatile organic compounds. Paints of different manufacturers shall not be mixed.
3.6.3 Two-Component Systems

Two-component systems shall be mixed in accordance with manufacturer's instructions. Any thinning of the first coat to ensure proper penetration and sealing shall be as recommended by the manufacturer for each type of substrate.

3.6.4 Coating Systems

a. Systems by Substrates: Apply coatings that conform to the respective specifications listed in the following Tables:

<table>
<thead>
<tr>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 5. Exterior Metal, Ferrous and Non-Ferrous Paint Table</td>
</tr>
<tr>
<td>Division 3. Interior Concrete Paint Table</td>
</tr>
<tr>
<td>Division 4. Interior Concrete Masonry Units Paint Table</td>
</tr>
<tr>
<td>Division 5. Interior Metal, Ferrous and Non-Ferrous Paint Table</td>
</tr>
<tr>
<td>Division 6. Interior Wood Paint Table</td>
</tr>
<tr>
<td>Division 9: Interior Plaster, Gypsum Board, Textured Surfaces Paint Table</td>
</tr>
</tbody>
</table>

b. Minimum Dry Film Thickness (DFT): Apply paints, primers, varnishes, enamels, undercoats, and other coatings to a minimum dry film thickness of 1.5 mil each coat unless specified otherwise in the Tables. Coating thickness where specified, refers to the minimum dry film thickness.

c. Coatings for Surfaces Not Specified Otherwise: Coat surfaces which have not been specified, the same as surfaces having similar conditions of exposure.

d. Existing Surfaces Damaged During Performance of the Work, Including New Patches In Existing Surfaces: Coat surfaces with the following:

(1) One coat of primer.

(2) One coat of undercoat or intermediate coat.

(3) One topcoat to match adjacent surfaces.

e. Existing Coated Surfaces To Be Painted: Apply coatings conforming to the respective specifications listed in the Tables herein, except that pretreatments, sealers and fillers need not be provided on surfaces where existing coatings are soundly adhered and in good condition. Do not omit undercoats or primers.

3.7 COATING SYSTEMS FOR METAL

Apply coatings of Tables in Division 5 for Exterior and Interior.

a. Apply specified ferrous metal primer on the same day that surface is cleaned, to surfaces that meet all specified surface preparation requirements at time of application.

b. Inaccessible Surfaces: Prior to erection, use one coat of specified primer on metal surfaces that will be inaccessible after erection.
c. Shop-primed Surfaces: Touch up exposed substrates and damaged coatings to protect from rusting prior to applying field primer.

d. Surface Previously Coated with Epoxy or Urethane: Apply MPI 101, 1.5 mils DFT immediately prior to application of epoxy or urethane coatings.

e. Pipes and Tubing: The semitransparent film applied to some pipes and tubing at the mill is not to be considered a shop coat, but shall be overcoated with the specified ferrous-metal primer prior to application of finish coats.

f. Exposed Nails, Screws, Fasteners, and Miscellaneous Ferrous Surfaces. On surfaces to be coated with water thinned coatings, spot prime exposed nails and other ferrous metal with latex primer MPI 107.

3.8 COATING SYSTEMS FOR CONCRETE AND CEMENTITIOUS SUBSTRATES

Apply coatings of Tables in Division 3, 4 and 9 for Exterior and Interior.

3.9 COATING SYSTEMS FOR WOOD AND PLYWOOD

a. Apply coatings of Tables in Division 6 for Exterior and Interior.

b. Prior to erection, apply two coats of specified primer to treat and prime wood and plywood surfaces which will be inaccessible after erection.

c. Apply stains in accordance with manufacturer's printed instructions.

3.10 PIPING IDENTIFICATION

Piping Identification, Including Surfaces In Concealed Spaces: Provide in accordance with MIL-STD-101. Place stenciling in clearly visible locations. On piping not covered by MIL-STD-101, stencil approved names or code letters, in letters a minimum of 1/2 inch high for piping and a minimum of 2 inches high elsewhere. Stencil arrow-shaped markings on piping to indicate direction of flow using black stencil paint.

3.11 INSPECTION AND ACCEPTANCE

In addition to meeting previously specified requirements, demonstrate mobility of moving components, including swinging and sliding doors, cabinets, and windows with operable sash, for inspection by the Contracting Officer. Perform this demonstration after appropriate curing and drying times of coatings have elapsed and prior to invoicing for final payment.

3.12 WASTE MANAGEMENT

As specified in the Waste Management Plan and as follows. Do not use kerosene or any such organic solvents to clean up water based paints. Properly dispose of paints or solvents in designated containers. Close and seal partially used containers of paint to maintain quality as necessary for reuse. Store in protected, well-ventilated, fire-safe area at moderate temperature. Place materials defined as hazardous or toxic waste in designated containers. Coordinate with manufacturer for take-back program. Set aside scrap to be returned to manufacturer for recycling into new product. When such a service is not available, local recyclers shall be sought after to reclaim the materials. Set aside extra paint for future use.
color matches or reuse by the Government. Where local options exist for leftover paint recycling, collect all waste paint by type and provide for delivery to recycling or collection facility for reuse by local organizations.

3.13 PAINT TABLES

All DFT's are minimum values. Use only materials with a GPS green check mark having a minimum MPI "Environmentally Friendly" E1, E2 or E3 rating based on VOC (EPA Method 24) content levels. Use only interior paints and coatings that meet VOC requirements of LEED low emitting materials credit. Acceptable products are listed in the MPI Green Approved Products List, available at http://www.specifygreen.com/APL/ProductIdxByMPInum.asp.

3.13.1 EXTERIOR PAINT TABLES

DIVISION 5: EXTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE

STEEL / FERROUS SURFACES

A. New Steel that has been hand or power tool cleaned to SSPC SP 2 or SSPC SP 3

1. Alkyd
 New; MPI EXT 5.1Q-G5 (Semigloss) Existing; MPI REX 5.1D-G5
 Primer: Intermediate: Topcoat:
 MPI 23 MPI 94 MPI 94
 System DFT: 5.25 mils

B. New Steel that has been blast-cleaned to SSPC SP 6/NACE No.3:

2. Alkyd
 New; MPI EXT 5.1D-G5 (Semigloss) / Existing; MPI REX 5.1D-G5
 Primer: Intermediate: Topcoat:
 MPI 79 MPI 94 MPI 94
 System DFT: 5.25 mils

C. Existing steel that has been spot-blasted to SSPC SP 6/NACE No.3:

1. Surface previously coated with alkyd or latex:

 Waterborne Light Industrial Coating
 MPI REX 5.1C-G5 (Semigloss)
 Spot Primer: Intermediate: Topcoat:
 MPI 79 MPI 163 MPI 163
 System DFT: 5 mils

2. Surface previously coated with epoxy:

 Waterborne Light Industrial
 a. MPI REX 5.1L-G5 (Semigloss)
 Spot Primer: Intermediate: Topcoat:
 MPI 101 MPI 163 MPI 163
 System DFT: 5 mils

D. New and existing steel blast cleaned to SSPC SP 10/NACE No. 2:
STEEL / FERROUS SURFACES

1. Waterborne Light Industrial
 MPI EXT 5.1R-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 101 MPI 108 MPI 163
 System DFT: 8.5 mils

EXTERIOR GALVANIZED SURFACES

F. New Galvanized surfaces:

1. Waterborne Primer / Latex

 MPI EXT 5.3H-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 134 MPI 11 MPI 11
 System DFT: 4.5 mils

G. Galvanized surfaces with slight coating deterioration; little or no rusting:

1. Waterborne Light Industrial Coating
 MPI REX 5.3J-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 134 N/A MPI 163
 System DFT: 4.5 mils

H. Galvanized surfaces with severely deteriorated coating or rusting:

1. Waterborne Light Industrial Coating
 MPI REX 5.3L-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 101 MPI 108 MPI 163
 System DFT: 8.5 mils

EXTERIOR SURFACES, OTHER METALS (NON-FERROUS)

I. Aluminum, aluminum alloy and other miscellaneous non-ferrous metal items not otherwise specified except hot metal surfaces, roof surfaces, and new prefinished equipment. Match surrounding finish:

1. Alkyd
 MPI EXT 5.4F-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 95 MPI 94 MPI 94
 System DFT: 5 mils

J. Surfaces adjacent to painted surfaces; Mechanical, Electrical, Fire extinguishing sprinkler systems including valves, conduit, hangers, supports, and miscellaneous metal items not otherwise specified except floors, hot metal surfaces, and new prefinished equipment. Match surrounding finish:

1. Alkyd
 MPI EXT 5.1D-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
3.13.2 INTERIOR PAINT TABLES

DIVISION 3: INTERIOR CONCRETE PAINT TABLE

A. New and uncoated existing and Existing, previously painted Concrete, vertical surfaces, not specified otherwise:

1. Institutional Low Odor / Low VOC Latex
 New; MPI INT 3.1M-G5 (Semigloss) / Existing; MPI RIN 3.1L-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 50 MPI 147 MPI 147
 System DFT: 4 mils

B. Existing, previously painted textured Concrete ceilings:

 REMOVE EXISTING TEXTURE

 1. Institutional Low Odor / Low VOC Latex

 Existing; MPI RIN 3.1L-G4 (satin)
 Primer: Intermediate: Topcoat:
 MPI 50 MPI 146 MPI 146
 System DFT: 4 mils

C. New and uncoated existing and Existing, previously painted Concrete in toilets, restrooms, laundry areas, shower areas, and other high-humidity areas not otherwise specified except floors:

 3. Epoxy

 New; MPI INT 3.1F-G6 (Gloss) / Existing; MPI RIN 3.1E-G6 (Gloss)
 Primer: Intermediate: Topcoat:
 MPI 77 MPI 77 MPI 77
 System DFT: 4 mils

 Note: Primer may be reduced for penetration per manufacturer's instructions.

DIVISION 4: INTERIOR CONCRETE MASONRY UNITS PAINT TABLE

A. New and uncoated Existing Concrete masonry:

 1. Institutional Low Odor / Low VOC Latex

 New; MPI INT 4.2E-G5 (Semigloss)
 Filler Primer: Intermediate: Topcoat:
 MPI 4 N/A MPI 147 MPI 147
DIVISION 4: INTERIOR CONCRETE MASONRY UNITS PAINT TABLE

System DFT: 4 mils

B. Existing, previously painted Concrete masonry:

2. Institutional Low Odor / Low VOC Latex
 Existing; MPI RIN 4.2L-G5 (Semigloss)
 Spot Filler Spot Primer: Intermediate: Topcoat:
 MPI 4 MPI 50 MPI 147 MPI 147
 System DFT: 4 mils

 Fill all holes in masonry surface

C. New and uncoated Existing Concrete masonry units in toilets, restrooms, laundry areas, shower areas, and other high humidity areas unless otherwise specified:

1. Epoxy
 MPI INT 4.2G-G6 (Gloss)
 Filler: Primer: Intermediate: Topcoat:
 MPI 116 N/A MPI 77 MPI 77
 System DFT: 10 mils

 Fill all holes in masonry surface

D. Existing, previously painted, concrete masonry units in toilets, restrooms, laundry areas, shower areas, and other high humidity areas unless otherwise specified:

1. Epoxy
 MPI RIN 4.2D-G6 (Gloss)
 Spot Primer: Intermediate: Topcoat:
 MPI 77 MPI 77 MPI 77
 System DFT: 5 mils

DIVISION 5: INTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE

INTERIOR STEEL / FERROUS SURFACES

A. Metal, Mechanical, Electrical, Fire extinguishing sprinkler systems including valves, conduit, hangers, supports, Surfaces adjacent to painted surfaces (Match surrounding finish), and miscellaneous metal items not otherwise specified except floors, hot metal surfaces, and new prefinished equipment:

2. Alkyd
 MPI INT 5.1E-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 79 MPI 47 MPI 47
 System DFT: 5.25 mils

 B. Metal in toilets, restrooms, laundry areas, shower areas, and other high-humidity areas not otherwise specified except floors, hot metal surfaces, and new prefinished equipment:
INTERIOR STEEL / FERROUS SURFACES

1. Alkyd
 MPI INT 5.1E-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 79 MPI 47 MPI 47
 System DFT: 5.25 mils

D. Ferrous metal in concealed damp spaces or in exposed areas having unpainted adjacent surfaces.

1. Aluminum Paint
 MPI INT 5.1M
 Primer: Intermediate: Topcoat:
 MPI 79 MPI 1 MPI 1
 System DFT: 4.25 mils

E. Miscellaneous non-ferrous metal items not otherwise specified except floors, hot metal surfaces, and new prefinished equipment. Match surrounding finish:

1. Alkyd
 MPI INT 5.4J-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 95 MPI 47 MPI 47
 System DFT: 5 mils

 F. Hot metal surfaces subject to temperatures up to 400 degrees F:

 1. Heat Resistant Enamel
 MPI INT 5.2A
 Primer: Intermediate: Topcoat:
 MPI 21 MPI 47 MPI 47
 Surface preparation and number of coats per manufacturer's instructions.
 System DFT: Per Manufacturer

DIVISION 6: INTERIOR WOOD PAINT TABLE

A. New and Existing, uncoated Wood and plywood not otherwise specified:

1. Institutional Low Odor / Low VOC Latex
 New; MPI INT 6.3V-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 39 MPI 147 MPI 147
 System DFT: 4 mils

B. Existing, previously painted Wood and plywood not otherwise specified:

1. Institutional Low Odor / Low VOC Latex
 Existing; MPI RIN 6.4D-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 39 MPI 147 MPI 147
 System DFT: 4 mils
DIVISION 6: INTERIOR WOOD PAINT TABLE
C. New Wood and Plywood, except floors; natural finish or stained:

1. Natural finish, oil-modified polyurethane
 New; MPI INT 6.4J-G4 / Existing; MPI RIN 6.4L-G4
 Primer: MPI 57 Intermediate: MPI 57 Topcoat: MPI 57
 System DFT: 4 mils

DIVISION 9: INTERIOR PLASTER, GYPSUM BOARD, TEXTURED SURFACES PAINT TABLE
A. New and Existing, previously painted Wallboard not otherwise specified:

1. Institutional Low Odor / Low VOC Latex
 New; MPI INT 9.2M-G5 (Semigloss) / Existing; MPI RIN 9.2M-G5 (Semigloss)
 Primer: MPI 50 Intermediate: MPI 147 Topcoat: MPI 147
 System DFT: 4 mils

B. New and Existing, previously painted Wallboard in toilets, restrooms, laundry areas, shower areas and other high humidity areas not otherwise specified:

1. Epoxy
 New; MPI INT 9.2E-G6 (Gloss) / Existing; MPI RIN 9.2D-G6 (Gloss)
 Primer: MPI 50 Intermediate: MPI 77 Topcoat: MPI 77
 System DFT: 4 mils

 -- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Detail Drawings
Schedule; G

SD-03 Product Data
Installation
Warranty

SD-04 Samples
Interior Signage

SD-10 Operation and Maintenance Data
Approved Manufacturer's Instructions
Protection and Cleaning

1.3 QUALITY ASSURANCE

1.3.1 Samples

Submit interior signage samples of each of the following sign types showing typical quality, workmanship and color: Changeable message strip sign, . The samples may be installed in the work, provided each sample is identified and location recorded.

1.3.2 Detail Drawings

Submit detail drawings showing elevations of each type of sign, dimensions, details and methods of mounting or anchoring, mounting height, shape and
thickness of materials, and details of construction. Include a schedule showing the location, each sign type, and message.

1.4 DELIVERY, STORAGE, AND HANDLING

Materials shall be packaged to prevent damage and deterioration during shipment, handling, storage and installation. Product shall be delivered to the jobsite in manufacturer's original packaging and stored in a clean, dry area in accordance with manufacturer's instructions.

1.5 WARRANTY

Warrant the interior signage for a period of 2 years against defective workmanship and material. Warranties shall be signed by the authorized representative of the manufacturer. Submit warranty accompanied by the document authenticating the signer as an authorized representative of the guarantor. Guarantee that the signage products and the installation are free from any defects in material and workmanship from the date of delivery.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Signs, plaques, directories, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of such products that essentially duplicate signs that have been in satisfactory use at least 2 years prior to bid opening. Obtain signage from a single manufacturer with edges and corners of finished letterforms and graphics true and clean.

2.2 ROOM IDENTIFICATION/DIRECTIONAL SIGNAGE SYSTEM

2.2.1 Standard Room Signs

Signs shall consist of extruded engineered PVC acrylic plastic 0.25 inch thickness minimum and shall conform to the following:

a. Frames shall be molded acrylic, 1/4 inch thick.

b. Construction: One-piece; added on or engraved characters not acceptable.

c. Panel appearance: high contrast semi-matte colors for graphics, copy, and background. All integral colors shall be UV stabilized resins utilizing industrial grade pigments.

2.2.2 Changeable Message Strip Signs

Changeable message strip signs shall be of same construction as standard room signs to include a clear sleeve that will accept a paper or plastic insert identifying changeable text. The insert shall be typeset message mounted on paper card stock.

2.2.3 Type of Mounting For Signs

Surface mounted signs shall be mounted with countersunk mounting holes in plaques and mounting screws fabricated from materials that are not corrosive to sign material and mounting surface. Adhesive tape is not permitted.
2.2.4 Character Proportions and Heights

Letters and numbers on signs conform to 36 CFR 1191.

2.2.5 Tactile Letters, Symbols and Braille

Raised letters and numbers on signs shall conform to 36 CFR 1191.

2.3 FABRICATION AND MANUFACTURE

2.3.1 Factory Workmanship

Holes for bolts and screws shall be drilled or punched. Drilling and punching shall produce clean, true lines and surfaces. Exposed surfaces of work shall have a smooth finish and exposed riveting shall be flush. Fastenings shall be concealed where practicable.

2.4 COLOR, FINISH, AND CONTRAST

Color shall be selected. Submit samples for selection by BEAP. Finish of all signs shall be eggshell, matte, or other non-glare finish as required in handicapped-accessible buildings.

2.5 TYPEFACE

ADA-ABA compliant font for Room Signs.

PART 3 EXECUTION

3.1 INSTALLATION

Signs shall be installed plumb and true and in accordance with approved manufacturer's instructions at locations shown on the detail drawings.

3.1.1 Anchorage

Anchorage shall be in accordance with approved manufacturer's instructions. Anchorage not otherwise specified or shown shall include slotted inserts, expansion shields, and powder-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine carriage bolts for steel; lag bolts and screws for wood. Exposed anchor and fastener materials shall be compatible with metal to which applied and shall have matching color and finish.

a. Signs mounted to painted gypsum board surfaces shall be removable for painting maintenance.

3.1.2 Protection and Cleaning

Protect the work against damage during construction. Hardware and electrical equipment shall be adjusted for proper operation. Glass, frames, and other sign surfaces shall be cleaned at completion of sign installation in accordance with the manufacturer's approved instructions and the requirements of Section 01 78 23 OPERATION AND MAINTENANCE DATA, Package 1. Submit six copies of maintenance instructions listing routine procedures, repairs, and guides.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

1.2 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Finishes
Accessory Items

SD-04 Samples

Finishes
Accessory Items

SD-07 Certificates

Accessory Items

SD-10 Operation and Maintenance Data

Electric Hand Dryer

1.3 DELIVERY, STORAGE, AND HANDLING

Wrap toilet accessories for shipment and storage, then deliver to the jobsite in manufacturer's original packaging, and store in a clean, dry area protected from construction damage and vandalism.

1.4 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 MANUFACTURED UNITS

Provide toilet accessories where indicated in accordance with paragraph
SCHEDULE. Porcelain type, tile-wall accessories are specified in Section 09 30 10 CEMENT TILING, QUARRY TILING, AND PAVER TILING. Provide each accessory item complete with the necessary mounting plates of sturdy construction with corrosion resistant surface.

2.1.1 Anchors and Fasteners

Provide anchors and fasteners capable of developing a restraining force commensurate with the strength of the accessory to be mounted and suited for use with the supporting construction. Provide tamperproof design exposed fasteners with finish to match the accessory.

2.1.2 Finishes

Except where noted otherwise, provide the following finishes on metal:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel</td>
<td>No. 4 satin finish</td>
</tr>
<tr>
<td>Carbon steel, copper alloy, and brass</td>
<td>Chromium plated, bright</td>
</tr>
</tbody>
</table>

2.2 ACCESSORY ITEMS

Conform to the requirements for accessory items specified below. Submit fasteners proposed for use for each type of wall construction, mounting, operation, and cleaning instructions and one sample of each other accessory proposed for use. Incorporate approved samples into the finished work, provided they are identified and their locations noted. Submit certificate for each type of accessory specified, attesting that the items meet the specified requirements.

2.2.1 Grab Bar (GB)

Provide an 18 gauge, 1-1/4 inch grab bar OD Type 304 stainless steel. Provide form and length for grab bar as indicated. Provide concealed mounting flange. Provide grab with satin finish. Furnish installed bars capable of withstanding a 500 pound vertical load without coming loose from the fastenings and without obvious permanent deformation. Allow 1-1/2 inch space between wall and grab bar.

2.2.2 Mirrors, Glass (MG)

Provide Type I transparent flat type, Class 1-clear glass for mirrors. Glazing Quality q1 1/4 inch thick conforming to ASTM C1036. Coat glass on one surface with silver coating, copper protective coating, and mirror backing paint. Provide highly adhesive pure silver coating of a thickness which provides reflectivity of 83 percent or more of incident light when viewed through 1/4 inch thick glass, free of pinholes or other defects. Provide copper protective coating with pure bright reflective copper, homogeneous without sludge, pinholes or other defects, of proper thickness to prevent "adhesion pull" by mirror backing paint. Provide mirror backing paint with two coats of special scratch and abrasion-resistant paint and baked in uniform thickness to provide a protection for silver and copper coatings which will permit normal cutting and edge fabrication.
2.2.3 Paper Towel Dispenser (PTD)

Provide paper towel dispenser constructed of a minimum 0.03 inch Type 304 stainless steel, surface mounted. Furnish concealed tumbler key lock locking mechanism.

2.2.4 Shower Curtain (SC)

Provide shower curtain and hooks, size to suit conditions. Provide anti-bacterial nylon/vinyl fabric curtain. Furnish white color.

2.2.5 Shower Curtain Rods (SCR)

Provide stainless steel breakaway shower curtain rods 1 inch OD by 0.049 inch minimum straight to meet installation conditions. Provide stainless steel mounting flanges with spring clip release mechanism activated by excessive loads.

2.2.6 Soap Dispenser (SD)

Provide soap dispenser surface mounted, liquid type consisting of a vertical Type 304 stainless steel tank with holding capacity of 40 fluid ounces with a corrosion-resistant all-purpose valve that dispenses liquid soaps, lotions, detergents and antiseptic soaps.

2.2.7 Shelf, Metal, Heavy Duty (SMHD)

Furnish a minimum 18 gauge stainless steel heavy duty metal shelf with hemmed edges. Provide shelves over 30 inch with intermediate supports. Provide minimum of 16 gauge supports, welded to the shelf, and spaced no more than 30 inch apart.

2.2.8 Towel Bar (TB)

Provide stainless steel towel bar with a minimum thickness of 0.015 inch. Provide minimum 3/4 inch diameter bar, or 5/8 inch square. Provide satin finish.

2.2.9 Toilet Tissue Dispenser (TTD)

Furnish Type II - surface mounted toilet tissue holder with two rolls of standard tissue mounted horizontally. Provide stainless steel, satin finish cabinet.

2.2.10 Toothbrush and Tumbler Holder (TTH)

Provide stainless steel, surface mounted toothbrush and tumbler holder. Furnish holder to hold a minimum of four toothbrushes in a vertical position. Provide 2-1/4 plus or minus 1/8 inch in diameter size of hole for securing tumbler.

2.2.11 Waste Receptacle (WR)

Provide Type 304 stainless steel waste receptacle, designed for surface mounting. Provide reusable liner, of the type standard with the receptacle manufacturer. Provide a minimum 20 cubic feet capacity. Provide receptacles with push doors and doors for access to the waste compartment with continuous hinges. Furnish tumbler key lock locking mechanism.
2.2.12 Electric Hand Dryer (EHD)

Provide wall mount and electric hand dryer designed to operate at 110/125 volts, 60 cycle, single phase alternating current with a heating element core rating of a maximum 2100 watts. Provide dryer housing of single piece construction and of white porcelain enamel. Submit 4 complete copies of maintenance instructions listing routine maintenance procedures and possible breakdowns. Include repair instructions for simplified wiring and control diagrams and other information necessary for unit maintenance.

2.2.13 Mop and Broom Holder (MH)

Stainless steel with grip jaw cam mechanism securing 5 mop or broom handles.

PART 3 EXECUTION

3.1 INSTALLATION

Provide the same finish for the surfaces of fastening devices exposed after installation as the attached accessory. Provide oval exposed screw heads. Install accessories at the location and height indicated. Protect exposed surfaces of accessories with strippable plastic or by other means until the installation is accepted. After acceptance of accessories, remove and dispose of strippable plastic protection. Coordinate accessory manufacturer's mounting details with other trades as their work progresses. Use sealants for brackets, plates, anchoring devices and similar items in showers (a silicone or polysulfide sealant) as they are set to provide a watertight installation. After installation, thoroughly clean exposed surfaces and restore damaged work to its original condition or replace with new work.

3.1.1 Recessed Accessories

Fasten accessories with wood screws to studs, blocking or rough frame in wood construction. Set anchors in mortar in masonry construction. Fasten to metal studs or framing with sheet metal screws in metal construction.

3.1.2 Surface Mounted Accessories

Mount on concealed backplates, unless specified otherwise. Conceal fasteners on accessories without backplates. Install accessories with sheet metal screws or wood screws in lead-lined braided jute, PTFE or neoprene sleeves, or lead expansion shields, or with toggle bolts or other approved fasteners as required by the construction. Install backplates in the same manner, or provide with lugs or anchors set in mortar, as required by the construction. Fasten accessories mounted on gypsum board and plaster walls without solid backing into the metal or wood studs or to solid wood blocking secured between wood studs, or to metal backplates secured to metal studs.

3.2 CLEANING

Clean material in accordance with manufacturer's recommendations. Do not use alkaline or abrasive agents. Take precautions to avoid scratching or marring exposed surfaces.

--- End of Section ---
SECTION 10 52 20
FIRE EXTINGUISHERS AND CABINETS
01/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)
ASTM C 1036 (1991; R 1997) Flat Glass

FM GLOBAL (FM)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
NFPA 10 (2013) Standard for Portable Fire Extinguishers

UNDERWRITERS LABORATORIES (UL)

1.2 SYSTEM DESCRIPTION

Provide fire extinguishers and fire extinguisher cabinets in accordance with the required and advisory provisions of NFPA 10, and as specified herein. Fire extinguishers shall be UL FPED listed or FM P7825 approved. In the publications referred to herein, the advisory provisions shall be considered to be mandatory, as though the word "shall" has been substituted for "should" wherever it appears; reference to the "authority having jurisdiction" shall be interpreted to mean the local fire department.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-03 Product Data

 Fire extinguishers

 Fire extinguisher cabinets

Submit for each type of fire extinguisher
1.4 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the site in the manufacturer's original sealed containers or packages, bearing the manufacturer's name and brand designation. Handle and store materials to protect them from damage during the entire construction period. Replace all damaged items with new items.

PART 2 PRODUCTS

2.1 DRY CHEMICAL FIRE EXTINGUISHERS

UL 299. Provide stored pressure multi-purpose dry chemical fire extinguishers, equipped with integral pressure indicating gage, 10 pound nominal charge weight having a minimum fire test rating of 2A:20B:C.

2.2 FIRE EXTINGUISHER CABINETS

Provide semi-recessed-mounted cabinets where indicated. Cabinets shall be prime grade, cold-rolled, reannealed, process-leveled, furniture steel. Fabricate cabinet from 20 gage steel and door and trim from 18 gage steel. Provide fully welded joints ground smooth. On each jamb, provide at least two anchors or reinforcements spaced approximately 24 inches apart for building in or attaching the cabinets to adjacent construction. Doors shall be flush hollow metal type with fully welded joints ground smooth and full glazed opening. Provide door with continuous hinge, latch, and pull. Hinge door for 180 degree opening. Glass shall conform to ASTM C 1036 and shall be clear, Type II (flat wired glass), Form 1 (wired, polished both sides), Quality q 8 (glazing quality), diamond or square wire mesh (1/4 inch thick. Factory finish cabinet inside and out with one coat of enamel applied over a primer. Interior finish color shall be white. Exterior finish color shall be red.

PART 3 EXECUTION

3.1 INSTALLATION

Install cabinets plumb and level. The top of installed extinguishers shall not be more than 5 feet above the finished floor. Provide fire extinguishers fully charged and ready for use.
PART 1 GENERAL

1.1 SUMMARY

Provide window treatment, conforming to NFPA 701, complete with necessary
brackets, fittings, and hardware. Provide each window treatment type as a
complete unit in accordance with paragraph WINDOW TREATMENT PLACEMENT
SCHEDULE. Mount and operate equipment in accordance with manufacturer's
instructions. Completely cover windows to receive a treatment.

1.2 REFERENCES

The publications listed below form a part of this specification to the
extent referenced. The publications are referred to in the text by basic
designation only.

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

Flame Propagation of Textiles and Films

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL
PROCEDURES

SD-02 Shop Drawings
 Installation
SD-03 Product Data
 Window Blinds
 Installation
SD-04 Samples
 Window Blinds
SD-06 Test Reports
 Window Blinds
SD-08 Manufacturer's Instructions
 Window Blinds
SD-10 Operation and Maintenance Data
 Window Blinds
1.4 DELIVERY, STORAGE, AND HANDLING

Deliver components to the jobsite in the manufacturer's original packaging with the brand or company name, item identification, and project reference clearly marked. Store components in a dry location that is adequately ventilated and free from dust, water, or other contaminants and has easy access for inspection and handling. Store materials flat in a clean dry area with temperature maintained above 50 degrees F. Do not open containers until needed for installation unless verification inspection is required.

1.5 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 WINDOW BLINDS

Provide each blind, including hardware, accessory items, mounting brackets and fastenings, as a complete unit produced by one manufacturer. All parts shall be one color, unless otherwise indicated, to match the color of the blind slat. Treat steel features for corrosion resistance. Submit samples of each type and color of window treatment. Provide aluminum 6 inch length for each color. Provide 6 inch sample of horizontal blind slats in each color specified. Also submit results of Fire resistance, Flame Spread, and Smoke contribution tests.

2.1.1 Horizontal Blinds

Provide horizontal blinds with 1 inch slats. Blind units shall be capable of nominally 180 degree partial tilting operation and full-height raising. Blinds shall be inside mount. Provide tapes for 2 inch slats with longitudinal reinforced vinyl plastic in 1-piece turn ladder construction. Tapes for 1 inch slats shall be braided polyester or nylon.

2.1.1.1 Head Channel and Slats

Provide head channel made of steel or aluminum with corrosion-resistant finish nominal 0.024 inch for 1 inch slats. Provide slats of aluminum, not less than 0.008 inch thick, and of sufficient strength to prevent sag or bow in the finished blind. Provide a sufficient amount of slats to assure proper control, uniform spacing, and adequate overlap. Enclose all hardware in the headrail.

2.1.1.2 Controls

The slats shall be tilted by a transparent tilting wand, hung vertically by its own weight, and shall swivel for easy operation. Provide a tilter control of enclosed construction. Provide moving parts and mechanical drive made of compatible materials which do not require lubrication during normal expected life. The tilter shall tilt the slats to any desired angle and hold them at that angle so that any vibration or movement of ladders and slats will not drive the tilter and change the angle of slats. Include a mechanism to prevent over tightening. Provide a wand of sufficient length to reach to within 5 feet of the floor.
2.1.1.3 Intermediate Brackets

Provide intermediate brackets for installation, as recommended by the manufacturer, of blinds over 48 inch wide.

2.1.1.4 Bottom Rail

Provide bottom rail made of corrosion-resistant steel with factory applied finish. Provide closed oval shaped bottom rail with double-lock seam for maximum strength. Bottom rail and end caps to match slats in color.

2.1.1.5 Braided Ladders

Provide braided ladders of 100 percent polyester yarn, color to match the slat color. Space ladders 15.2 slats per foot of drop in order to provide a uniform overlap of the slats in a closed position.

2.1.1.6 Hold-Down Brackets

Provide universal type hold-down brackets for sill or jamb mount where indicated on placement list.

2.1.1.7 Audio Visual Blinds

In addition to requirements for blinds, each unit shall include light traps at sides, and sill. Provide privacy blinds which provide light enhancing capabilities by means of hidden slat holes. Construct light traps from aluminum or sheet steel, not less than 0.02 inch thick, U-shaped, with legs not less than 0.75 inches long for 1 inch blinds. Round or bead edges in contact with blinds. Finish inside surfaces of light traps in a dull gray or black color.

2.2 COLOR

Provide color, pattern and texture selected from manufacturer's standard colors

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 WINDOW TREATMENT PLACEMENT SCHEDULE

All exterior windows include horizontal blinds.

3.3 INSTALLATION

Submit drawings showing fabrication and installation details. Show layout and locations of track, direction of draw, mounting heights, and details.

3.3.1 Horizontal and Audio Visual Blinds

Perform installation of Horizontal and Audio Visual Blinds in accordance with the approved detail drawings and manufacturer's installation instructions. Install units level, plumb, secure, and at proper height and
location relative to window units. Provide and install supplementary or miscellaneous items in total, including clips, brackets, or anchorages incidental to or necessary for a sound, secure, and complete installation. Do not start installation until completion of room painting and finishing operations.

3.4 CLEAN-UP

Upon completion of the installation, free window treatments from soiling, damage or blemishes; and adjust them for form and appearance and proper operating condition. Repair or replace damaged units as directed by the Contracting Officer. Isolate metal parts from direct contact with concrete, mortar, or dissimilar metals. Ensure blinds installed in recessed pockets can be removable without disturbing the pocket. The entire blind, when retracted, shall be contained behind the pocket. For blinds installed outside the jambs and mullions, overlap each jamb and mullion 0.75 inch or more when the jamb and mullion sizes permit. Include all hardware, brackets, anchors, fasteners, and accessories necessary for a complete, finished installation.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D709 (2013) Laminated Thermosetting Materials

FM GLOBAL (FM)

FM APP GUIDE (updated on-line) Approval Guide
http://www.approvalguide.com/

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 13 (2016) Standard for the Installation of Sprinkler Systems

UNDERWRITERS LABORATORIES (UL)

UL 262 (2004; Reprint Oct 2011) Gate Valves for Fire-Protection Service

UL 668 (2004; Reprint Dec 2012) Hose Valves for Fire-Protection Service

UL 789 (2004; Reprint Feb 2013) Standard for Indicator Posts for Fire-Protection Service

1.2 SYSTEM DESCRIPTION

Design and provide new automatic wet pipe fire extinguishing sprinkler systems for complete fire protection coverage throughout the entire building.

1.3 SPRINKLER SYSTEM DESIGN

Except as modified herein, design automatic wet pipe fire extinguishing sprinkler systems in accordance with the required and advisory provisions of NFPA 13, including all recommendations and advisory portions, which shall be considered mandatory; this includes advisory provisions listed in the appendices of such standard(s), as though the word "shall" had been
substituted for the word "should" wherever it appears. Design system by hydraulic calculations for uniform distribution of water over the design area. Hydraulic calculations shall assume a 12 psi pressure loss for the backflow preventer assembly. Locate sprinklers in a consistent pattern with ceiling grid, lights, and air supply diffusers. Provide sprinklers and piping system layout. All Devices and equipment for fire protection service shall be UL Fire Prot Dir listed or FM APP GUIDE approved for use in wet pipe sprinkler systems. Provide seismic protection for the sprinkler system. Design and install seismic protection in accordance with the requirements of NFPA 13 section titled "Protection of Piping Against Damage Where Subject to Earthquakes."

1.3.1 Location of Sprinklers

Sprinklers in relation to the ceiling and the spacing of sprinklers shall not exceed that permitted by NFPA 13 for the hazards indicated on the contract drawings. Uniformly space sprinklers on the branch piping. Sprinklers shall provide coverage throughout 100 percent of the building. This includes, but is not limited to, telephone rooms, electrical equipment rooms, boiler rooms, switchgear rooms, transformer rooms, and other electrical and mechanical spaces.

1.3.2 Water Distribution

Distribution shall be uniform throughout the area in which the sprinklers will open. Discharge from individual sprinklers in hydraulically most remote area shall be between 100 percent and 120 percent of the specified density.

1.3.3 Density of Application of Water

Size pipe to provide the specified density when the system is discharging the specified total maximum required flow. Application to horizontal surfaces below the sprinklers shall be as indicated on the contract drawings. Size pipe to provide the specified density when the system is discharging the specified total maximum required flow. Application to horizontal surfaces below the sprinklers shall be as indicated on the contract drawings.

1.3.4 Sprinkler Discharge Area

Permissible decreases and required increases from NFPA 13 shall be applied to an initial hydraulically most remote area.

1.3.5 Outside Hose Allowances

Hydraulic calculations shall include a hose allowance as indicated on the contract drawings for the outside hose streams.

1.3.6 Water Supply

Base hydraulic calculations on the water supply data indicated on the contract drawings at the junction with the existing water distribution piping system.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control.
approval.

Partial submittals and submittals not fully complying with the requirements and recommended practices of NFPA 13 and this specification section shall be returned disapproved without review. This contract stipulation is non-negotiable.

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Shop Drawings; G

Prepare 24 by 36 inch detail working drawings of sprinklers and piping. Floor plans shall be drawn to a scale not less than 1/8" = 1'-0". Show data essential for proper installation of each system. Show details, plan view, elevations and sections of the systems supply and piping. Show piping schematic of systems supply, devices, valves, pipe and fittings. Show point to point electrical wiring diagrams. Submit drawings signed by a registered fire protection engineer. Provide three copies of the Sprinkler System Shop Drawings, no later than 21 days prior to the start of sprinkler system installation.

SD-03 Product Data

Pipe; G
Fittings ; G
Alarm valves ; G
Valves, including gate, check, and globe ; G
Sprinklers ; G
Pipe hangers and supports ; G
Sprinkler Alarm Switches; G
Fire department connections ; G
Mechanical couplings ; G
Backflow Prevention Assembly; G
Seismic Bracing; G

Annotate descriptive data to show the specific model, type, and size of each item. Catalog cuts shall also indicate UL Listing/FM Approval and country of manufacture.

SD-05 Design Data

Hydraulic Calculations; G

Submit computer program generated hydraulic calculations to substantiate compliance with hydraulic design requirements. Calculations shall be performed by computer using software intended specifically for fire protection system design. Calculations shall include isometric diagram indicating hydraulic nodes and pipe segments. Submit name of software program used.

SD-06 Test Reports

Request to schedule Preliminary Tests; G

Preliminary Test Report; G
Three copies of the completed Preliminary Test Report, no later that 7 days after the completion of the Preliminary Tests. The Preliminary Tests Report shall include both the Contractor's Material and Test Certificate for Underground Piping and the Contractor's Material and Test Certificate for Aboveground Piping. All items in the Preliminary Tests Report shall be signed by the Fire Protection Engineer.

Request to schedule Final Acceptance Test; G

Final Acceptance Test Report;

Three copies of the completed Final Acceptance Tests Reports, no later that 7 days after the completion of the Final Acceptance Tests. All items in the Final Acceptance Report shall be signed by the Fire Protection Engineer.

SD-07 Certificates

Inspection by Fire Protection Engineer; G

Concurrent with the Final Acceptance Test Report, certification by the Fire Protection Engineer that the sprinkler system is installed in accordance with the contract requirements, including signed approval of the Preliminary and Final Acceptance Test Reports.

Fire Protection Engineer; G

The name and documentation of certification of the proposed Fire Protection Engineer, no later than 14 days after the Notice to Proceed and prior to the submittal of the sprinkler system drawings and hydraulic calculations.

Sprinkler System Installer; G

Submit data showing the Sprinkler System Installer has successfully installed systems of the same type and design as specified herein, Data shall include names and locations of at least two installations where the Contractor, or the subcontractor referred to above, has installed such systems. Indicate type and design of each system and certify that each system has performed satisfactorily in the manner intended for not less than 18 months. Provide NICET certification of the system technician. Contractor shall submit data along with submittal of the Fire Protection Engineer Qualifications.

SD-10 Operation and Maintenance Data

Operating and Maintenance Instructions

Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA as supplemented and modifies by this specification section.

Provide six manuals in accordance with NFPA 13. The manuals shall include the manufacturer's name, model number, parts list, list of parts and tools that should be kept in stock by the owner for
routine maintenance including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization (including address and telephone number) for each item of equipment. Each service organization submitted shall be capable of providing 4 hour on-site response to a service call on an emergency basis.

SD-11 Closeout Submittals

As-built drawings

As-built shop drawings, at no later than 14 days after completion of the Final Tests. The Sprinkler System Drawings shall be updated to reflect as-built conditions after all related work is completed. Provide electronic drawings in dwg or pdf format.

On-site training

1.5 QUALIFICATIONS

1.5.1 Fire Protection Engineer

A Fire Protection Engineer is a registered professional engineer (P.E.) who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES).

1.5.2 Sprinkler System Installer

The Sprinkler System Installer shall be regularly engaged in the installation of the type and complexity of system specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months. Installation drawings, shop drawings and as-built drawings shall be prepared, by or under the supervision of, a system technician who is experienced with the types of works specified herein, and is currently certified by the National Institute for Certification in Engineering Technologies (NICET) as an engineering technician with minimum Level III certification in Automatic Sprinkler System program or by a fire protection engineer.

1.6 QUALITY ASSURANCE

1.6.1 Material and Equipment Qualifications

Provide materials and equipment that are standard products of manufacturers regularly engaged in the manufacture of such products, which are of a similar material, design and workmanship. Standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.

1.6.2 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.
1.6.3 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

1.6.4 Field Fabricated Nameplates

ASTM D709. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified in the technical sections or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 0.125 inch thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be one by 2.5 inches. Lettering shall be a minimum of 0.25 inch high normal block style.

1.7 ACCESSIBILITY

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.

1.8 DELIVERY, STORAGE AND HANDLING

All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed.

PART 2 PRODUCTS

2.1 UNDERGROUND PIPING COMPONENTS

2.1.1 Pipe

Pipe shall comply with NFPA 24. Minimum pipe size shall be 6 inches. Piping more than 5 feet outside the building walls shall comply with Section 33 11 00 WATER DISTRIBUTION.

2.1.2 Gate Valve and Indicator Posts

Installation shall comply with NFPA 24. Gate valves for use with indicator post shall conform to UL 262. Indicator posts shall conform to UL 789. Provide each indicator post with one coat of primer and two coats of red enamel paint.

2.1.3 Valve Boxes

Except where indicator posts are provided, for each buried valve, provide cast-iron, ductile-iron, or plastic valve box of a suitable size. Plastic boxes shall be constructed of acrylonitrile-butadiene-styrene (ABS) or inorganic fiber-reinforced black polyolefin. Provide cast-iron, ductile-iron, or plastic cover for valve box with the word "WATER" cast on the cover. The minimum box shaft diameter shall be 5.25 inches. Coat
cast-iron and ductile-iron boxes with bituminous paint applied to a minimum dry-film thickness of 10 mils.

2.1.4 Buried Utility Warning and Identification Tape

Provide detectable aluminum foil plastic backed tape or detectable magnetic plastic tape manufactured specifically for warning and identification of buried piping. Tape shall be detectable by an electronic detection instrument. Provide tape in rolls, 3 inches minimum width, color coded for the utility involved with warning and identification imprinted in bold block letters continuously and repeatedly over the entire tape length. Warning and identification shall read "CAUTION BURIED WATER PIPING BELOW" or similar wording. Use permanent code and letter coloring unaffected by moisture and other substances contained in trench backfill material.

2.2 ABOVEGROUND PIPING COMPONENTS

All components of the aboveground piping shall fully comply with the requirements and recommended practices of NFPA 13 and this specification section. Aboveground piping shall be steel.

2.2.1 Steel Pipe

Pipe shall be black steel. Steel pipe shall be Schedule 40 for sizes less than 2 1/2 inches and Schedule 10 for sizes 3 inches or larger. Fittings into which sprinklers, sprinkler riser nipples, or drop nipples are threaded shall be welded, threaded, or grooved-end type. Plain-end fittings with mechanical couplings, fittings that use steel gripping devices to bite into the pipe and segmented welded fittings shall not be permitted. Rubber gasketed grooved-end pipe and fittings with mechanical couplings shall be permitted in pipe sizes 1.5 inches and larger. Fittings, mechanical couplings, and rubber gaskets shall be supplied by the same manufacturer. Steel piping with wall thickness less than Schedule 30 shall not be threaded. Side outlet tees using rubber gasketed fittings shall not be permitted. Sprinkler pipe and fittings shall be metal. Roll grooving of galvanized pipe is prohibited.

2.2.2 Grooved Mechanical Joints and Fittings

Grooved couplings, fittings and grooving tools shall be products of the same manufacturer.

2.2.3 Flexible Sprinkler Hose

The use of flexible sprinkler hose is permissible.

2.2.4 Plastic Pipe and Fittings

Plastic pipe shall not be used.

2.2.5 Sprinklers

Provide nominal 0.50 inch or 0.53 inch orifice sprinklers. Sprinklers with internal O-rings shall not be used. Sprinklers shall be used in accordance with their listed coverage limitations. Provide Pendent, quick response sprinklers. Sprinklers shall have a polished chrome finish. Temperature classification shall be ordinary and as indicated on the contract drawings. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with
NFPA 13. Extended coverage sprinklers shall not be used. Provide corrosion-resistant sprinklers and sprinkler guards as required by NFPA 13. Deflector shall not be more than 3 inches below suspended ceilings. Ceiling plates shall not be more than 0.5 inch deep. Ceiling cups shall not be permitted.

2.2.6 Valves

Provide valves of types approved for fire service. Valves shall open by counterclockwise rotation. Provide an OS&Y valve beneath each alarm. Check valves shall be clear opening swing-check type with inspection and access cover plate for sizes 8 inches and larger. Each control valve shall be electrically supervised; minimum contact ratings shall be 2.5 amps at 24 volts DC. Provide supervision against valve closure or tampering of valve.

2.2.7 Pipe Supports

Provide Pipe hangers and supports and Seismic Bracing in accordance with NFPA 13.

2.2.8 Alarm Valves

Provide variable pressure type alarm check valve, standard trim piping, pressure gauges, bypass, retarding chamber, testing valves, main drain, and other components as required for a fully operational system.

2.2.9 Fire Department Connections

Fire department connection shall be flush type with cast brass body, matching wall escutcheon lettered "Auto Spkr" with a polished brass finish. The connection shall have two inlets with individual self-closing clappers, caps with drip drains and chains. Female inlets shall have 2-1/2 inch diameter American National Fire Hose Connection Screw Threads (NH) per NFPA 1963.

2.2.10 Backflow Prevention Assembly

Provide listed double check valve assembly backflow preventer. Each check valve shall have a drain. Backflow prevention assemblies shall have current "Certificate of Approval from the Foundation for Cross-Connection Control and Hydraulic Research, FCCCHR List. Listing of the specific make, model, design, and size in the FCCCHR List shall be acceptable as the required documentation."

2.3 ALARM INITIATING AND SUPERVISORY DEVICES

2.3.1 Sprinkler Alarm Switches

Provide vane type flow switch(es) with circuit opener or closer for the automatic transmittal of an alarm over the facility fire alarm system. Connection of switch shall be under Section 28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM. Vane type Alarm actuating devices shall have mechanical diaphragm controlled retard device adjustable from 10 to 60 seconds and shall instantly recycle.

2.3.2 Valve Supervisory (Tamper) Switch

Switch shall be suitable for mounting to the type of control valve to be supervised open. The switch shall be tamper resistant and contain one set
of SPDT (Form C) contacts arranged to transfer upon removal of the housing cover or closure of the valve of more than two rotations of the valve stem.

2.4 ACCESSORIES

2.4.1 Sprinkler Cabinet

Provide metal cabinet with extra sprinklers and sprinkler wrench adjacent to each alarm valve. The number and types of extra sprinklers shall be as specified in NFPA 13.

2.4.2 Pipe Escutcheon

Provide split hinge metal plates for piping entering walls, floors, and ceilings in exposed spaces. Provide polished stainless steel plates or chromium-plated finish on copper alloy plates in finished spaces. Provide paint finish on metal plates in unfinished spaces.

PART 3 EXECUTION

3.1 INSPECTION BY FIRE PROTECTION ENGINEER

The Fire Protection Engineer shall inspect the sprinkler system periodically during the installation to assure the sprinkler system is being provided and installed in accordance with the contract requirements and the approved sprinkler system submittal(s). The Fire Protection Engineer shall attend both the preliminary and final tests, and shall sign the test results. After the preliminary testing has been completed, the Fire Protection Engineer, shall certify in writing the system is ready for the final inspections and tests. This report shall document any discrepancies found and what actions will be taken to correct. Any discrepancy noted during the periodic site visits or the preliminary testing shall be brought to the attention of the Contracting Officer in writing, no later than three working days after the discrepancy is discovered.

3.2 UNDERGROUND PIPING INSTALLATION

The methods of fabrication and installation of the underground piping shall fully comply with the requirements and recommended practices of NFPA 13, NFPA 24 and the contract drawings.

3.3 ABOVEGROUND PIPING INSTALLATION

The methods of fabrication and installation of the aboveground piping shall fully comply with the requirements and recommended practices of NFPA 13 and this specification section.

3.3.1 Piping in Finished Areas

In areas with suspended or dropped ceilings and in areas with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed.

3.3.2 Pendent Sprinklers

Where sprinklers are installed below suspended or dropped ceilings, drop nipples shall be cut such that sprinkler ceiling plates or escutcheons are
of a uniform depth throughout the finished space. The outlet of the reducing coupling shall not extend more than 1 inch below the underside of the ceiling. Pendent sprinklers in suspended ceilings shall be a minimum of 6 inches from ceiling grids.

3.3.3 Pipe Joints

Pipe joints shall conform to NFPA 13, except as modified herein. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe material, wall thickness and size. Grooved couplings, fittings and grooving tools shall be products of the same manufacturer. The diameter of grooves made in the field shall be measured using the method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances.

3.3.4Reducers

Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. Bushings are prohibited.

3.3.5 Pipe Penetrations

Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes penetrate fire walls, fire partitions, or floors, pipes shall be fire stopped in accordance with Section 07 84 00 FIRESTOPPING. In penetrations that are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement that will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal.

3.3.6 Inspector's Test Connection

Provide test connections approximately 6 feet above the floor for each sprinkler system or portion of each sprinkler system equipped with an alarm device. Provide test connection piping to a drain location that can accept full flow where the discharge will be readily visible and where water may be discharged without property damage. Discharge to floor drains, janitor sinks or similar fixtures shall not be permitted. Provide discharge orifice of same size as corresponding sprinkler orifice. The penetration of the exterior wall shall be no greater than 2 feet above finished grade.

3.3.7 Backflow Preventer Test Connection

Provide downstream of the backflow prevention assembly UL 668 hose valves with 2.5 inch National Standard male hose threads with cap and chain. Provide one valve for each 250 gpm of system demand or fraction thereof.
Provide a permanent sign in accordance with paragraph entitled "Identification Signs" which reads, "Test Valve."

3.3.8 Drains

Main drain piping shall be provided to discharge at a safe point outside the building. Auxiliary drains shall be provided as required by NFPA 13.

3.3.9 Installation of Fire Department Connection

Connection shall be mounted on the exterior wall approximately 3 feet above finished grade. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 and arranged to drain to the outside.

3.3.10 Identification Signs

Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate or as required by NFPA 13. Valve identification signs shall be minimum 6 inches wide by 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on a white background or white letters on red background. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser as specified in NFPA 13.

3.4 ELECTRICAL WORK

Except as supplemented and modified herein, electric equipment and wiring shall be in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Alarm signal wiring connected to the building fire alarm control system shall be in accordance with 28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM.

3.5 PIPE PAINTING AND COLOR CODE MARKING

Paint and color code mark sprinkler piping system as specified in Section 09 90 00 PAINTS AND COATINGS.

3.6 PRELIMINARY TESTS

The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Submit Request to schedule Preliminary Tests, no later than 14 days prior to the proposed start of the tests. Upon completion of specified tests, the Contractor shall submit for approval a Preliminary Test Report.

3.6.1 Underground Piping

3.6.1.1 Flushing

Underground piping shall be flushed in accordance with NFPA 24.

3.6.1.2 Hydrostatic Testing

New underground piping shall be hydrostatically tested in accordance with NFPA 24.
3.6.2 Aboveground Piping

3.6.2.1 Hydrostatic Testing

Aboveground piping shall be hydrostatically tested in accordance with NFPA 13.

3.6.2.2 Backflow Prevention Assembly Forward Flow Test

Each backflow prevention assembly shall be tested at system flow demand, including all applicable hose streams, as specified in NFPA 13. The Contractor shall provide all equipment and instruments necessary to conduct a complete forward flow test, including 2.5 inch diameter hoses, playpipe nozzles, calibrated pressure gauges, and pitot tube gauge. The Contractor shall provide all necessary supports to safely secure hoses and nozzles during the test. At the system demand flow, the pressure readings and pressure drop (friction) across the assembly shall be recorded. A metal placard shall be provided on the backflow prevention assembly that lists the pressure readings both upstream and downstream of the assembly, total pressure drop, and the system test flow rate determined during the preliminary testing. The pressure drop shall be compared to the manufacturer's data and the readings observed during the final inspections and tests.

3.7 FINAL ACCEPTANCE TEST

Final Acceptance Test shall begin only when the Preliminary Test Report has been approved. Submit Request to schedule Final Acceptance Test, no later than 14 days prior to the proposed start of the tests. Notification shall include a copy of the Contractor's Material & Test Certificates.

This shall include operation of control valves and flowing of inspector's test connections to verify operation of associated waterflow alarm switches. After operation of control valves has been completed, the main drain test shall be repeated to assure that control valves are in the open position. In addition, the representative shall have available copies of as-built drawings and certificates of tests previously conducted. The installation shall not be considered accepted until identified discrepancies have been corrected and test documentation is properly completed and received. The Contractor shall submit the Final Acceptance Test Report as specified in the Submittals paragraph.

An experienced technician regularly employed by the system installer shall be present during the inspection. The Fire Protection Engineer shall attend the final inspections and tests. At this inspection, repeat any or all of the required tests as directed. Correct defects in work provided by the Contractor, and make additional tests until the systems comply with contract requirements. Furnish appliances, equipment, electricity, instruments, connecting devices, and personnel for the tests. The Government will furnish water for the tests. The Naval Facilities Engineering Command, Fire Protection Engineer, will witness formal tests and approve systems before they are accepted.

3.8 ON-SITE TRAINING

Submit request to schedule the On-site Training, at least 14 days prior to the start of related training but prior to the final inspections and tests. The sprinkler contractor shall conduct a training course for
operating and maintenance personnel as designated by the Contracting Officer. Training shall be provided for a period of 2 hours of normal working time and shall start after the system is functionally complete and after the Final Acceptance Test. The On-Site Training shall cover all of the items contained in the approved Operating and Maintenance Instructions.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 1010 (2002) Self-Contained, Mechanically Refrigerated Drinking-Water Coolers

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI Z124.6 (1997) Plastic Sinks

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1001 (2008) Atmospheric Type Vacuum Breakers
ASSE 1003 (2001; Errata, 2003) Performance Requirements for Water Pressure Reducing Valves
ASSE 1011 (2004; Errata 2004) Hose Connection Vacuum Breakers
ASSE 1012 (2009) Backflow Preventer with Intermediate Atmospheric Vent
ASSE 1013 (2009) Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire
Protection Principle Backflow Preventers

ASSE 1018 (2001) Trap Seal Primer Valves - Potable, Water Supplied

ASSE 1020 (2004; Errata 2004; Errata 2004) Pressure Vacuum Breaker Assembly

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA 10084 (2005) Standard Methods for the Examination of Water and Wastewater

AWWA B300 (2004) Hypochlorites

AWWA B301 (2004) Liquid Chlorine

AWWA C606 (2006) Grooved and Shouldered Joints

AWWA C651 (2005; Errata 2005) Standard for Disinfecting Water Mains

AWWA C652 (2002) Disinfection of Water-Storage Facilities

AWWA C700 (2009) Standard for Cold Water Meters - Displacement Type, Bronze Main Case

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2004; Errata 2004) Specification for Filler Metals for Brazing and Braze Welding

ASME INTERNATIONAL (ASME)

ASME A112.36.2M (1991; R 2008) Cleanouts

ASME A112.6.1M (1997; R 2008) Floor Affixed Supports for Off-the-Floor Plumbing Fixtures for Public
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME A112.6.3</td>
<td>(2001; R 2007) Standard for Floor and Trench Drains</td>
</tr>
<tr>
<td>ASME B1.20.1</td>
<td>(2013) Pipe Threads, General Purpose (Inch)</td>
</tr>
<tr>
<td>ASME B16.15</td>
<td>(2013) Cast Copper Alloy Threaded Fittings Classes 125 and 250</td>
</tr>
<tr>
<td>ASME B16.18</td>
<td>(2012) Cast Copper Alloy Solder Joint Pressure Fittings</td>
</tr>
<tr>
<td>ASME B16.21</td>
<td>(2005) Nonmetallic Flat Gaskets for Pipe Flanges</td>
</tr>
<tr>
<td>ASME B16.23</td>
<td>(2002; Errata 2003; R 2006) Cast Copper Alloy Solder Joint Drainage Fittings - DWV</td>
</tr>
<tr>
<td>ASME B16.24</td>
<td>(2011) Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500</td>
</tr>
<tr>
<td>ASME B16.29</td>
<td>(2007) Wrought Copper and Wrought Copper Alloy Solder Joint Drainage Fittings - DWV</td>
</tr>
<tr>
<td>ASME B16.3</td>
<td>(2011) Malleable Iron Threaded Fittings, Classes 150 and 300</td>
</tr>
<tr>
<td>ASME B16.34</td>
<td>(2013) Valves - Flanged, Threaded and Welding End</td>
</tr>
<tr>
<td>ASME B16.4</td>
<td>(2011) Standard for Gray Iron Threaded Fittings; Classes 125 and 250</td>
</tr>
<tr>
<td>ASME B31.1</td>
<td>(2016) Power Piping</td>
</tr>
<tr>
<td>ASME B40.100</td>
<td>(2005) Pressure Gauges and Gauge Attachments</td>
</tr>
<tr>
<td>ASME BPVC SEC IX</td>
<td>(2007; Addenda 2008) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications</td>
</tr>
</tbody>
</table>
ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>ASTM Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A 53/A 53M</td>
<td>(2004a) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless</td>
</tr>
</tbody>
</table>
Gaskets for Cast Iron Soil Pipe and Fittings

ASTM D 2822 (2005) Asphalt Roof Cement

ASTM D 3311 (2009a) Drain, Waste, and Vent (DWV) Plastic Fittings Patterns

ASTM F 409 (2002; R 2008) Thermoplastic Accessible and Replaceable Plastic Tube and Tubular Fittings

CAST IRON SOIL PIPE INSTITUTE (CISPI)

COPPER DEVELOPMENT ASSOCIATION (CDA)

CDA A4015 (1994; R 1995) Copper Tube Handbook

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)

INTERNATIONAL CODE COUNCIL (ICC)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-110 (1996) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

MSS SP-67 (2002a; R 2004) Standard for Butterfly Valves

MSS SP-69 (2003; R 2004) Standard for Pipe Hangers and Supports - Selection and Application

MSS SP-71 (2005) Gray Iron Swing Check Valves, Flanged and Threaded Ends

MSS SP-72 (1999) Standard for Ball Valves with Flanged or Butt-Welding Ends for General Service

MSS SP-73 (2003) Brazing Joints for Copper and Copper Alloy Pressure Fittings

MSS SP-78 (2005a) Cast Iron Plug Valves, Flanged and Threaded Ends

MSS SP-80 (2008) Bronze Gate, Globe, Angle and Check Valves

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NSF INTERNATIONAL (NSF)

NSF 61 (2009) Drinking Water System Components -
Health Effects

PLASTIC PIPE AND FITTINGS ASSOCIATION (PPFA)

PLUMBING AND DRAINAGE INSTITUTE (PDI)

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)

SAE J1508 (2009) Hose Clamp Specifications

U.S. DEPARTMENT OF ENERGY (DOE)

PL 93-523 (1974; A 1999) Safe Drinking Water Act

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

1.2 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Plumbing System

Detail drawings consisting of schedules, performance charts, instructions, diagrams, and other information to illustrate the requirements and operations of systems that are not covered by the Plumbing Code. Detail drawings for the complete plumbing system including piping layouts and locations of connections; dimensions for roughing-in, foundation, and support points; schematic diagrams and wiring diagrams or connection and interconnection diagrams. Detail drawings shall indicate clearances required for maintenance and operation. Where piping and equipment are to be supported other than as indicated, details shall include loadings and proposed support methods. Mechanical drawing plans, elevations, views, and details, shall be drawn to scale.

SD-03 Product Data

Fixtures

List of installed fixtures with manufacturer, model, and flow rate.

Flush valve water closets

Wall hung lavatories
Countertop lavatories
Service sinks
Drinking-water coolers
WATER HEATERS
HOT-WATER EXPANSION TANKS
Pumps
Thermostatic Mixing Valve
Backflow prevention assemblies
Shower Faucets
Welding
DOMESTIC WATER SERVICE METER
A copy of qualified procedures and a list of names and identification symbols of qualified welders and welding operators.

Plumbing System

Diagrams, instructions, and other sheets proposed for posting. Manufacturer's recommendations for the installation of bell and spigot and hubless joints for cast iron soil pipe.

SD-06 Test Reports

Tests, Flushing and Disinfection

Test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, completion and testing of the installed system. Each test report shall indicate the final position of controls.

Test of Backflow Prevention Assemblies.

Certification of proper operation shall be as accomplished in accordance with state regulations by an individual certified by the state to perform such tests. If no state requirement exists, the Contractor shall have the manufacturer's representative test the device, to ensure the unit is properly installed and performing as intended. The Contractor shall provide written documentation of the tests performed and signed by the individual performing the tests.

Prefunctional Construction Checklists

Completed Prefunctional Construction Checklist provided by Commissioning Authority shall be completed and submitted to the Government's Commissioning Authority.

SD-07 Certificates
Materials and Equipment

Where equipment is specified to conform to requirements of the ASME Boiler and Pressure Vessel Code, the design, fabrication, and installation shall conform to the code.

Bolts

Written certification by the bolt manufacturer that the bolts furnished comply with the specified requirements.

SD-09 Manufacturer's Field Reports

Field Reports

Completed start up report by manufacturer representative or certified equipment startup person documenting manufacturer's recommended start up procedure.

SD-10 Operation and Maintenance Data

Plumbing System.

Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

1.3 STANDARD PRODUCTS

Specified materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products. Specified equipment shall essentially duplicate equipment that has performed satisfactorily at least two years prior to bid opening. Standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.

1.3.1 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.

1.3.2 Service Support

The equipment items shall be supported by service organizations. Submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.3.3 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's
name, address, model number, and serial number securely affixed in a
conspicuous place; the nameplate of the distributing agent will not be
acceptable.

1.3.4 Modification of References

In each of the publications referred to herein, consider the advisory
provisions to be mandatory, as though the word, "shall" had been
substituted for "should" wherever it appears. Interpret references in
these publications to the "authority having jurisdiction", or words of
similar meaning, to mean the Contracting Officer.

1.3.4.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract
documents, advisory provisions shall be considered mandatory, the word
"should" shall be interpreted as "shall." Reference to the "code official"
shall be interpreted to mean the "Contracting Officer." For Navy owned
property, references to the "owner" shall be interpreted to mean the
"Contracting Officer." For leased facilities, references to the "owner"
shall be interpreted to mean the "lessor." References to the "permit
holder" shall be interpreted to mean the "Contractor."

1.3.4.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of
Chapter 1, "Administrator," do not apply. These administrative
requirements are covered by the applicable Federal Acquisition Regulations
(FAR) included in this contract and by the authority granted to the Officer
in Charge of Construction to administer the construction of this project.
References in the ICC Codes to sections of Chapter 1, shall be applied
appropriately by the Contracting Officer as authorized by his
administrative cognizance and the FAR.

1.4 DELIVERY, STORAGE, AND HANDLING

Handle, store, and protect equipment and materials to prevent damage before
and during installation in accordance with the manufacturer's
recommendations, and as approved by the Contracting Officer. Replace
damaged or defective items.

1.5 PERFORMANCE REQUIREMENTS

1.5.1 Welding

Piping shall be welded in accordance with qualified procedures using
performance-qualified welders and welding operators. Procedures and
welders shall be qualified in accordance with ASME BPVC SEC IX. Welding
procedures qualified by others, and welders and welding operators qualified
by another employer, may be accepted as permitted by ASME B31.1. The
Contracting Officer shall be notified 24 hours in advance of tests, and the
tests shall be performed at the work site if practicable. Welders or
welding operators shall apply their assigned symbols near each weld they
make as a permanent record. Structural members shall be welded in
accordance with Section 05 40 00 COLD-FORMED METAL FRAMING.

1.5.2 Plumbing Fixtures

Water flow and consumption rates shall at a minimum comply with
requirements in PL 102-486.

1.6 REGULATORY REQUIREMENTS

Unless otherwise required herein, plumbing work shall be in accordance with ICC NCPC.

1.7 PROJECT/SITE CONDITIONS

The Contractor shall become familiar with details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.8 INSTRUCTION TO GOVERNMENT PERSONNEL

When specified in other sections, furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the specified equipment or system. Instructors shall be thoroughly familiar with all parts of the installation and shall be trained in operating theory as well as practical operation and maintenance work.

Instruction shall be given during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished shall be as specified in the individual section. When more than 4 man-days of instruction are specified, use approximately half of the time for classroom instruction. Use other time for instruction with the equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to acquaint the operating personnel with the changes or modifications.

1.9 ACCESSIBILITY OF EQUIPMENT

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.

PART 2 PRODUCTS

2.1 MATERIALS

Materials for various services shall be in accordance with TABLES I and II. Pipe schedules shall be selected based on service requirements. Pipe fittings shall be compatible with the applicable pipe materials. Material or equipment containing lead shall not be used in any potable water system. In line devices such as water meters, building valves, check valves, meter stops, valves, fittings and back flow preventers shall comply with PL 93-523 and NSF 61, Section 8. End point devices such as drinking water fountains, lavatory faucets, kitchen and bar faucets, residential ice makers, supply stops and end point control valves used to dispense water for drinking must meet the requirements of NSF 61, Section 9. Hubless cast-iron soil pipe shall not be installed underground, under concrete floor slabs, or in crawl spaces below kitchen floors.
2.1.1 Pipe Joint Materials

Hubless cast-iron soil pipe shall not be used under ground. Solder containing lead shall not be used with copper pipe. Cast iron soil pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Institute. Joints and gasket materials shall conform to the following:

a. Coupling for Cast-Iron Pipe: for hub and spigot type ASTM A 74, AWWA C606. For hubless type: CISPI 310

c. Flange Gaskets: Gaskets shall be made of non-asbestos material in accordance with ASME B16.21. Gaskets shall be flat, 1/16 inch thick, and contain Aramid fibers bonded with Styrene Butadiene Rubber (SBR) or Nitro Butadiene Rubber (NBR). Gaskets shall be the full face or self centering flat ring type. Gaskets used for hydrocarbon service shall be bonded with NBR.

d. Brazing Material: Brazing material shall conform to AWS A5.8/A5.8M, BCuP-5.

e. Brazing Flux: Flux shall be in paste or liquid form appropriate for use with brazing material. Flux shall be as follows: lead-free; have a 100 percent flushable residue; contain slightly acidic reagents; contain potassium borides; and contain fluorides.

f. Solder Material: Solder metal shall conform to ASTM B 32.

g. Solder Flux: Flux shall be liquid form, non-corrosive, and conform to ASTM B 813, Standard Test 1.

h. PTFE Tape: PTFE Tape, for use with Threaded Metal or Plastic Pipe.

i. Rubber Gaskets for Cast-Iron Soil-Pipe and Fittings (hub and spigot type and hubless type): ASTM C 564.

l. Flanged fittings including flanges, bolts, nuts, bolt patterns, etc., shall be in accordance with ASME B16.5 class 150 and shall have the manufacturer's trademark affixed in accordance with MSS SP-25. Flange material shall conform to ASTM A 105/A 105M. Blind flange material shall conform to ASTM A 516/A 516M cold service and ASTM A 515/A 515M for hot service. Bolts shall be high strength or intermediate strength with material conforming to ASTM A 193/A 193M.

2.1.2 Miscellaneous Materials

Miscellaneous materials shall conform to the following:

a. Water Hammer Arrester: PDI WH 201. Water hammer arrester shall be diaphragm or piston type.

d. Hose Clamps: SAE J1508.

e. Supports for Off-The-Floor Plumbing Fixtures: ASME A112.6.1M.

f. Metallic Cleanouts: ASME A112.36.2M.

g. Plumbing Fixture Setting Compound: A preformed flexible ring seal molded from hydrocarbon wax material. The seal material shall be nonvolatile nonasphaltic and contain germicide and provide watertight, gastight, odorproof and verminproof properties.

h. Coal-Tar Protective Coatings and Linings for Steel Water Pipelines: AWWA C203.

i. Hypochlorites: AWWA B300.

j. Liquid Chlorine: AWWA B301.

k. Gauges - Pressure and Vacuum Indicating Dial Type - Elastic Element: ASME B40.100.

l. Thermometers: ASTM E 1. Mercury shall not be used in thermometers.

2.1.3 Pipe Insulation Material

Insulation shall be as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.2 PIPE HANGERS, INSERTS, AND SUPPORTS

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69.

2.3 VALVES

Valves shall be provided on supplies to equipment and fixtures. Valves 2-1/2 inches and smaller shall be bronze with threaded bodies for pipe and solder-type connections for tubing. Valves 3 inches and larger shall have flanged iron bodies and bronze trim. Pressure ratings shall be based upon the application. Valves shall conform to the following standards:

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterfly Valves</td>
<td>MSS SP-67</td>
</tr>
<tr>
<td>Cast-Iron Gate Valves, Flanged and</td>
<td>MSS SP-70</td>
</tr>
<tr>
<td>Threaded Ends</td>
<td></td>
</tr>
<tr>
<td>Cast-Iron Swing Check Valves, Flanged and</td>
<td>MSS SP-71</td>
</tr>
<tr>
<td>Threaded Ends</td>
<td></td>
</tr>
<tr>
<td>Ball Valves with Flanged Butt-Welding</td>
<td>MSS SP-72</td>
</tr>
<tr>
<td>Ends for General Service</td>
<td></td>
</tr>
<tr>
<td>Ball Valves Threaded, Socket-Welding,</td>
<td>MSS SP-110</td>
</tr>
<tr>
<td>Solder Joint, Grooved and Flared Ends</td>
<td></td>
</tr>
</tbody>
</table>
Description | Standard
--- | ---
Cast-Iron Plug Valves, Flanged and Threaded Ends | MSS SP-78
Bronze Gate, Globe, Angle, and Check Valves | MSS SP-80
Steel Valves, Socket Welding and Threaded Ends | ASME B16.34
Cast-Iron Globe and Angle Valves, Flanged and Threaded Ends | MSS SP-85
Backwater Valves | ASME A112.14.1
Vacuum Relief Valves | ANSI Z21.22
Water Pressure Reducing Valves | ASSE 1003
Water Heater Drain Valves | ASSE 1005
Trap Seal Primer Valves | ASSE 1018
Temperature and Pressure Relief Valves for Hot Water Supply Systems | ANSI Z21.22
Temperature and Pressure Relief Valves for Automatically Fired Hot Water Boilers | Safety Code No., Part CW, Article 5

2.3.1 Wall Faucets

Frost proof wall faucets with vacuum-breaker backflow preventer shall be brass with 3/4 inch male inlet threads, hexagon shoulder, and 3/4 inch hose connection. Faucet handle shall be securely and permanently attached to stem.

2.3.2 Relief Valves

Water heaters and hot water storage tanks shall have a combination pressure and temperature (P&T) relief valve. The pressure relief element of a P&T relief valve shall have adequate capacity to prevent excessive pressure buildup in the system when the system is operating at the maximum rate of heat input. The temperature element of a P&T relief valve shall have a relieving capacity which is at least equal to the total input of the heaters when operating at their maximum capacity. Relief valves shall be rated according to ANSI Z21.22. Relief valves for systems where the maximum rate of heat input is less than 200,000 Btuh shall have 3/4 inch minimum inlets, and 3/4 inch outlets. Relief valves for systems where the maximum rate of heat input is greater than 200,000 Btuh shall have 1 inch minimum inlets, and 1 inch outlets. The discharge pipe from the relief valve shall be the size of the valve outlet.

2.4 FIXTURES

Fixtures shall be water conservation type, in accordance with ICC NCPC. Fixtures for use by the physically handicapped shall be in accordance with ICC A117.1. Vitreous china, nonabsorbent, hard-burned, and vitrified
throughout the body shall be provided. Porcelain enameled ware shall have specially selected, clear white, acid-resisting enamel coating evenly applied on surfaces. No fixture will be accepted that shows cracks, crazes, blisters, thin spots, or other flaws. Fixtures shall be equipped with appurtenances such as traps, faucets, stop valves, and drain fittings. Each fixture and piece of equipment requiring connections to the drainage system, except grease interceptors, shall be equipped with a trap. Brass expansion or toggle bolts capped with acorn nuts shall be provided for supports, and polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Fixtures with the supply discharge below the rim shall be equipped with backflow preventers. Internal parts of flush and/or flushometer valves, shower mixing valves, shower head face plates, pop-up stoppers of lavatory waste drains, and pop-up stoppers and overflow tees and shoes of bathtub waste drains may contain acetal resin, fluorocarbon, nylon, acrylonitrile-butadiene-styrene (ABS) or other plastic material, if the material has provided satisfactory service under actual commercial or industrial operating conditions for not less than 2 years.

2.4.1 Lavatories

Vitreous china lavatories shall be provided with two integral molded lugs on the back-underside of the fixture and drilled for bolting to the wall in a manner similar to the hanger plate.

2.4.2 Flush Valve Water Closets

ASME A112.19.2M, white vitreous china, siphon jet, elongated bowl, floor-mounted, back outlet. Top of toilet seat height above floor shall be 14 to 15 inches, except 17 to 19 inches for accessible water closets. Provide wax bowl ring including plastic sleeve. Water flushing should be of the manual dual flush low flow type. The water closet flush valve shall be 1.6 gallons per flush for solid waste and 1.1 gallons per flush for liquid waste. The flush handle should operate such that the liquid waste (1.1 gpf) flush is down, and the solid waste (1.6 gpf) flush is up. Provide black solid plastic elongated open-front seat. Provide large diameter flush valve including angle control-stop valve, vacuum breaker, tail pieces, slip nuts, and wall plates; exposed to view components shall be chromium-plated or polished stainless steel. Flush valves shall be nonhold-open type. Mount flush valves not less than 11 inches above the fixture. Mounted height of flush valve shall not interfere with the hand rail in ADA stalls.

2.4.3 Wall Hung Lavatories

ASME A112.19.2M, white vitreous china, straight back type, minimum dimensions of 19 inches, wide by 17 inches front to rear, with supply openings for use with top mounted centerset faucets, and openings for concealed arm carrier installation. Provide aerator with faucet. Water flow rate shall not exceed 0.5 gpm when measured at a flowing water pressure of 60 psi. Provide ASME A112.6.1M concealed chair carriers with vertical steel pipe supports and concealed arms for the lavatory. Mount lavatory with the front rim 34 inches above floor and with 29 inches minimum clearance from bottom of the front rim to floor.

2.4.4 Countertop Lavatories

Cast, nonporous, filled polymer, not coated, laminated or of composite construction with through body colors meeting ANSI Z124.3 or ANSI Z124.6,
having minimum physical and performance properties specified. Bowl to be integrally molded with countertop, with supply openings for use with top mounted centerset faucets. Countertop to extend 1" beyond edge of vanity cabinet on all sides not in contact with a wall. Furnish template and mounting kit by lavatory manufacturer. Provide aerator with faucet. Water flow rate shall not exceed 1.0 gpm when measured at a flowing water pressure of 60 psi. Mount counter with the top surface 34 inches above floor and with 29 inches minimum clearance from bottom of the counter face to floor.

2.4.5 Service Sinks

ASME A112.19.2M, white vitreous china with integral back and wall hanger supports, minimum dimensions of 22 inches wide by 20 inches front to rear, with two supply openings in 10 inch high back. Provide floor supported wall outlet cast iron P-trap and stainless steel rim guards as recommended by service sink manufacturer. Provide back mounted washerless service sink faucets with vacuum breaker and 0.75 inch external hose threads. Water flow rate shall not exceed 2.2 gpm when measured at a flowing water pressure of 60 psi.

2.4.6 Drinking-Water Coolers

AHRI 1010 with more than a single thickness of metal between the potable water and the refrigerant in the heat exchanger, wall-hung, bubbler style, air-cooled condensing unit, 4.75 gph minimum capacity, stainless steel splash receptor and basin, and stainless steel cabinet. Bubblers shall be controlled by push levers or push bars, front mounted or side mounted near the front edge of the cabinet. Bubbler spouts shall be mounted at maximum of 36 inches above floor and at front of unit basin. Spouts shall direct water flow at least 4 inches above unit basin and trajectory parallel or nearly parallel to the front of unit.

2.5 BACKFLOW PREVENTERS

Backflow preventers shall be approved and listed by the Foundation For Cross-Connection Control & Hydraulic Research. Reduced pressure principle assemblies, double check valve assemblies, atmospheric (nonpressure) type vacuum breakers, and pressure type vacuum breakers shall be tested, approved, and listed in accordance with FCCCHR Manual. Backflow preventers with intermediate atmospheric vent shall conform to ASSE 1012. Reduced pressure principle backflow preventers shall conform to ASSE 1013. Hose connection vacuum breakers shall conform to ASSE 1011. Pipe applied atmospheric type vacuum breakers shall conform to ASSE 1001. Pressure vacuum breaker assembly shall conform to ASSE 1020. Air gaps in plumbing systems shall conform to ASME A112.1.2.

2.6 DRAINS

2.6.1 Floor and Shower Drains

Floor and shower drains shall consist of a galvanized body, integral seepage pan, and adjustable perforated or slotted chromium-plated bronze, nickel-bronze, or nickel-brass strainer, consisting of grate and threaded collar. Floor drains shall be cast iron except where metallic waterproofing membrane is installed. Drains shall be of double drainage pattern for embedding in the floor construction. The seepage pan shall have weep holes or channels for drainage to the drainpipe. The strainer shall be adjustable to floor thickness. A clamping device for attaching
flashing or waterproofing membrane to the seepage pan without damaging the flashing or waterproofing membrane shall be provided when required. Drains shall be provided with threaded connection. Between the drain outlet and waste pipe, a neoprene rubber gasket conforming to ASTM C 564 may be installed, provided that the drain is specifically designed for the rubber gasket compression type joint. Floor and shower drains shall conform to ASME A112.6.3. Provide drain with trap primer connection, trap primer, and connection piping where noted on the drawings. Primer shall meet ASSE 1018.

2.6.2 Shower Faucets and Drain Fittings

Provide single control pressure equalizing shower faucets with body mounted from behind the wall with threaded connections. Provide ball joint self-cleaning shower heads. Provide shower heads which deliver a maximum of 2.0 GPM at 80 PSI per Energy Star requirements. Provide separate globe valves or angle valves with union connections in each supply to faucet. Provide back outlet drain fittings for drain installations. Provide shower valve with ball type control handle.

2.6.3 Area Drains

Area drains shall be plain pattern with polished stainless steel perforated or slotted grate and bottom outlet. The drain shall be circular or square with a 12 inch nominal overall width or diameter and 10 inch nominal overall depth. Drains shall be cast iron with manufacturer's standard coating. Grate shall be easily lifted out for cleaning. Outlet shall be suitable for inside caulked connection to drain pipe. Drains shall conform to ASME A112.6.3. Provide drain with trap primer connection, trap primer, and connection piping where noted on the drawings. Primer shall meet ASSE 1018.

2.7 TRAPS

Unless otherwise specified, traps shall be plastic per ASTM F 409. Traps shall be without a cleanout. The depth of the water seal shall be not less than 2 inches. The interior diameter shall be not more than 1/8 inch over or under the nominal size, and interior surfaces shall be reasonably smooth throughout.

2.8 WATER HEATERS

Water heaters shall be condensing, natural gas fired with integral storage tank; capacities shall be as indicated. Water heaters shall meet ANSI Z21.10.3 with 96% thermal efficiency for a 70°F to 140°F temperature rise. Water heaters shall meet tank insulation requirements of the latest version of ASHRAE 90.1. The integral storage tanks shall be certified in accordance with ASME BPVC SEC VIII D1, carry a 15 year full tank warranty and not require the use of sacrificial anode rods to meet the warranty requirements. Each primary water heater shall have controls with an adjustable range that includes 120 to 160 degrees F. Water heaters shall have ASME rated combination pressure and temperature relief valve. Hot water systems utilizing recirculation systems shall be tied into building off-hour controls. Plastic materials polyetherimide (PEI) and polyethersulfone (PES) are forbidden to be used for vent piping of combustion gases.

2.9 HOT-WATER EXPANSION TANKS

Hot-water expansion tanks shall be constructed by one manufacturer, ASME
stamped for the working pressure, and shall have the National Board (ASME) registration. Factory pre-charged expansion tanks shall be installed on the cold water supply to the water heaters. Expansion tanks shall be specifically designed for use on potable water systems (i.e., FDA approved materials, etc.) and shall be rated for 200 degrees F water temperature and 150 psi working pressure. The expansion tank size and acceptance volume shall be as indicated. Tanks shall be equipped with a pressure gauge 6 inch minimum diameter face. Insulation shall be as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.10 PUMPS

2.10.1 Sump Pumps

Sump pumps shall be of capacities indicated. The pumps shall be of the automatic, electric motor-driven, submerged type, complete with necessary control equipment and with a split or solid cast-iron or steel cover plate. The suction side of each pump shall have a strainer of ample capacity. A float switch assembly, with the switch completely enclosed, shall start and stop each motor at predetermined water levels. Duplex pumps shall be equipped with an automatic alternator to change the lead operation from one pump to the other, and for starting the second pump if the flow exceeds the capacity of the first pump. The discharge line from each pump shall be provided with a union or flange, a nonclog swing check valve, and a stop valve in an accessible location near the pump.

2.10.2 Circulating Pumps

Domestic hot water circulating pumps shall be electrically driven, single-stage, centrifugal, with mechanical seals, suitable for the intended service. Pump capacities, efficiencies, motor sizes, speeds, and impeller types shall be as shown. Pump and motor shall be supported by the piping on which it is installed. The shaft shall be one-piece, heat-treated, corrosion-resisting steel with impeller and smooth-surfaced housing of bronze. Motor shall be totally enclosed, fan-cooled and shall have sufficient horsepower for the service required. Each pump motor shall be equipped with an electrical disconnecting means. Fractional horsepower pump motors shall have integral thermal overload protection in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Guards shall shield exposed moving parts.

2.10.3 Flexible Connectors

Flexible connectors shall be provided at the suction and discharge of each pump that is 1 hp or larger. Connectors shall be constructed of neoprene, rubber, or braided bronze, with Class 150 standard flanges. Flexible connectors shall be line size and suitable for the pressure and temperature of the intended service.

2.11 Thermostatic Mixing Valve

Digitally controlled Thermostatic Mixing Valve (MV-1) shall be provided and installed per manufacturer's instructions with wall mounted bracket(s), brass valve finish, thermostat, RTD sensor/thermometer, shut-off valves on outlet and inlet and maximum acceptable pressure drop of 10 psi at 135 GPM. Valve shall control water temperature to +/- 3°F in accordance with ASSE 1017. Local controller shall display outlet temperature in °F and be capable of setpoint adjustment. Lead Free Brass Design with 10 year warranty. Positive shutoff of flow in the event of cold supply line failure.
or thermostat failure.

2.12 DOMESTIC WATER SERVICE METER

Cold water meters 2 inches and smaller shall be positive displacement type conforming to AWWA C700. Cold water meters 2-1/2 inches and larger shall be turbine type conforming to AWWA C701. Meter register shall be indicating, round or straight reading type. Domestic water meters shall report back wirelessly via the basewide Itron Fixed Network 2.0.

2.13 ELECTRICAL WORK

Provide electrical motor driven equipment specified complete with motors, motor starters, and controls as specified herein and in Section 26 20 00, INTERIOR DISTRIBUTION SYSTEM. Provide internal wiring for components of packaged equipment as an integral part of the equipment. Provide high efficiency type, single-phase, fractional-horsepower alternating-current motors, including motors that are part of a system, corresponding to the applications in accordance with NEMA MG 11. Where indicated on drawings, provide polyphase, squirrel-cage medium induction motors with continuous ratings, including motors that are part of a system, that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor.

Motors shall be rated for continuous duty with the enclosure specified. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period.

Controllers and contactors shall have auxiliary contacts for use with the controls provided. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided. For packaged equipment, the manufacturer shall provide controllers, including the required monitors and timed restart.

Power wiring and conduit for field installed equipment shall be provided under and conform to the requirements of Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.14 MISCELLANEOUS PIPING ITEMS

2.14.1 Escutcheon Plates

Provide one piece or split hinge metal plates for piping entering floors, walls, and ceilings in exposed spaces. Provide chromium-plated on copper alloy plates or polished stainless steel finish in finished spaces. Provide paint finish on plates in unfinished spaces.

2.14.2 Pipe Sleeves

Provide where piping passes entirely through walls, ceilings, roofs, and floors. Secure sleeves in position and location during construction. Provide sleeves of sufficient length to pass through entire thickness of walls, ceilings, roofs, and floors. Provide one inch minimum clearance.
between exterior of piping or pipe insulation, and interior of sleeve or core-drilled hole. Firmly pack space with mineral wool insulation. Seal space at both ends of sleeve or core-drilled hole with plastic waterproof cement which will dry to a firm but pliable mass, or provide a mechanically adjustable segmented elastomeric seal. In fire walls and fire floors, seal both ends of sleeves or core-drilled holes with UL listed fill, void, or cavity material.

2.14.2.1 Sleeves in Masonry and Concrete

Provide steel pipe sleeves or schedule 40 PVC plastic pipe sleeves. Sleeves are not required where drain, waste, and vent (DWV) piping passes through concrete floor slabs located on grade. Core drilling of masonry and concrete may be provided in lieu of pipe sleeves when cavities in the core-drilled hole are completely grouted smooth.

2.14.3 Sleeves Not in Masonry and Concrete

Provide 26 gage galvanized steel sheet or PVC plastic pipe sleeves.

2.14.4 Pipe Hangers (Supports)

Provide MSS SP-58 and MSS SP-69, Type 1 with adjustable type steel support rods, except as specified or indicated otherwise. Attach to steel joists with Type 19 or 23 clamps and retaining straps. Attach to Steel W or S beams with Type 21, 28, 29, or 30 clamps. Attach to steel angles and vertical web steel channels with Type 20 clamp with beam clamp channel adapter. Attach to horizontal web steel channel and wood with drilled hole on centerline and double nut and washer. Attach to concrete with Type 18 insert or drilled expansion anchor. Provide Type 40 insulation protection shield for insulated piping.

2.14.5 Nameplates

Provide 0.125 inch thick melamine laminated plastic nameplates, black matte finish with white center core, for equipment, gages, thermometers, and valves; valves in supplies to faucets will not require nameplates. Accurately align lettering and engrave minimum of 0.25 inch high normal block lettering into the white core. Minimum size of nameplates shall be 1.0 by 2.5 inches. Key nameplates to a chart and schedule for each system. Frame charts and schedules under glass and place where directed near each system. Furnish two copies of each chart and schedule.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Piping located in air plenums shall conform to NFPA 90A requirements. Plastic pipe shall not be installed in air plenums. Piping located in shafts that constitute air ducts or that enclose air ducts shall be noncombustible in accordance with NFPA 90A. Installation of plastic pipe where in compliance with NFPA may be installed in accordance with PPFA-01. The plumbing system shall be installed complete with necessary fixtures, fittings, traps, valves, and accessories. Water and drainage piping shall be extended 5 feet outside the building, unless otherwise indicated. A gate valve or full port ball valve and drain shall be installed on the water service line inside the building approximately 6 inches above the floor from point of entry. Piping shall be connected to the exterior service lines or capped or plugged if the exterior service is not in
place. Sewer and water pipes shall be laid in separate trenches, except as allowed by NCPC. Exterior underground utilities shall be at least 12 inches below the finish grade or as indicated on the drawings. If trenches are closed or the pipes are otherwise covered before being connected to the service lines, the location of the end of each plumbing utility shall be marked with a stake or other acceptable means. Valves shall be installed with control no lower than the valve body.

3.1.1 Water Pipe, Fittings, and Connections

3.1.1.1 Utilities

The piping shall be extended to fixtures, outlets, and equipment. The hot-water and cold-water piping system shall be arranged and installed to permit draining. The supply line to each item of equipment or fixture, except faucets, flush valves, or other control valves which are supplied with integral stops, shall be equipped with a shutoff valve to enable isolation of the item for repair and maintenance without interfering with operation of other equipment or fixtures. Supply piping to fixtures, faucets, hydrants, shower heads, and flushing devices shall be anchored to prevent movement.

3.1.1.2 Cutting and Repairing

The work shall be carefully laid out in advance, and unnecessary cutting of construction shall be avoided. Damage to building, piping, wiring, or equipment as a result of cutting shall be repaired by mechanics skilled in the trade involved.

3.1.1.3 Protection of Fixtures, Materials, and Equipment

Pipe openings shall be closed with caps or plugs during installation. Fixtures and equipment shall be tightly covered and protected against dirt, water, chemicals, and mechanical injury. Upon completion of the work, the fixtures, materials, and equipment shall be thoroughly cleaned, adjusted, and operated. Safety guards shall be provided for exposed rotating equipment.

3.1.1.4 Mains, Branches, and Runouts

Piping shall be installed as indicated. Pipe shall be accurately cut and worked into place without springing or forcing. Structural portions of the building shall not be weakened. Aboveground piping shall run parallel with the lines of the building, unless otherwise indicated. Branch pipes from service lines may be taken from top, bottom, or side of main, using crossover fittings required by structural or installation conditions. Supply pipes, valves, and fittings shall be kept a sufficient distance from other work and other services to permit not less than 1/2 inch between finished covering on the different services. Bare and insulated water lines shall not bear directly against building structural elements so as to transmit sound to the structure or to prevent flexible movement of the lines. Water pipe shall not be buried in or under floors unless specifically indicated or approved. Changes in pipe sizes shall be made with reducing fittings. Use of bushings will not be permitted except for use in situations in which standard factory fabricated components are furnished to accommodate specific accepted installation practice. Change in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The center-line radius of bends shall be not
less than six diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be acceptable.

3.1.1.5 Pipe Drains

Pipe drains indicated shall consist of 3/4 inch hose bibb with renewable seat and ball valve ahead of hose bibb. At other low points, 3/4 inch brass plugs or caps shall be provided. Disconnection of the supply piping at the fixture is an acceptable drain.

3.1.1.6 Expansion and Contraction of Piping

Allowance shall be made throughout for expansion and contraction of water pipe. Each hot-water and hot-water circulation riser shall have expansion loops or other provisions such as offsets, changes in direction, etc., where indicated and/or required. Risers shall be securely anchored as required or where indicated to force expansion to loops. Branch connections from risers shall be made with ample swing or offset to avoid undue strain on fittings or short pipe lengths. Horizontal runs of pipe over 50 feet in length shall be anchored to the wall or the supporting construction about midway on the run to force expansion, evenly divided, toward the ends. Sufficient flexibility shall be provided on branch runouts from mains and risers to provide for expansion and contraction of piping. Flexibility shall be provided by installing one or more turns in the line so that piping will spring enough to allow for expansion without straining.

3.1.1.7 Thrust Restraint

Plugs, caps, tees, valves and bends deflecting 11.25 degrees or more, either vertically or horizontally, in waterlines 4 inches in diameter or larger shall be provided with thrust blocks, where indicated, to prevent movement. Thrust blocking shall be concrete of a mix not leaner than: 1 cement, 2-1/2 sand, 5 gravel; and having a compressive strength of not less than 2000 psi after 28 days. Blocking shall be placed between solid ground and the fitting to be anchored. Unless otherwise indicated or directed, the base and thrust bearing sides of the thrust block shall be poured against undisturbed earth. The side of the thrust block not subject to thrust shall be poured against forms. The area of bearing will be as shown. Blocking shall be placed so that the joints of the fitting are accessible for repair. Steel rods and clamps, protected by galvanizing or by coating with bituminous paint, shall be used to anchor vertical down bends into gravity thrust blocks.

3.1.1.8 Commercial-Type Water Hammer Arresters

Commercial-type water hammer arresters shall be provided on hot- and cold-water supplies and shall be located as generally indicated, with precise location and sizing to be in accordance with PDI WH 201. Water hammer arresters, where concealed, shall be accessible by means of access doors or removable panels. Commercial-type water hammer arresters shall conform to ASSE 1010. Vertical capped pipe columns will not be permitted.

3.1.2 Thermostatic Mixing Valve

Digitally controlled Thermostatic Mixing Valve (MV-1) shall be provided and installed per manufacturer's instructions with wall mounted bracket(s).
3.1.3 Joints

Installation of pipe and fittings shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Joints shall be made up with fittings of compatible material and made for the specific purpose intended.

3.1.3.1 Threaded

Threaded joints shall have American Standard taper pipe threads conforming to ASME B1.20.1. Only male pipe threads shall be coated with graphite or with an approved graphite compound, or with an inert filler and oil, or shall have a polytetrafluoroethylene tape applied.

3.1.3.2 Unions and Flanges

Unions, flanges and mechanical couplings shall not be concealed in walls, ceilings, or partitions. Unions shall be used on pipe sizes 2-1/2 inches and smaller; flanges shall be used on pipe sizes 3 inches and larger.

3.1.3.3 Cast Iron Soil, Waste and Vent Pipe

Bell and spigot compression and hubless gasketed clamp joints for soil, waste and vent piping shall be installed per the manufacturer's recommendations.

3.1.3.4 Copper Tube and Pipe

a. Brazed. Brazed joints shall be made in conformance with AWS B2.2, MSS SP-73, and CDA A4015 with flux and are acceptable for all pipe sizes. Copper to copper joints shall include the use of copper-phosphorus or copper-phosphorus-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorus, copper-phosphorus-silver or a silver brazing filler metal.

b. Soldered. Soldered joints shall be made with flux and are only acceptable for piping 2 inches and smaller. Soldered joints shall conform to ASME B31.5 and CDA A4015. Soldered joints shall not be used in compressed air piping between the air compressor and the receiver.

3.1.4 Dissimilar Pipe Materials

Connections between ferrous and non-ferrous copper water pipe shall be made with dielectric unions or flange waterways. Dielectric waterways shall have temperature and pressure rating equal to or greater than that specified for the connecting piping. Waterways shall have metal connections on both ends suited to match connecting piping. Dielectric waterways shall be internally lined with an insulator specifically designed to prevent current flow between dissimilar metals. Dielectric flanges shall meet the performance requirements described herein for dielectric waterways. Connecting joints between plastic and metallic pipe shall be made with transition fitting for the specific purpose.
3.1.5 Pipe Sleeves and Flashing

Pipe sleeves shall be furnished and set in their proper and permanent location.

3.1.5.1 Sleeve Requirements

Pipes passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves are not required for supply, drainage, waste and vent pipe passing through concrete slab on grade, except where penetrating a membrane waterproof floor. A modular mechanical type sealing assembly may be installed in lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve. The seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe and sleeve using galvanized steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe and sleeve involved. Sleeves shall not be installed in structural members, except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective floor, or roof, and shall be cut flush with each surface, except for special circumstances. Pipe sleeves passing through floors in wet areas such as mechanical equipment rooms, lavatories, kitchens, and other plumbing fixture areas shall extend a minimum of 4 inches above the finished floor. Unless otherwise indicated, sleeves shall be of a size to provide a minimum of 1/4 inch clearance between bare pipe or insulation and inside of sleeve or between insulation and inside of sleeve. Sleeves in bearing walls and concrete slab on grade floors shall be steel pipe or cast-iron pipe. Sleeves in nonbearing walls or ceilings may be steel pipe, cast-iron pipe, galvanized sheet metal with lock-type longitudinal seam, or plastic. Except as otherwise specified, the annular space between pipe and sleeve, or between jacket over insulation and sleeve, shall be sealed as indicated with sealants conforming to ASTM C920 and with a primer, backstop material and surface preparation as specified in Section 07 92 00 JOINT SEALANTS. The annular space between pipe and sleeve, between bare insulation and sleeve or between jacket over insulation and sleeve shall not be sealed for interior walls which are not designated as fire rated. Sleeves through below-grade walls in contact with earth shall be recessed 1/2 inch from wall surfaces on both sides. Annular space between pipe and sleeve shall be filled with backing material and sealants in the joint between the pipe and masonry wall as specified above. Sealant selected for the earth side of the wall shall be compatible with dampproofing/waterproofing materials that are to be applied over the joint sealant. Pipe sleeves in fire-rated walls shall conform to the requirements in Section 07 84 00 FIRESTOPPING.

3.1.5.2 Flashing Requirements

Pipes passing through roof shall be installed through a 16 ounce copper flashing, each within an integral skirt or flange. Flashing shall be suitably formed, and the skirt or flange shall extend not less than 8 inches from the pipe and shall be set over the roof or floor membrane in a solid coating of bituminous cement. The flashing shall extend up the pipe a minimum of 10 inches. For cleanouts, the flashing shall be turned down
into the hub and caulked after placing the ferrule. Pipes passing through pitched roofs shall be flashed, using lead or copper flashing, with an adjustable integral flange of adequate size to extend not less than 8 inches from the pipe in all directions and lapped into the roofing to provide a watertight seal. The annular space between the flashing and the bare pipe or between the flashing and the metal-jacket-covered insulation shall be sealed as indicated. Flashing for dry vents shall be turned down into the pipe to form a waterproof joint. Pipes, up to and including 10 inches in diameter, passing through roof or floor waterproofing membrane may be installed through a cast-iron sleeve with caulking recess, anchor lugs, flashing-clamp device, and pressure ring with brass bolts. Flashing shield shall be fitted into the sleeve clamping device. Pipes passing through wall waterproofing membrane shall be sleeved as described above. A waterproofing clamping flange shall be installed.

3.1.5.3 Pipe Penetrations of Slab on Grade Floors

Where pipes, fixture drains, floor drains, cleanouts or similar items penetrate slab on grade floors, except at penetrations of floors with waterproofing membrane as specified in paragraphs Flashing Requirements and Waterproofing, a groove 1/4 to 1/2 inch wide by 1/4 to 3/8 inch deep shall be formed around the pipe, fitting or drain. The groove shall be filled with a sealant as specified in Section 07 92 00 JOINT SEALANTS.

3.1.5.4 Pipe Penetrations

Provide sealants for all pipe penetrations. All pipe penetrations shall be sealed to prevent infiltration of air, insects, and vermin.

3.1.6 Fire Seal

Where pipes pass through fire walls, fire-partitions, fire-rated pipe chase walls or floors above grade, a fire seal shall be provided as specified in Section 07 84 00 FIRESTOPPING.

3.1.7 Supports

3.1.7.1 General

Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run. Threaded sections of rods shall not be formed or bent.

3.1.7.2 Pipe Hangers, Inserts, and Supports

Installation of pipe hangers, inserts and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein.

a. Types 5, 12, and 26 shall not be used.
b. Type 3 shall not be used on insulated pipe.

c. Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for type 18 inserts.

d. Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and shall have both locknuts and retaining devices furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

e. Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

f. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

g. Type 39 saddles shall be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 39 saddles shall be welded to the pipe.

h. Type 40 shields shall:

(1) Be used on insulated pipe less than 4 inches.

(2) Be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or less.

(3) Have a high density insert for all pipe sizes. High density inserts shall have a density of 8 pcf or greater.

i. Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. Operating temperatures in determining hanger spacing for PVC or CPVC pipe shall be 120 degrees F for PVC and 180 degrees F for CPVC. Horizontal pipe runs shall include allowances for expansion and contraction.

j. Vertical pipe shall be supported at each floor, except at slab-on-grade, at intervals of not more than 15 feet nor more than 8 feet from end of risers, and at vent terminations. Vertical pipe risers shall include allowances for expansion and contraction.

k. Type 35 guides using steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided to allow longitudinal pipe movement. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered. Lateral restraints shall be provided as needed. Where steel slides do not require provisions for lateral restraint the following may be used:

(1) On pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher, a Type 39 saddle, welded to the pipe, may freely rest on a steel plate.

(2) On pipe less than 4 inches a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate.
(3) On pipe 4 inches and larger carrying medium less than 60 degrees F a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate.

1. Pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation. The insulation shall be continuous through the hanger on all pipe sizes and applications.

m. Where there are high system temperatures and welding to piping is not desirable, the type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be separated from the slide material by at least 4 inches or by an amount adequate for the insulation, whichever is greater.

n. Hangers and supports for plastic pipe shall not compress, distort, cut or abrade the piping, and shall allow free movement of pipe except where otherwise required in the control of expansion/contraction.

3.1.7.3 Structural Attachments

Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Supports shall not be attached to the underside of concrete filled floor or concrete roof decks unless approved by the Contracting Officer. Masonry anchors for overhead applications shall be constructed of ferrous materials only.

3.1.8 Welded Installation

Plumbing pipe weldments shall be as indicated. Changes in direction of piping shall be made with welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connection may be made with either welding tees or forged branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. After filler metal has been removed from its original package, it shall be protected or stored so that its characteristics or welding properties are not affected. Electrodes that have been wetted or that have lost any of their coating shall not be used.

3.1.9 Pipe Cleanouts

Pipe cleanouts shall be the same size as the pipe except that cleanout plugs larger than 4 inches will not be required. A cleanout installed in connection with cast-iron soil pipe shall consist of a long-sweep 1/4 bend or one or two 1/8 bends extended to the place shown. An extra-heavy cast-brass or cast-iron ferrule with countersunk cast-brass head screw plug shall be caulked into the hub of the fitting and shall be flush with the floor. Cleanouts in connection with other pipe, where indicated, shall be T-pattern, 90-degree branch drainage fittings with cast-brass screw plugs, except plastic plugs shall be installed in plastic pipe. Plugs shall be the same size as the pipe up to and including soil and waste stacks, at the
foot of interior downspouts, on each connection to building storm drain where interior downspouts are indicated, and on each building drain outside the building. Cleanout tee branches may be omitted on stacks in single story buildings with slab-on-grade construction or where less than 18 inches of crawl space is provided under the floor. Cleanouts on pipe concealed in partitions shall be provided with chromium plated bronze, nickel bronze, nickel brass or stainless steel flush type access cover plates. Round access covers shall be provided and secured to plugs with securing screw. Square access covers may be provided with matching frames, anchoring lugs and cover screws. Cleanouts in finished walls shall have access covers and frames installed flush with the finished wall. Cleanouts installed in finished floors subject to foot traffic shall be provided with a chrome-plated cast brass, nickel brass, or nickel bronze cover secured to the plug or cover frame and set flush with the finished floor. Heads of fastening screws shall not project above the cover surface. Where cleanouts are provided with adjustable heads, the heads shall be cast iron.

3.2 WATER HEATERS AND HOT-WATER EXPANSION TANKS

3.2.1 Relief Valves

No valves shall be installed between a relief valve and its water heater or storage tank. The P&T relief valve shall be installed where the valve actuator comes in contact with the hottest water in the heater. Whenever possible, the relief valve shall be installed directly in a tapping in the tank or heater; otherwise, the P&T valve shall be installed in the hot-water outlet piping. A vacuum relief valve shall be provided on the cold water supply line to the hot-water storage tank or water heater and mounted above and within 6 inches above the top of the tank or water heater.

3.2.2 Installation and start up of Gas-Fired Water Heater

3.2.2.1 Installation

Installation shall conform to NFPA 54 for gas fired appliances.

3.2.2.2 Manufacturer Start-Up

Hot Water Heater Boiler start-up shall be performed by manufacturer technical start-up personnel.

3.2.3 Heat Traps

Provide integral, factory manufactured or piping arranged heat traps on piping to and from each water heater and hot water storage tank on both hot and cold water connection. Piping arranged heat trap shall incorporate a minimum 12 inch deep loop to restrict natural tendency of hot water to rise during standby periods.

3.2.4 Connections to Water Heaters

Connections of metallic pipe to water heaters shall be made with dielectric unions or flanges.

3.2.5 Expansion Tank

A pre-charged expansion tank shall be installed on the cold water supply between the water heater inlet and the cold water supply shut-off valve. The Contractor shall adjust the expansion tank air pressure, as recommended by the tank manufacturer, to match incoming water pressure.
3.2.6 Direct Fired and Domestic Water Heaters

Notify the Contracting Officer when any direct fired domestic water heater over 117,124.2 Watts (400,000 BTU/hour) is operational and ready to be inspected and certified.

3.3 FIXTURES AND FIXTURE TRIMMINGS

Polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Angle stops, straight stops, stops integral with the faucets, or concealed type of lock-shield, and loose-key pattern stops for supplies with threaded, sweat or solvent weld inlets shall be furnished and installed with fixtures. Where connections between copper tubing and faucets are made by rubber compression fittings, a beading tool shall be used to mechanically deform the tubing above the compression fitting. Exposed traps and supply pipes for fixtures and equipment shall be connected to the rough piping systems at the wall, unless otherwise specified under the item. Floor and wall escutcheons shall be as specified. Drain lines and hot water lines of fixtures for handicapped personnel shall be insulated and do not require polished chrome finish. Plumbing fixtures and accessories shall be installed within the space shown.

3.3.1 Fixture Connections

Where space limitations prohibit standard fittings in conjunction with the cast-iron floor flange, special short-radius fittings shall be provided. Connections between earthenware fixtures and flanges on soil pipe shall be made gastight and watertight with a closet-setting compound or neoprene gasket and seal. Use of natural rubber gaskets or putty will not be permitted. Fixtures with outlet flanges shall be set the proper distance from floor or wall to make a first-class joint with the closet-setting compound or gasket and fixture used.

3.3.2 Flushometer Valves

Flushometer valves shall be secured to prevent movement by anchoring the long finished top spud connecting tube to wall adjacent to valve with approved metal bracket. Flushometer valves for water closets shall be installed 39 inches above the floor, except at water closets intended for use by the physically handicapped where flushometer valves shall be mounted at approximately 30 inches above the floor and arranged to avoid interference with grab bars. In addition, for water closets intended for handicap use, the flush valve handle shall be installed on the wide side of the enclosure.

3.3.3 Shower Bath Outfits

The area around the water supply piping to the mixing valves and behind the escutcheon plate shall be made watertight by caulking or gasketing.

3.3.4 Fixture Supports

Fixture supports for off-the-floor lavatories, urinals, water closets, and other fixtures of similar size, design, and use, shall be of the chair-carrier type. The carrier shall provide the necessary means of mounting the fixture, with a foot or feet to anchor the assembly to the floor slab. Adjustability shall be provided to locate the fixture at the desired height and in proper relation to the wall. Support plates, in lieu
of chair carrier, shall be fastened to the wall structure only where it is not possible to anchor a floor-mounted chair carrier to the floor slab.

3.3.4.1 Support for Solid Masonry Construction

Chair carrier shall be anchored to the floor slab. Where a floor-anchored chair carrier cannot be used, a suitable wall plate shall be imbedded in the masonry wall.

3.3.4.2 Support for Concrete-Masonry Wall Construction

Chair carrier shall be anchored to floor slab. Where a floor-anchored chair carrier cannot be used, a suitable wall plate shall be fastened to the concrete wall using through bolts and a back-up plate.

3.3.4.3 Support for Steel Stud Frame Partitions

Chair carrier shall be used. The anchor feet and tubular uprights shall be of the heavy duty design; and feet (bases) shall be steel and welded to a square or rectangular steel tube upright. Wall plates, in lieu of floor-anchored chair carriers, shall be used only if adjoining steel partition studs are suitably reinforced to support a wall plate bolted to these studs.

3.3.4.4 Support for Wood Stud Construction

Where floor is a concrete slab, a floor-anchored chair carrier shall be used. Where entire construction is wood, wood crosspieces shall be installed. Fixture hanger plates, supports, brackets, or mounting lugs shall be fastened with not less than No. 10 wood screws, 1/4 inch thick minimum steel hanger, or toggle bolts with nut. The wood crosspieces shall extend the full width of the fixture and shall be securely supported.

3.3.4.5 Wall-Mounted Water Closet Gaskets

Where wall-mounted water closets are provided, reinforced wax, treated felt, or neoprene gaskets shall be provided. The type of gasket furnished shall be as recommended by the chair-carrier manufacturer.

3.3.5 Backflow Prevention Devices

Plumbing fixtures, equipment, and pipe connections shall not cross connect or interconnect between a potable water supply and any source of nonpotable water. Backflow preventers shall be installed where indicated and in accordance with ICC NCPC at all other locations necessary to preclude a cross-connect or interconnect between a potable water supply and any nonpotable substance. In addition backflow preventers shall be installed at all locations where the potable water outlet is below the flood level of the equipment, or where the potable water outlet will be located below the level of the nonpotable substance. Backflow preventers shall be located so that no part of the device will be submerged. Backflow preventers shall be of sufficient size to allow unrestricted flow of water to the equipment, and preclude the backflow of any nonpotable substance into the potable water system. Bypass piping shall not be provided around backflow preventers. Access shall be provided for maintenance and testing. Each device shall be a standard commercial unit.
3.3.6 Access Panels

Access panels shall be provided for concealed valves and controls, or any item requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced, maintained, or replaced. Access panels shall be as specified in Section 05 40 00 COLD-FORMED METAL FRAMING.

3.3.7 Sight Drains

Sight drains shall be installed so that the indirect waste will terminate 2 inches above the flood rim of the funnel to provide an acceptable air gap.

3.3.8 Traps

Each trap shall be placed as near the fixture as possible, and no fixture shall be double-trapped. Traps installed on cast-iron soil pipe shall be cast iron. Traps installed on steel pipe or copper tubing shall be recess-drainage pattern, or brass-tube type. Traps installed on plastic pipe may be plastic conforming to ASTM D 3311. Traps for acid-resisting waste shall be of the same material as the pipe.

3.4 VIBRATION-ABSORBING FEATURES

Mechanical equipment, including compressors and pumps, shall be isolated from the building structure by approved vibration-absorbing features, unless otherwise shown. Each foundation shall include an adequate number of standard isolation units. Each unit shall consist of machine and floor or foundation fastening, together with intermediate isolation material, and shall be a standard product with printed load rating. Piping connected to mechanical equipment shall be provided with flexible connectors. Isolation unit installation shall limit vibration to 10 percent of the lowest equipment rpm.

3.5 IDENTIFICATION SYSTEMS

3.5.1 Identification Tags

Identification tags made of brass, engraved laminated plastic, or engraved anodized aluminum, indicating service and valve number shall be installed on valves, except those valves installed on supplies at plumbing fixtures. Tags shall be 1-3/8 inch minimum diameter, and marking shall be stamped or engraved. Indentations shall be black, for reading clarity. Tags shall be attached to valves with No. 12 AWG, copper wire, chrome-plated beaded chain, or plastic straps designed for that purpose.

3.6 ESCUTCHEONS

Escutcheons shall be provided at finished surfaces where bare or insulated piping, exposed to view, passes through floors, walls, or ceilings, except in boiler, utility, or equipment rooms. Escutcheons shall be fastened securely to pipe or pipe covering and shall be satin-finish, corrosion-resisting steel, polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or setscrew.

3.7 PAINTING

Painting of pipes, hangers, supports, and other iron work, either in
concealed spaces or exposed spaces, is specified in Section 09 90 00 PAINTS AND COATINGS.

3.7.1 PAINTING OF NEW EQUIPMENT

New equipment painting shall be factory applied or shop applied, and shall be as specified herein, and provided under each individual section.

3.7.1.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided subject to certification that the factory painting system applied will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall withstand 500 hours in a salt-spray fog test. Salt-spray fog test shall be in accordance with ASTM B 117, and for that test the acceptance criteria shall be as follows: immediately after completion of the test, the paint shall show no signs of blistering, wrinkling, or cracking, and no loss of adhesion; and the specimen shall show no signs of rust creepage beyond 0.125 inch on either side of the scratch mark.

The film thickness of the factory painting system applied on the equipment shall not be less than the film thickness used on the test specimen. If manufacturer's standard factory painting system is being proposed for use on surfaces subject to temperatures above 120 degrees F, the factory painting system shall be designed for the temperature service.

3.7.1.2 Shop Painting Systems for Metal Surfaces

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except metal surfaces subject to temperatures in excess of 120 degrees F shall be cleaned to bare metal.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat shall be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F shall receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat.

b. Temperatures Between 120 and 400 Degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F shall receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of 2 mils.

c. Temperatures Greater Than 400 Degrees F: Metal surfaces subject to temperatures greater than 400 degrees F shall receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.
3.8 TESTS, FLUSHING AND DISINFECTION

3.8.1 Plumbing System

The following tests shall be performed on the plumbing system in accordance with ICC NCPC, except that the drainage and vent system final test shall include the smoke test. The Contractor has the option to perform a peppermint test in lieu of the smoke test. If a peppermint test is chosen, the Contractor must submit a testing procedure to the Contracting Officer for approval.

a. Drainage and Vent Systems Test. The final test shall include a smoke test.

b. Building Sewers Tests.

c. Water Supply Systems Tests. (Pressure tests shall use water - do not use air pressure)

3.8.1.1 Test of Backflow Prevention Assemblies

Backflow prevention assembly shall be tested using gauges specifically designed for the testing of backflow prevention assemblies. Gauges shall be tested annually for accuracy in accordance with the University of Southern California's Foundation of Cross Connection Control and Hydraulic Research or the American Water Works Association Manual of Cross Connection (Manual M-14). Report form for each assembly shall include, as a minimum, the following:

<table>
<thead>
<tr>
<th>Data on Device</th>
<th>Data on Testing Firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Assembly</td>
<td>Name</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Address</td>
</tr>
<tr>
<td>Model Number</td>
<td>Certified Tester</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Certified Tester No.</td>
</tr>
<tr>
<td>Size</td>
<td>Date of Test</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>Test Pressure Readings</td>
<td>Serial Number and Test Data of Gauges</td>
</tr>
</tbody>
</table>

If the unit fails to meet specified requirements, the unit shall be repaired and retested.

3.8.1.2 Unfired Pressure Vessel

All unfired vessels such as air receivers greater than 5 cubic feet (37 gallons) in volume or greater than 250 psig shall be hydrostatically and operationally tested on site in accordance with ASME National Board of Boiler and Pressure Vessel Inspectors Code and NAVFAC MO0324 Inspection and Certification of Boilers and Unfired Pressure Vessels. Hydrostatic and operational test to be witnessed by OICB representative and Camp Lejeune Boiler Inspector. Hydrostatic pressure test shall be at 1.5 times the M.A.W.P. for ASME Div I vessels an 1.25 times the M.A.W.P. for ASME Div II vessels.

3.8.2 Defective Work

If inspection or test shows defects, such defective work or material shall be replaced or repaired as necessary and inspection and tests shall be repeated. Repairs to piping shall be made with new materials. Caulking of
screwed joints or holes will not be acceptable.

3.8.3 System Flushing

3.8.3.1 During Flushing

Before operational tests or disinfection, potable water piping system shall be flushed with hot potable water. Sufficient water shall be used to produce a water velocity that is capable of entraining and removing debris in all portions of the piping system. This requires simultaneous operation of all fixtures on a common branch or main in order to produce a flushing velocity of approximately 4 fps through all portions of the piping system. In the event that this is impossible due to size of system, the Contracting Officer (or the designated representative) shall specify the number of fixtures to be operated during flushing. Contractor shall provide adequate personnel to monitor the flushing operation and to ensure that drain lines are unobstructed in order to prevent flooding of the facility. Contractor shall be responsible for any flood damage resulting from flushing of the system. Flushing shall be continued until entrained dirt and other foreign materials have been removed and until discharge water shows no discoloration.

3.8.3.2 After Flushing

System shall be drained at low points. Strainer screens shall be removed, cleaned, and replaced. After flushing and cleaning, systems shall be prepared for testing by immediately filling water piping with clean, fresh potable water. Any stoppage, discoloration, or other damage to the finish, furnishings, or parts of the building due to the Contractor’s failure to properly clean the piping system shall be repaired by the Contractor. When the system flushing is complete, the hot-water system shall be adjusted for uniform circulation. Flushing devices and automatic control systems shall be adjusted for proper operation according to manufacturer's instructions. Comply with ASHRAE 90.1 - IP for minimum efficiency requirements.

3.8.4 Operational Test

Upon completion of flushing and prior to disinfection procedures, the Contractor shall subject the plumbing system to operating tests to demonstrate satisfactory installation, connections, adjustments, and functional and operational efficiency. Coordinate operational test and equipment installation with commissioning. All commissioning activities shall reference division 01 91 13 General Commissioning Requirements. Such operating tests shall cover a period of not less than 8 hours for each system and shall include the following information in a report with conclusion as to the adequacy of the system:

a. Time, date, and duration of test.
b. Water pressures at the most remote and the highest fixtures.
c. Operation of each fixture and fixture trim.
d. Operation of each valve, hydrant, and faucet.
e. Pump suction and discharge pressures.
f. Temperature of each domestic hot-water supply.
g. Operation of each floor and roof drain by flooding with water.

h. Operation of each vacuum breaker and backflow preventer.

i. Complete operation of each water pressure booster system, including pump start pressure and stop pressure.

j. Compressed air readings at each compressor and at each outlet. Each indicating instrument shall be read at 1/2 hour intervals. The report of the test shall be submitted in quadruplicate. The Contractor shall furnish instruments, equipment, and personnel required for the tests; the Government will furnish the necessary water and electricity.

3.8.5 Disinfection

After operational tests are complete, the entire domestic hot- and cold-water distribution system shall be disinfected. System shall be flushed as specified, before introducing chlorinating material. The chlorinating material shall be hypochlorites or liquid chlorine. Except as herein specified, water chlorination procedure shall be in accordance with AWWA C651 and AWWA C652. The chlorinating material shall be fed into the water piping system at a constant rate at a concentration of at least 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the main with a hypochlorinator, or liquid chlorine injected into the main through a solution-feed chlorinator and booster pump, shall be used. If after the 24 hour and 6 hour holding periods, the residual solution contains less than 25 ppm and 50 ppm chlorine respectively, flush the piping and tank with potable water, and repeat the above procedures until the required residual chlorine levels are satisfied. The system including the tanks shall then be flushed with clean water until the residual chlorine level is reduced to less than one part per million. During the flushing period each valve and faucet shall be opened and closed several times. Samples of water in disinfected containers shall be obtained from several locations selected by the Contracting Officer. The samples of water shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA 10084. The testing method used shall be either the multiple-tube fermentation technique or the membrane-filter technique. Disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained.

3.9 WASTE MANAGEMENT

Place materials defined as hazardous or toxic waste in designated containers. Return solvent and oil soaked rags for contaminant recovery and laundering or for proper disposal. Close and seal tightly partly used sealant and adhesive containers and store in protected, well-ventilated, fire-safe area at moderate temperature. Place used sealant and adhesive tubes and containers in areas designated for hazardous waste. Separate copper and ferrous pipe waste in accordance with the Waste Management Plan and place in designated areas for reuse.

3.10 POSTED INSTRUCTIONS

Framed instructions under glass or in laminated plastic, including wiring and control diagrams showing the complete layout of the entire system,
shall be posted where directed. Condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for normal safe operation, and procedures for safely starting and stopping the system shall be prepared in typed form, framed as specified above for the wiring and control diagrams and posted beside the diagrams. The framed instructions shall be posted before acceptance testing of the systems.

3.11 TABLES

TABLE I
PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cast iron soil pipe and fittings, hub and spigot, ASTM A 74 with compression gaskets. Pipe and fittings shall be marked with the CISPI trademark.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cast iron soil pipe and fittings hubless, CISPI 301 and ASTM A 888. Pipe and fittings shall be marked with the CISPI trademark.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cast iron drainage fittings, threaded, ASME B16.12 for use with Item 10</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cast iron screwed fittings (threaded) ASME B16.4 for use with Item 10</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Malleable-iron threaded fittings, galvanized ASME B16.3 for use with Item 10</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Steel pipe, seamless galvanized, ASTM A 53/A 53M, Type S, Grade B</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bronzed flanged fittings, ASME B16.24 for use with Items 11 and 14</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cast copper alloy solder joint pressure fittings, ASME B16.18 for use with Item 14</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Seamless copper pipe, ASTM B 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>Cast bronze threaded fittings, ASME B16.15</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I
PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Wrought copper and wrought alloy solder-joint drainage fittings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASME B16.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cast copper alloy solder joint drainage fittings, DWV,</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASME B16.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>High-silicon content cast iron pipe and fittings (hub and</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spigot, and mechanical joint), ASTM A 518/A 518M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERVICE:

A - Underground Building Soil, Waste and Storm Drain
B - Aboveground Soil, Waste, Drain In Buildings
C - Underground Vent
D - Aboveground Vent
E - Interior Rainwater Conduits Aboveground
F - Corrosive Waste And Vent Above And Belowground
* - Hard Temper

TABLE II
PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Pipe and Fitting Materials</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seamless copper pipe,</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM B 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Seamless copper water tube,</td>
<td>X**</td>
<td>X**</td>
<td>X**</td>
<td>X***</td>
</tr>
<tr>
<td></td>
<td>ASTM B 88, ASTM B 88M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cast bronze threaded fittings,</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASME B16.15 for use with Items 5 and 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Wrought copper and bronze solder-joint pressure fittings,</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASME B16.22 for use with Items 5, 7 and 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cast copper alloy solder-joint pressure fittings,</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 22 00 00 Page 37
TABLE II
PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Pipe and Fitting Materials</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME B16.18 for use with Item 8</td>
<td>X</td>
<td>X</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fittings: brass or bronze; ASME B16.15, and ASME B16.18</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM B 828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A - Cold Water Service Aboveground
B - Hot and Cold Water Distribution 180 degrees F Maximum Aboveground
C - Compressed Air Lubricated
D - Cold Water Service Belowground

Indicated types are minimum wall thicknesses.
* - PEX shall only be used where called for on the drawings
** - Type L - Hard
*** - Type K - Hard temper with brazed joints only or type K-soft temper without joints in or under floors
**** - In or under slab floors only brazed joints

3.12 Functional Testing and Acceptance

3.12.1 Commissioning Functional Testing

Commissioning Authority will document and witness functional testing of the following equipment. Functional testing shall be completed after contractor has completed the Pre-functional Construction Checklists, performed overall system operational tests.

 a. Domestic Hot Water Heater
 b. Domestic Hot Water Recirculation Pump
 c. Thermostatic Mixing Valves

Functional testing shall consist of dynamically testing the function, modes of operation and operational functional performance of the equipment and systems to be commissioned.

3.12.2 Acceptance Criteria

The following shall be the minimum requirements for equipment/systems acceptance, subject to any additional acceptance requirements specified or required by the Government.

1. Plumbing System acceptance shall be granted after the contractor has received approval of all required close out documentation.

2. Completion of all required system and equipment QC testing specified.

3. Completion of successful Functional testing
4. Performance Verification Testing performed by the Government

5. Training has been performed and accepted by the owner.

6. Accepted resolution of all punch list items and Commissioning Issues.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INTERNATIONAL CODE COUNCIL (ICC)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016) Motors and Generators

1.2 SUBMITTALS

Government approval is required for all submittals. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-06 Test Reports

Submit required test reports required under other Division 23 sections. In addition, submit the following for equipment to be commissioned

Prefunctional Construction Checklists

Completed Prefunctional Construction Checklist provided by Commissioning Authority shall be completed and submitted to the Government's Commissioning Authority.

SD-09 Manufacturer's Field Reports

Field Reports

Completed start up report by manufacturer representative or certified equipment startup person documenting manufacturer's recommended start up procedure.
1.3 RELATED REQUIREMENTS

This section applies to all sections of Divisions: 21, FIRE SUPPRESSION; 22, PLUMBING; and 23, HEATING, VENTILATING, AND AIR CONDITIONING of this project specification, unless specified otherwise in the individual section.

1.4 QUALITY ASSURANCE

1.4.1 Material and Equipment Qualifications

Provide materials and equipment that are standard products of manufacturers regularly engaged in the manufacture of such products, which are of a similar material, design and workmanship. Standard products must have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use must include applications of equipment and materials under similar circumstances and of similar size. The product must have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.

1.4.2 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.

1.4.3 Service Support

The equipment items must be supported by service organizations. Submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. These service organizations must be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.4.4 Manufacturer's Nameplate

For each item of equipment, provide a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

1.4.5 Modification of References

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction", or words of similar meaning, to mean the Contracting Officer.

1.4.5.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract documents, advisory provisions must be considered mandatory, the word "should" is interpreted as "must." Reference to the "code official" must be interpreted to mean the "Contracting Officer." For Navy owned property, references to the "owner" must be interpreted to mean the "Contracting Officer." For leased facilities, references to the "owner" must be interpreted to mean the "lessor." References to the "permit holder" must
be interpreted to mean the "Contractor."

1.4.5.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of Chapter 1, "Administrator," do not apply. These administrative requirements are covered by the applicable Federal Acquisition Regulations (FAR) included in this contract and by the authority granted to the Officer in Charge of Construction to administer the construction of this project. References in the ICC Codes to sections of Chapter 1, must be applied appropriately by the Contracting Officer as authorized by his administrative cognizance and the FAR.

1.5 DELIVERY, STORAGE, AND HANDLING

Handle, store, and protect equipment and materials to prevent damage before and during installation in accordance with the manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.

1.6 ELECTRICAL REQUIREMENTS

Furnish motors, controllers, disconnects and contactors with their respective pieces of equipment. Motors, controllers, disconnects and contactors must conform to and have electrical connections provided under Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Furnish internal wiring for components of packaged equipment as an integral part of the equipment. Controllers and contactors shall have a maximum of 120 volt control circuits, and must have auxiliary contacts for use with the controls furnished. When motors and equipment furnished are larger than sizes indicated, the cost of additional electrical service and related work must be included under the section that specified that motor or equipment. Power wiring and conduit for field installed equipment must be provided under and conform to the requirements of Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

1.6.1 Motor Voltage

Provide motors rated for the voltage supplied. Motors shall be suitable for use at 90% to 110% of the nominal voltage and shall have a service factor of at least 1.1 at that nominal voltage.

1.6.2 Single Phase Motor Efficiency

Unless otherwise specified, single-phase fractional-horsepower alternating-current motors must be high efficiency types corresponding to the applications listed in NEMA MG 11.

1.6.3 Poly Phase Motor Efficiency

Unless other specified polyphase squirrel-cage induction motors must be premium efficiency with continuous ratings that meet or exceed energy efficient ratings in accordance with Table 12-12 of NEMA MG 1

1.6.4 Three-Phase Motor Protection

Provide controllers for motors rated three horsepower and larger with electronic phase-voltage monitors designed to protect motors from phase-loss, undervoltage, and overvoltage. Provide protection for motors
from immediate restart by a time adjustable restart relay.

1.7 INSTRUCTION TO GOVERNMENT PERSONNEL

When specified in other sections, furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the specified equipment or system. Instructors must be thoroughly familiar with all parts of the installation and must be trained in operating theory as well as practical operation and maintenance work.

Instruction must be given during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished must be as specified in the individual section. When more than 4 man-days of instruction are specified, use approximately half of the time for classroom instruction. Use other time for instruction with the equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to acquaint the operating personnel with the changes or modifications.

1.8 ACCESSIBILITY

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.

1.9 EQUIPMENT INVENTORY UPDATE

Submit information for each piece of equipment removed and supplied for use of Camp Lejeune to update the Maximo equipment inventory. For the purposes of this paragraph, inventoried equipment is defined as equipment listed on the Maximo Equipment Inventory Update form.

1.9.1 Requirements

The contractor shall prepare and submit one Maximo Equipment Inventory Update form for each individual item of inventoried equipment that is demolished, removed, replaced, or installed. (ex: three new condensing units would require the submission of three Equipment Inventory Update forms. The replacement of two existing air handling units with two new air handling units would require the submission of two Equipment Inventory Update forms). The contractor shall prepare and submit a VAV/TAB Room Number List for each VAV/Tab model installed in a single building. Only one Maximo Equipment Inventory Update form is required for each model of VAV or TAB in a single building.

1.9.1.1 Demolition of all equipment in a structure or facility

When all the inventoried equipment in a building or structure is demolished or removed, and not replaced, an Equipment Inventory Update form is not required.

1.9.2 Standards

The contractor shall provide accurate, complete, and legible information on
all required forms. All required forms shall be completed and delivered to the Contracting Officer on or before the Beneficial Occupancy Date. All information on Equipment Inventory Update forms shall be obtained by visual inspection of equipment data plate(s).

1.9.3 Form Preparation

Each required Maximo Equipment Inventory Update form shall contain the following information:

(1) The name and telephone number of an individual who can be contacted for clarification or additional information pertaining to the data on the form.

(2) The date of data collection

(3) The building or structure identification number and the specific location of the equipment within the structure (ex: 3d deck mech room)

(4) A check adjacent to the description of the new or replacement item, and a check adjacent to the supplemental description if applicable (ex: circulating pump and HVAC or steam)

(5) The Maximo number or serial number of the demolished or removed item, if applicable

(6) All applicable data from the equipment data plate

Each Room Number List form shall contain the following information:

(1) The name and telephone number of the individual providing the information

(2) The date the form was completed

(3) The building or structure identification number

(4) A check in the box adjacent to each applicable room number

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 Manufacturer's Recommendations

All material and equipment shall be installed in accordance with the manufacturer's recommendations for the intended purpose. Use the more stringent methods when manufacturer's recommendations, and plan & specification requirements differ. The contractor shall notify the government of any conflicts between manufacturer's recommendations and plans & specification requirements.

3.2 International Construction Codes

All material, equipment and installation shall be in accordance with the ICC IFGC, ICC IPC, and ICC IMCunless noted otherwise on the drawings and/or specifications. The contractor shall notify the government of any conflicts between ICC code requirements and contract requirements.
3.3 FUNCTIONAL TESTING AND ACCEPTANCE

3.3.1 Commissioning Functional Testing

Commissioning Authority will document and witness functional testing of the following equipment. Functional testing shall be completed after contractor has completed the Pre-functional Construction Checklists, performed overall system operational tests.

a. Air Cooled Chiller
b. Chilled Water Pumps
c. Boilers
d. Hot Water Pumps
e. Unit Heaters
f. Air Handling Units/DOAS
g. Energy Recovery Ventilators
h. Supply/Exhaust Fans
i. Air Terminal Devices (VAV)
j. Fan Powered Boxes
k. Ductless Split Systems
l. Dehumidifiers
m. HVAC controls

Functional testing shall consist of dynamically testing the function, modes of operation and operational functional performance of the equipment and systems to be commissioned.

3.3.2 Acceptance Criteria

The following shall be the minimum requirements for equipment/systems acceptance, subject to any additional acceptance requirements specified or required by the Government.

a. HVAC System acceptance shall be granted after the contractor has received approval of all required close out documentation.
b. Completion of all required system and equipment QC testing specified.
c. Completion of successful Functional testing
d. Performance Verification Testing performed by the Government
e. Training has been performed and accepted by the owner.
f. Accepted resolution of all punch list items and Commissioning
Issues.

g. Completed Maximo Equipment Inventory Updates

3.4 PAINTING OF NEW EQUIPMENT

New equipment painting must be factory applied or shop applied, and must be as specified herein, and provided under each individual section.

3.4.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided subject to certification that the factory painting system applied will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors must withstand 500 hours in a salt-spray fog test. Salt-spray fog test must be in accordance with ASTM B117, and for that test the acceptance criteria must be as follows: immediately after completion of the test, the paint must show no signs of blistering, wrinkling, or cracking, and no loss of adhesion; and the specimen must show no signs of rust creepage beyond 0.125 inch on either side of the scratch mark.

The film thickness of the factory painting system applied on the equipment must not be less than the film thickness used on the test specimen. If manufacturer's standard factory painting system is being proposed for use on surfaces subject to temperatures above 120 degrees F, the factory painting system must be designed for the temperature service.

3.4.2 Shop Painting Systems for Metal Surfaces

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except metal surfaces subject to temperatures in excess of 120 degrees F must be cleaned to bare metal.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat must be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F must receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of 1 mil; and two coats of enamel applied to a minimum dry film thickness of 1 mil per coat.

b. Temperatures Between 120 and 400 Degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F must receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum
thickness of 2 mils.

c. Temperatures Greater Than 400 Degrees F: Metal surfaces subject to temperatures greater than 400 degrees F must receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.
MAXIMO EQUIPMENT INVENTORY UPDATE

Employee: __________________ Phone: ____________ Date: ____/____/____

Bldg: ____________ Specific Location: ________________________________

__ AC, Computer Room __ Heat Pump, Indoor Unit
__ AC, Package __ Heat Pump, Outdoor Unit
__ AC, Package Terminal __ Heat Pump, Package
__ Assembly, Trap line __ Heat Pump, Package Terminal
__ Backflow Preventer __ Pump, Circulating, Chilled Water
__ Boiler __ Pump, Circulating, Domestic Water
__ Chiller, Air Cooled Recip __ Pump, Circulating, Dual Temp Water
__ Chiller, Air Cooled Screw __ Pump, Circulating, Heating Water
__ Chiller, Air Cooled Scroll __ Pump, Condensate
__ Chiller, Water Cooled Recip __ Pump, Sump
__ Chiller, Water Cooled Screw __ Regulator, Temperature
__ Compressor, Control Air __ Tank, Hot Water Storage
__ Compressor, Industrial Air __ Tower, Cooling
__ Dryer, Refrigerated Air __ Unit, Air Handling
__ Exchanger, Heat __ Unit, AC Condensing
__ Evaporator, Freezer __ Unit, Freezer Condensing
__ Evaporator, Refrigerator __ Unit, Refrigerator Condensing
__ Fan, Exhaust __ Unit, Fan Coil
__ Generator __ Unit, TAB (Attach Room No. List)
__ Heater, Space __ Unit, VAV (Attach Room No. List)
__ Heater, Unit __ Valve, Pressure Reducing
__ Heat Pump, Geo-Thermal __ Valve, Steam Pilot
__ Water Heater __ Water Heater

Demolished/Removed Equipment

Maximo no: __________ or Ser no: ___________________________________

New Equipment

Manufacturer: ___

Model no: __

Ser no: __

Type: __Elec __Oil __LP Gas __Nat Gas __Steam __Water __Air

Motor Data: HP_____ Volts_____ Phase_____ RLA_____ RPM_____ Frame_____

Tons____ No. of Motors____ no. of Belts____ Belt size(s)____ CFM____

KW____ Refrig type______ Refrig Qty_______ Filter Size(s)____________

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 203 (1990; R 2011) Field Performance Measurements of Fan Systems

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 62.1 (2010; Errata 2011) Ventilation for Acceptable Indoor Air Quality

ASSOCIATED AIR BALANCE COUNCIL (AABC)

AABC MN-4 (1996) Test and Balance Procedures

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)

NEBB PROCEDURAL STANDARDS (2005) Procedural Standards for TAB (Testing, Adjusting and Balancing) Environmental Systems

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 DEFINITIONS

b. COTR: Contracting Officer's Technical Representative.

c. DALT: Duct air leakage test

d. DALT'd: Duct air leakage tested

e. HVAC: Heating, ventilating, and air conditioning; or heating, ventilating, and cooling.

f. NEBB: National Environmental Balancing Bureau

g. Out-of-tolerance data: Pertains only to field acceptance testing of Final DALT or TAB report. When applied to DALT work, this phase means "a leakage rate measured during DALT field acceptance testing which exceeds the leakage rate allowed by Appendix C REQUIREMENTS FOR DUCT AIR LEAK TESTING." When applied to TAB work this phase means "a measurement taken during TAB field acceptance testing which does not fall within the range of plus 5 to minus 5 percent of the original measurement reported on the TAB Report for a specific parameter."

h. Season of maximum heating load: The time of year when the outdoor temperature at the project site remains within plus or minus 30 degrees Fahrenheit of the project site's winter outdoor design temperature, throughout the period of TAB data recording.

i. Season of maximum cooling load: The time of year when the outdoor dry bulb temperature at the project site remains within plus or minus 4.5 degrees Celsius plus or minus 8 degrees Fahrenheit of the project site's summer outdoor design temperature, throughout the period of TAB data recording. The season of maximum cooling load shall fall within June, July, August, or September.

j. Season 1, Season 2: Depending upon when the project HVAC is completed and ready for TAB, Season 1 is defined, thereby defining Season 2. Season 1 could be the season of maximum heating load, or the season of maximum cooling load.

k. Sound measurements terminology: Defined in AABC MN-1, NEBB MASV, or SMACNA 1858 (TABB).

l. TAB: Testing, adjusting, and balancing (of HVAC systems).

m. TAB'd: HVAC Testing/Adjusting/Balancing procedures performed.

n. TAB Agency: TAB Firm

o. TAB team field leader: TAB team field leader

p. TAB team supervisor: TAB team engineer.
q. TAB team technicians: TAB team assistants.

r. TABB: Testing Adjusting and Balancing Bureau.

1.2.1 Similar Terms

In some instances, terminology differs between the Contract and the TAB Standard primarily because the intent of this Section is to use the industry standards specified, along with additional requirements listed herein to produce optimal results.

The following table of similar terms is provided for clarification only. Contract requirements take precedent over the corresponding AABC, NEBB, or TABB requirements where differences exist.

<table>
<thead>
<tr>
<th>Contract Term</th>
<th>AABC Term</th>
<th>NEBB Term</th>
<th>TABB Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB Specialist</td>
<td>TAB Engineer</td>
<td>TAB Supervisor</td>
<td>TAB Supervisor</td>
</tr>
<tr>
<td>Systems Readiness Check</td>
<td>Construction Phase Inspection</td>
<td>Field Readiness Check & Preliminary Field Procedures</td>
<td>Field Readiness Check & Prelim. Field Procedures</td>
</tr>
</tbody>
</table>

1.3 ORK DESCRIPTION

The work includes duct air leakage testing (DALT) and testing, adjusting, and balancing (TAB) of new heating, ventilating, and cooling (HVAC) air and water distribution systems including equipment and performance data, ducts, and piping which are located within, on, under, between, and adjacent to buildings, including records of existing conditions.

Perform TAB in accordance with the requirements of the TAB procedural standard recommended by the TAB trade association that approved the TAB Firm's qualifications. Comply with requirements of AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 (TABB) as supplemented and modified by this specification section. All recommendations and suggested practices contained in the TAB procedural standards are considered mandatory.

Conduct DALT and TAB of the indicated existing systems and equipment and submit the specified DALT and TAB reports for approval. Conduct DALT testing in compliance with the requirements specified in SMACNA 1143, except as supplemented and modified by this section. Conduct DALT and TAB work in accordance with the requirements of this section.
1.3.1 Air Distribution Systems

Test, adjust, and balance systems (TAB) in compliance with this section. Obtain Contracting Officer’s written approval before applying insulation to exterior of air distribution systems as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

1.3.2 Water Distribution Systems

TAB systems in compliance with this section. Obtain Contracting Officer's written approval before applying insulation to water distribution systems as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. At Contractor's option and with Contracting Officer's written approval, the piping systems may be insulated before systems are TAB'd.

Terminate piping insulation immediately adjacent to each flow control valve, automatic control valve, or device. Seal the ends of pipe insulation and the space between ends of pipe insulation and piping, with waterproof vapor barrier coating.

After completion of work under this section, insulate the flow control valves and devices as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

1.3.3 TAB SCHEMATIC DRAWINGS

Show the following information on TAB Schematic Drawings:

1. A unique number or mark for each piece of equipment or terminal.

2. Air quantities at air terminals.

3. Air quantities and temperatures in air handling unit schedules.

4. Water quantities and temperatures in thermal energy transfer equipment schedules.

5. Water quantities and heads in pump schedules.

6. Water flow measurement fittings and balancing fittings.

7. Ductwork Construction and Leakage Testing Table that defines the DALT test requirements, including each applicable HVAC duct system ID or mark, duct pressure class, duct seal class, and duct leakage test pressure. This table is included in the file for Graphics for Unified Facilities Guide Specifications: http://www.wbdg.org/ccb/NAVGRAPH/graphtoc.pdf

The Testing, Adjusting, and Balancing (TAB) Specialist must review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the effective and accurate TAB of the system, including records of existing conditions, and systems readiness check. The TAB Specialist must provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

Submit three copies of the TAB Schematic Drawings and Report Forms to the Contracting Officer, no later than 21 days prior to the start of TAB field measurements.
1.3.4 Related Requirements

Section 23 73 33 HEATING, VENTILATING, AND COOLING SYSTEM SYSTEMS applies to work specified in this section.

Specific requirements relating to Reliability Centered Maintenance (RCM) principals and Predictive Testing and Inspection (PTI), by the construction contractor to detect latent manufacturing and installation defects must be followed as part of the Contractor's Quality Control program. Refer to the paragraph titled "Sustainability" for detailed requirements.

Requirements for price breakdown of HVAC TAB work are specified in Section 01 20 00 PRICE AND PAYMENT PROCEDURES.

Requirements for construction scheduling related to HVAC TAB work are specified in Section 01 32 16 CONSTRUCTION PROGRESS DOCUMENTATION.

1.4 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Records of Existing Conditions;

TAB Firm;

Designation of TAB team assistants;

Designation of TAB team engineer; or TAB Specialist

Designation of TAB team field leader;

SD-02 Shop Drawings

TAB Schematic Drawings and Report Forms;

SD-03 Product Data

Equipment and Performance Data;

TAB Related HVAC Submittals;

A list of the TAB Related HVAC Submittals, no later than 7 days after the approval of the TAB team engineer and assistant.

TAB Procedures;

Proposed procedures for TAB, submitted with the TAB Schematic Drawings and Report Forms.

Calibration;

Systems Readiness Check;

TAB Execution;
TAB Verification;

SD-06 Test Reports
DALT and TAB Work Execution Schedule;
DALT and TAB Procedures Summary;
Design review report;
Pre-Final DALT report;
Final DALT report;
TAB report for Season 1;
TAB report for Season 2;

SD-07 Certificates
Independent TAB agency and personnel qualifications;
Advance notice of Pre-Final DALT field work;
Completed Pre-Final DALT Work Checklist;
Advanced Notice for Season 1 TAB Field Work;
Completed Season 1 Pre-TAB Work Checklist
Advanced Notice for Season 2 TAB Field Work
Completed Season 2 Pre-TAB Work Checklist
TAB Firm;
DALT and TAB Submittal and Work Schedule;
Design review report;
Pre-field DALT preliminary notification;
Pre-field TAB engineering report;
Prerequisite HVAC Work Check Out List For Season 1;
Prerequisite HVAC Work Check Out List For Season 2;

1.5 QUALITY ASSURANCE

1.5.1 Independent TAB Agency and Personnel Qualifications

To secure approval for the proposed agency, submit information certifying that the TAB agency is a first tier subcontractor who is not affiliated with any other company participating in work on this contract, including design, furnishing equipment, or construction. Further, submit the following, for the agency, to Contracting Officer for approval:

a. Independent AABC or NEBB or TABB TAB agency:
TAB agency: AABC registration number and expiration date of current certification; or NEBB certification number and expiration date of current certification; or TABB certification number and expiration date of current certification.

TAB team supervisor: Name and copy of AABC or NEBB or TABB TAB supervisor certificate and expiration date of current certification.

TAB team field leader: Name and documented evidence that the team field leader has satisfactorily performed full-time supervision of TAB work in the field for not less than 3 years immediately preceding this contract's bid opening date.

TAB team field technicians: Names and documented evidence that each field technician has satisfactorily assisted a TAB team field leader in performance of TAB work in the field for not less than one year immediately preceding this contract's bid opening date.

Current certificates: Registrations and certifications are current, and valid for the duration of this contract. Renew Certifications which expire prior to completion of the TAB work, in a timely manner so that there is no lapse in registration or certification. TAB agency or TAB team personnel without a current registration or current certification are not to perform TAB work on this contract.

b. TAB Team Members: TAB team approved to accomplish work on this contract are full-time employees of the TAB agency. No other personnel is allowed to do TAB work on this contract.

c. Replacement of TAB team members: Replacement of members may occur if each new member complies with the applicable personnel qualifications and each is approved by the Contracting Officer.

1.5.2 TAB Standard

Perform TAB in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard are considered mandatory. Use the provisions of the TAB Standard, including checklists, report forms, etc., as nearly as practical, to satisfy the Contract requirements. Use the TAB Standard for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB Standard, adhere to the manufacturer's recommendations.

All quality assurance provisions of the TAB Standard such as performance guarantees are part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures must be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC, NEBB, or TABB), the requirements and recommendations contained in these procedures and requirements are considered mandatory, including the latest requirements of ASHRAE 62.1.
1.5.3 Sustainability

Contractor must submit the following as part of the Quality Control Plan for acceptance testing:

a. List all test equipment to be used, including its manufacturer, model number, calibration date, and serial number.

b. Certificates of test personnel qualifications and certifications. Provide certification of compliance with 40 CFR 82.

c. Proof of equivalency if the contractor desires to substitute a test requirement.

Perform the following PTI as an integral part of the TAB process:

HVAC Ducts:
 a. Operational Test
 b. Ductwork Leak Testing (DALT); Pre-Final DALT report, Final DALT report

1.5.4 Qualifications

1.5.4.1 TAB Firm

The TAB Firm must be either a member of AABC or certified by the NEBB or the TABB and certified in all categories and functions where measurements or performance are specified on the plans and specifications.

Certification must be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor must immediately notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections to be performed by the TAB Firm will be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor.

These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm must be a prime subcontractor of the Contractor and be financially and corporately independent of the mechanical subcontractor, reporting directly to and paid by the Contractor.

1.5.4.2 TAB Specialist

The TAB Specialist must be either a member of AABC, an experienced technician of the Firm certified by the NEBB, or a Supervisor certified by the TABB. The certification must be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not
eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist will be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor.

1.5.4.3 TAB Specialist Responsibilities

TAB Specialist responsibilities include all TAB work specified herein and in related sections under his direct guidance. The TAB specialist is required to be onsite on a daily basis to direct TAB efforts.

1.5.4.4 TAB Related HVAC Submittals

The TAB Specialist must prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. Accompany the submittals identified on this list with a letter of approval signed and dated by the TAB Specialist when submitted to the Government. Ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals.

1.5.5 Responsibilities

The Contractor is responsible for ensuring compliance with the requirements of this section. The following delineation of specific work responsibilities is specified to facilitate TAB execution of the various work efforts by personnel from separate organizations. This breakdown of specific duties is specified to facilitate adherence to the schedule listed in paragraph entitled "TAB Submittal and Work Schedule."

1.5.5.1 Contractor

a. TAB personnel: Ensure that the DALT work and the TAB work is accomplished by a group meeting the requirements specified in paragraph entitled "TAB Personnel Qualification Requirements."

b. Pre-DALT/TAB meeting: Attend the meeting with the TAB Supervisor, and ensure that a representative is present for the sheetmetal contractor, mechanical contractor, electrical contractor, and automatic temperature controls contractor.

c. HVAC documentation: Furnish one complete set of the following HVAC-related documentation to the TAB agency:

(1) Contract drawings and specifications
(2) Approved submittal data for equipment
(3) Construction work schedule
(4) Up-to-date revisions and change orders for the previously listed items

d. Submittal and work schedules: Ensure that the schedule for submittals and work required by this section and specified in paragraph entitled "TAB Submittal and Work Schedule," is met.

e. Coordination of supporting personnel:
Provide the technical personnel, such as factory representatives or HVAC controls installer required by the TAB field team to support the DALT and the TAB field measurement work.

Provide equipment mechanics to operate HVAC equipment and ductwork mechanics to provide the field designated test ports to enable TAB field team to accomplish the DALT and the TAB field measurement work. Ensure these support personnel are present at the times required by the TAB team, and cause no delay in the DALT and the TAB field work.

Conversely, ensure that the HVAC controls installer has required support from the TAB team field leader to complete the controls check out.

f. Deficiencies: Ensure that the TAB Agency supervisor submits all Design/Construction deficiency notifications directly to the Contracting officer within 3 days after the deficiency is encountered. Further, ensure that all such notification submittals are complete with explanation, including documentation, detailing deficiencies.

g. Prerequisite HVAC work: Complete check out and debugging of HVAC equipment, ducts, and controls prior to the TAB engineer arriving at the project site to begin the TAB work. Debugging includes searching for and eliminating malfunctioning elements in the HVAC system installations, and verifying all adjustable devices are functioning as designed. Include as prerequisite work items, the deficiencies pointed out by the TAB team supervisor in the design review report.

h. Prior to the TAB field team's arrival, ensure completion of the applicable inspections and work items listed in the TAB team supervisor's pre-field engineering report. Do not allow the TAB team to commence TAB field work until all of the following are completed.

1. HVAC system installations are fully complete.

2. HVAC prerequisite checkout work lists specified in the paragraph "Pre-Field TAB Engineering Report" are completed, submitted, and approved. Ensure that the TAB Agency gets a copy of the approved prerequisite HVAC work checklist.

3. DALT field checks for all systems are completed.

4. Provide new throwaway HVAC filters and/or clean washable HVAC filters within seven days before both Season 1 and Season 2 TAB field work.

5. All fan belts on equipment involved in the TAB field work shall be checked, adjusted, and replaced as necessary to bring within the manufacturer's recommended tolerances within seven days before both Season 1 and Season 2 TAB field work.

6. If Season 2 TAB field work is out of compliance, the Contractor shall be responsible for inspecting and cleaning all strainers, dirt and air separators, and chilled/hot water systems as necessary, after which Season 2 TAB field work shall be repeated as necessary to prove compliance.

i. Advance notice: Furnish to the Contracting Officer with advance
written notice for the commencement of the DALT field work and for the commencement of the TAB field work.

j. Insulation work: For required DALT work, ensure that insulation is not installed on ducts to be DALT’d until DALT work on the subject ducts is complete. Later, ensure that openings in duct and machinery insulation coverings for TAB test ports are marked, closed and sealed.

1.5.5.2 TAB Agency

Provide the services of a TAB team which complies with the requirements of paragraph entitled "Independent TAB Agency Personnel Qualifications". The work to be performed by the TAB agency is limited to testing, adjusting, and balancing of HVAC air and water systems to satisfy the requirements of this specification section.

1.5.5.3 TAB Team Supervisor

a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical DALT and TAB procedures and TAB team field work.

b. Pre-DALT/TAB meeting: Attend meeting with Contractor.

c. Design review report: Review project specifications and accompanying drawings to verify that the air systems and water systems are designed in such a way that the TAB engineer can accomplish the work in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

d. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment. Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the pre-field engineering report, the during the DALT or TAB field work.

e. Pre-field DALT preliminary notification: Monitor the completion of the duct installation of each system and provide the necessary written notification to the Contracting Officer.

f. Pre-field engineering report: Utilizing the following HVAC-related documentation; contract drawings and specifications, approved submittal data for equipment, up-to-date revisions and change orders; prepare this report.

g. Prerequisite HVAC work checklist: Ensure the Contractor gets a copy of this checklist at the same time as the pre-field engineering report is submitted.

h. Technical assistance for DALT work.

(1) Technical assistance: Provide immediate technical assistance to TAB field team.

(2) DALT field visit: Near the end of the DALT field work effort,
visit the contract site to inspect the HVAC installation and the
progress of the DALT field work. Conduct a site visit to the
extent necessary to verify correct procedures are being
implemented and to confirm the accuracy of the Pre-final DALT
Report data which has been reported. Also, perform sufficient
evaluation to allow the TAB supervisor to issue certification of
the final report. Conduct the site visit full-time for a minimum
of one 8 hour workday duration.

i. Final DALT report: Certify the DALT report. This certification
includes the following work:

(1) Review: Review the Pre-final DALT report data. From these field
reports, prepare the Certified Final DALT report.

(2) TAB Verification: Verify adherence, by the TAB field team, to
the procedures specified in this section.

j. Technical Assistance for TAB Work: Provide immediate technical
assistance to the TAB field team for the TAB work.

(1) TAB field visit: At the midpoint of the Season 1 and Season 2 TAB
field work effort, visit the contract site to inspect the HVAC
installation and the progress of the TAB field work. Conduct site
visit full-time for a minimum of one 8 hour workday duration.

(2) TAB field visit: Near the end of the TAB field work effort, visit
the contract site to inspect the HVAC installation and the
progress of the TAB field work. Conduct site visit full-time for
a minimum of one 8 hour workday duration. Review the TAB final
report data and certify the TAB final report.

k. Certified TAB report: Certify the TAB report. This certification
includes the following work:

(1) Review: Review the TAB field data report. From this field
report, prepare the certified TAB report.

(2) Verification: Verify adherence, by the TAB field team, to the
TAB plan prescribed by the pre-field engineering report and verify
adherence to the procedures specified in this section.

l. Design/Construction deficiencies: Within 3 working days after the TAB
Agency has encountered any design or construction deficiencies, the TAB
Supervisor must submit written notification directly to the Contracting
Officer, with a separate copy to the Contractor, of all such
deficiencies. Provide in this submittal a complete explanation,
including supporting documentation, detailing deficiencies. Where
deficiencies are encountered that are believed to adversely impact
successful completion of TAB, the TAB Agency must issue notice and
request direction in the notification submittal.

m. TAB Field Check: The TAB team supervisor must attend and supervise
Season 1 and Season 2 TAB field check.

1.5.5.4 TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work
specified in Part 3, "Execution."
b. Full time: Be present at the contract site when DALT field work or TAB field work is being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC Checklist, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.

1.5.6 Test Reports

1.5.6.1 Data from DALT Field Work

Report the data for the Pre-final DALT Report and Certified Final DALT Report in compliance with the following requirements:

a. Report format: Submit report data on Air Duct Leakage Test Summary Report Forms as shown on Page 6-2 of SMACNA 1143. In addition, submit in the report, a marked duct shop drawing which identifies each section of duct tested with assigned node numbers for each section. Include node numbers in the completed report forms to identify each duct section. The TAB supervisor must review and certify the report.

b. The TAB supervisor must include a copy of all calculations prepared in determining the duct surface area of each duct test section. In addition, provide the ductwork air leak testing (DALT) reports with a copy(s) of the calibration curve for each of the DALT test orifices used for testing.

c. Instruments: List the types of instruments actually used to measure the data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date. Instruments must have been calibrated within one year of the date of use in the field. Instrument calibration must be traceable to the measuring standards of the National Institute of Standards and Technology.

d. Certification: Include the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

1.5.6.2 Certified TAB Reports

Submit: TAB Report for Season 1 and TAB Report for Season 2 in the following manner:

a. Report format: Submit the completed pre-field data forms approved in the pre-field TAB Engineering Report completed by TAB field team, reviewed and certified by the TAB supervisor. Bind the report with a waterproof front and back cover. Include a table of contents identifying by page number the location of each report. Report forms and report data must be typewritten. Handwritten report forms or report data are not acceptable.

b. Temperatures: On each TAB report form reporting TAB work accomplished on HVAC thermal energy transfer equipment, include the indoor and outdoor dry bulb temperature range and indoor and outdoor wet bulb temperature range within which the TAB data was recorded. Include in the TAB report continuous time versus temperature recording data of wet
and dry bulb temperatures for the rooms, or zones, as designated in the following list:

(1) Conduct TAB work on all new systems installed. Measure and compile data on a continuous basis for the period in which TAB work affecting those rooms is being done.

(2) Measure and record data only after the HVAC systems installations are complete, the systems fully balanced and the HVAC systems controls operating in fully automatic mode.

(3) Data may be compiled using direct digital controls trend logging where available. Otherwise, temporarily install calibrated time versus temperature/humidity recorders for this purpose. The HVAC systems and controls must be fully operational a minimum of 24 hours in advance of commencing data compilation. Include the specified data in the Season I and Season 2 TAB Report.

c. System Diagrams: Provide updated diagrams with final installed locations of all terminals and devices, any numbering changes, and actual test locations. Use a key numbering system on the diagram which identifies each outlet contained in the outlet airflow report sheets.

d. Static Pressure Profiles: Report static pressure profiles for all air duct systems. Report static pressure data for all supply, return, relief, exhaust and outside air ducts for the systems listed. Include the following in the static pressure report data, in addition to AABC/NEBB/TABB required data:

(1) Report supply fan, return fan, relief fan, and exhaust fan inlet and discharge static pressures.

(2) Report static pressure drop across chilled water coils, hot water coils, and heat reclaim devices installed in unit cabinetry or the system ductwork.

(3) Report static pressure drop across outside air, return air, and supply air automatic control dampers, both proportional and two-position, installed in unit cabinetry.

(4) Report static pressure drop across air filters, acoustic silencers, moisture eliminators, air flow straighteners, air flow measuring stations or other pressure drop producing specialty items installed in unit cabinetry, or in the system ductwork. Examples of these specialty items are smoke detectors, white sound generators, RF shielding, wave guides, security bars, blast valves, small pipes passing through ductwork, and duct mounted humidifiers.

Do not report static pressure drop across duct fittings provided for the sole purpose of conveying air, such as elbows, transitions, offsets, plenums, manual dampers, and branch takes-offs.

(5) Report static pressure drop across outside air and relief/exhaust air louvers.

(6) Report static pressure readings of supply air, return air, exhaust/relief air, and outside air in duct at the point where these ducts connect to each air moving unit and also at the
following locations:

VAV Terminals: Take readings at inlet static pressure at VAV terminal box primary air branch ducts.

e. Duct Traverses: Report duct traverses for main supply, return, exhaust, relief and outside air ducts. This includes all ducts, including those which lack 7 1/2 duct diameters upstream and 2 1/2 duct diameters downstream of straight duct unobstructed by duct fittings/offsets/elbows. The TAB Agency must evaluate and report findings on the duct traverses taken. Evaluate the suitability of the duct traverse measurement based on satisfying the qualifications for a pilot traverse plane as defined by AMCA 203, "Field Measurements", Section 8, paragraph 8.3, "Location of Traverse Plane."

f. Instruments: List the types of instruments actually used to measure the tab data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date.

Instrumentation, used for taking wet bulb temperature readings must provide accuracy of plus or minus 5 percent at the measured face velocities. Submit instrument manufacturer's literature to document instrument accuracy performance is in compliance with that specified.

g. Certification: Include the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

h. Performance Curves: The TAB Supervisor must include, in the TAB Reports, factory pump curves and fan curves for pumps and fans TAB'd on the job.

i. Calibration Curves: The TAB Supervisor must include, in the TAB Reports, a factory calibration curve for installed flow control balancing valves, flow venturi's and flow orifices TAB'd on the job.

j. Report flow rates through and pressure drops across all contract applicable hydronic components such as: balancing valves, coils, pumps, chillers, condensers, cooling towers, hot water converters, boilers, and flow measuring devices.

1.6 SEQUENCING AND SCHEDULING

1.6.1 DALT and TAB Submittal and Work Schedule

Submit this schedule, and TAB Schematic Drawings, adapted for this particular contract, to the Contracting Officer (CO) for review and approval. Include with the submittal the planned calendar dates for each submittal or work item. Resubmit an updated version for CO approval every 90 calendar days. Compliance with the following schedule is the Contractor's responsibility.

Qualify TAB Personnel: Within 45 calendar days after date of contract award, submit TAB agency and personnel qualifications.

Pre-DALT/TAB Meeting: Within 30 calendar days after the date of approval of the TAB agency and personnel, meet with the COTR.

Design Review Report: Within 60 calendar days after the date of the TAB
agency personnel qualifications approval, submit design review report.

Pre-Field DALT Preliminary Notification: On completion of the duct
installation for each system, notify the Contracting Officer in writing
within 5 days after completion.

Ductwork Selected for DALT: Within 7 calendar days of Pre-Field DALT
Preliminary Notification, the COTR will select which of the project
ductwork must be DALT'd.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field
work on selected.

Submit Pre-final DALT Report: Within two working day after completion of
DALT field work, submit Pre-final DALT Report. Separate Pre-final DALT
reports may be submitted to allow phased testing from system to system.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field
work on selected.

Submit Pre-final DALT Report: Within two working day after completion of
DALT field work, submit Pre-final DALT Report. Separate Pre-final DALT
reports may be submitted to allow phased testing from system to system.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field
work on selected.

Submit Pre-final DALT Report: Within two working day after completion of
DALT field work, submit Pre-final DALT Report. Separate Pre-final DALT
reports may be submitted to allow phased testing from system to system.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field
work on selected.

Submit Pre-final DALT Report: Within two working day after completion of
DALT field work, submit Pre-final DALT Report. Separate Pre-final DALT
reports may be submitted to allow phased testing from system to system.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field
work on selected.

Submit Pre-final DALT Report: Within two working day after completion of
DALT field work, submit Pre-final DALT Report. Separate Pre-final DALT
reports may be submitted to allow phased testing from system to system.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field
work on selected.
prerequisite HVAC work check out list certified as complete and submit advance notice of commencement of Season 2 TAB field work.

Season 2 TAB Field Work: Within 240 calendar days after date of commencement of the Season 1 TAB field work and when the ambient temperature is within Season 2 limits, accomplish Season 2 TAB field work. Also, if Season 2 is the season of maximum cooling load, the field work shall be completed in June - September.

Submit Season 2 TAB Report: Within 15 calendar days after completion of Season 2 TAB field work, submit Season 2 TAB report.

Season 2 TAB Field Check: 30 calendar days after the Season 2 TAB report is approved by the Contracting Officer, conduct Season 2 field check.

Complete Season 2 TAB Work: Within 15 calendar days after the completion of Season 2 TAB field data check, complete all TAB work.

1.6.1.1 Design Review Report

Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.

1.6.1.2 Pre-Field DALT Preliminary Notification

Notification: On completion of the installation of each duct system indicated to be DALT'd, notify the Contracting Officer in writing within 7 calendar days after completion.

1.6.1.3 Pre-Field TAB Engineering Report

Submit report containing the following information:

a. Step-by-step TAB procedure:

(1) Strategy: Describe the method of approach to the TAB field work from start to finish. Include in this description a complete methodology for accomplishing each seasonal TAB field work session.

(2) Air System Diagrams: Use the contract drawings and duct fabrication drawings if available to provide air system diagrams in the report showing the location of all terminal outlet supply, return, exhaust and transfer registers, grilles and diffusers. Use a key numbering system on the diagrams which identifies each outlet contained in the outlet airflow report sheets. Show intended locations of all traverses and static pressure readings.

(3) Procedural steps: Delineate fully the intended procedural steps to be taken by the TAB field team to accomplish the required TAB work of each air distribution system and each water distribution system. Include intended procedural steps for TAB work for subsystems and system components.

b. Pre-field data: Submit AABC or NEBB or SMACNA 1780 data report forms with the following pre-field information filled in:
(1) Design data obtained from system drawings, specifications, and approved submittals.

(2) Notations detailing additional data to be obtained from the contract site by the TAB field team.

(3) Designate the actual data to be measured in the TAB field work.

(4) Provide a list of the types of instruments, and the measuring range of each, which are anticipated to be used for measuring in the TAB field work. By means of a keying scheme, specify on each TAB data report form submitted, which instruments will be used for measuring each item of TAB data. If the selection of which instrument to use, is to be made in the field, specify from which instruments the choice will be made. Place the instrument key number in the blank space where the measured data would be entered.

c. Prerequisite HVAC work checkout list: Provide a list of inspections and work items which are to be completed by the Contractor. This list must be acted upon and completed by the Contractor and then submitted and approved by the Contracting Officer prior to the TAB team coming to the contract site.

At a minimum, a list of the applicable inspections and work items listed in the NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" must be provided for each separate system to be TAB’d.

1.7 SUBCONTRACTOR SPECIAL REQUIREMENTS

Perform all work in this section in accordance with the paragraph entitled "Subcontractor Special Requirements" in Section 01 30 00 ADMINISTRATIVE REQUIREMENTS, stating that all contract requirements of this section must be accomplished directly by a first tier subcontractor. No work may be performed by a second tier subcontractor.

1.8 WARRANTY

Furnish workmanship and performance warranty for the DALT and TAB system work performed for a period not less than 2 years from the date of Government acceptance of the work; issued directly to the Government. Include provisions that if within the warranty period the system shows evidence of major performance deterioration, or is significantly out of tolerance, resulting from defective TAB or DALT workmanship, the corrective repair or replacement of the defective materials and correction of the defective workmanship is the responsibility of the TAB firm. Perform corrective action that becomes necessary because of defective materials and workmanship while system TAB and DALT is under warranty 7 days after notification, unless additional time is approved by the Contracting Officer. Failure to perform repairs within the specified period of time constitutes grounds for having the corrective action and repairs performed by others and the cost billed to the TAB firm. The Contractor must also provide a 2 year contractor installation warranty.

PART 2 PRODUCTS

Not Used
PART 3 EXECUTION

3.1 WORK DESCRIPTIONS OF PARTICIPANTS

Comply with requirements of this section as specified in Appendix A WORK DESCRIPTIONS OF PARTICIPANTS.

3.2 PRE-DALT/TAB MEETING

Meet with the Contracting Officer's technical representative (COTR) to develop a mutual understanding relative to the details of the DALT work and TAB work requirements. Ensure that the TAB supervisor is present at this meeting. Requirements to be discussed include required submittals, work schedule, and field quality control.

3.3 DALT PROCEDURES

3.3.1 Instruments, Consumables and Personnel

Provide instruments, consumables and personnel required to accomplish the DALT field work. Follow the same basic procedure specified below for TAB Field Work, including maintenance and calibration of instruments, accuracy of measurements, preliminary procedures, field work, workmanship and treatment of deficiencies. Calibrate and maintain instruments in accordance with manufacturer's written procedures.

3.3.2 Advance Notice of Pre-Final DALT Field Work

On completion of the installation of each duct system indicated to be DALT'd, notify the Contracting Officer in writing prior to the COTR's duct selection field visit.

3.3.3 Ductwork To Be DALT'd

Test 100% of all new supply, return, exhaust, transfer and outside air ducts. Test 100% of existing to be re-used ducts that are noted to be sealed.

3.3.4 DALT Testing

DALT test should be conducted in accordance with applicable duct, seal, and leakage class found in SMACNA Table 4-1 of the HVAC Air Duct Leakage Test Manual, with the following exceptions. The DALT shall include air moving devices such as but not limited to fans and air handlers. Curb mounted exhaust fans may be excluded. All duct appurtenances such as, but not limited to manual and automatic control dampers, access doors, and fire dampers shall be in place. Belt drive inline duct fans with the motor mounted outside the air stream may have the belt removed and belt opening sealed over for the test. Terminal devices such as diffusers, registers, and grills need not be in place. Terminal devices or the openings for terminal devices shall be blanked or covered air tight. Unless otherwise noted, all duct shall be sealed to duct seal class A, with a SMACNA leakage of 3 for round and oval ducts, 6 for rectangular ducts and 20 for air handler and fan casings, with a test pressure of 1".

3.3.5 Pre-final DALT Report

After completion of the DALT work, prepare a Pre-final DALT Report meeting
the additional requirements specified in Appendix B REPORTS - DALT and TAB. Data required by those data report forms shall be furnished by the TAB team. Prepare the report neatly and legibly; the Pre-final DALT report shall provide the basis for the Final DALT Report.

TAB supervisor shall review, approve and sign the Pre-Final DALT Report and submit this report within one day of completion of DALT field work. Verbally notify the COTR that the field check of the Pre-Final DALT Report data can commence.

After completion of the DALT work, prepare a Pre-final DALT Report using the reporting forms specified. TAB team to furnish data required by those data report forms. Prepare the report neatly and legibly; the Pre-final DALT report is the basis for the Final DALT Report. TAB supervisor must review and certify the Pre-final DALT Report and submit this report within one day of completion of DALT field work. Verbally notify the COTR that the field check of the Pre-final DALT Report data can commence.

3.3.6 Quality Assurance - COTR DALT Field Acceptance Testing

In the presence of the COTR and TAB team field leader, verify for accuracy Pre-final DALT Report data selected by the COTR. For each duct system, this acceptance testing shall be conducted on a maximum of 50 percent of the duct sections DALT'd.

Further, if any data on the Pre-final DALT report form for a given duct section is out-of-tolerance, then field acceptance testing shall be conducted on data for one additional duct section, preferably in the same duct system, in the presence of the COTR.

3.3.7 Additional COTR Field Acceptance Testing

If any of the duct sections checked for a given system are determined to have a leakage rate measured that exceeds the leakage rate allowed by SMACNA Leak Test Manual for an indicated duct construction class and sealant class, terminate data checking for that section. The associated Pre-final DALT Report data for the given duct system will be disapproved. Make the necessary corrections and prepare a revised Pre-final DALT Report. Reschedule a field check of the revised report data with the COTR.

3.3.8 Certified Final DALT Report

On successful completion of all field checks of the Pre-final DALT Report data for all systems, the TAB Supervisor is to assemble, review, certify and submit the Final DALT Report to the Contracting Officer for approval.

On successful completion of all field checks of the Pre-Final DALT Report data for all systems, the TAB Supervisor shall assemble, review, approve, sign and submit the Final DALT Report in compliance with Appendix B REPORTS - DALT and TAB to the Contracting Officer for approval.

3.3.9 Prerequisite for TAB Field Work

Do not commence TAB field work prior to the completion and approval, for all systems, of the Final DALT Report.
3.4 TAB PROCEDURES

3.4.1 TAB Field Work

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents.

That is, comply with the the requirements of AABC MN-1 and AABC MN-4, NEBB PROCEDURAL STANDARDS, NEBB MASV, or SMACNA 1780 (TABB) and SMACNA 1858 (TABB), except as supplemented and modified by this section.

Provide instruments and consumables required to accomplish the TAB work. Calibrate and maintain instruments in accordance with manufacturer's written procedures.

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. Conduct TAB work, including measurement accuracy, and sound measurement work in conformance with the AABC MN-1 and AABC MN-4, or NEBB TABES and NEBB MASV, or SMACNA 1780 (used by TABB) and SMACNA 1858 sound measurement procedures, except as supplemented and modified by this section. The only water flow and air flow reporting which can be deferred until the Season 2 is that data which would be affected in terms of accuracy due to outside ambient conditions.

3.4.2 Preliminary Procedures

Use the approved pre-field engineering report as instructions and procedures for accomplishing TAB field work. TAB engineer is to locate, in the field, test ports required for testing. It is the responsibility of the sheet metal contractor to provide and install test ports as required by the TAB engineer.

3.4.3 TAB Air Distribution Systems

3.4.3.1 Units With Coils

Report heating and cooling performance capacity tests for hot water, chilled water, DX and steam coils for the purpose of verifying that the coils meet the indicated design capacity. Submit the following data and calculations with the coil test reports:

a. For air handlers with capacities greater than 7.5 tons (90,000 Btu) cooling, such as factory manufactured units, central built-up units and rooftop units, conduct capacity tests in accordance with AABC MN-4, procedure 3.5, "Coil Capacity Testing."

Do not determine entering and leaving wet and dry bulb temperatures by single point measurement, but by the average of multiple readings in compliance with paragraph 3.5-5, "Procedures", (in subparagraph d.) of AABC MN-4, Procedure 3.5, "Coil Capacity Testing."

Submit part-load coil performance data from the coil manufacturer converting test conditions to design conditions; use the data for the purpose of verifying that the coils meet the indicated design capacity in compliance with AABC MN-4, Procedure 3.5, "Coil Capacity Testing," paragraph 3.5.7, "Actual Capacity Vs. Design Capacity" (in subparagraph c.).
b. For units with capacities of 7.5 tons (90,000 Btu) or less, such as fan coil units, duct mounted reheat coils associated with VAV terminal units, and unitary units, such as through-the-wall heat pumps:

Determine the apparent coil capacity by calculations using single point measurement of entering and leaving wet and dry bulb temperatures; submit the calculations with the coil reports.

3.4.3.2 Air Handling Units

Air handling unit systems including fans, coils, ducts, plenums, mixing boxes, variable air volume boxes, and air distribution devices for supply air, return air, and outside air.

3.4.3.3 Hot Water Coils

Hot water coil systems including coils, ducts, and air distribution devices for supply air, return air, and outside air.

3.4.3.4 Exhaust Fans

Exhaust fan systems including fans, ducts, plenums, grilles, and hoods for exhaust air.

3.4.3.5 Unit Heaters

3.4.4 TAB Water Distribution Systems

3.4.4.1 Chilled Water

Chilled water systems including chillers, pumps, coils, system balance valves and flow measuring devices.
For water chillers, report data as required by AABC, NEBB and TABB standard procedures, including refrigeration operational data.

3.4.4.2 Heating Hot Water

Heating hot water systems including boilers, hot water converters (e.g., heat exchangers), pumps, coils, system balancing valves and flow measuring devices.

3.4.5 TAB Work on Performance Tests With Seasonal Limitations

3.4.5.1 Performance Tests

Accomplish proportionate balancing TAB work on the air distribution systems and water distribution systems, in other words, accomplish adjusting and balancing of the air flows and water flows, any time during the duration of this contract, subject to the limitations specified elsewhere in this section. However, accomplish, within the following seasonal limitations, TAB work on HVAC systems which directly transfer thermal energy.

3.4.5.2 Season Of Maximum Load

Visit the contract site for at least two TAB work sessions for TAB field measurements. Visit the contract site during the season of maximum heating load and visit the contract site during the season of maximum cooling load, the goal being to TAB the operational performance of the heating systems and cooling systems under their respective maximum outdoor environment-caused...
loading. During the seasonal limitations, TAB the operational performance of the heating systems and cooling systems.

3.4.5.3 Ambient Temperatures

On each tab report form used for recording data, record the outdoor and indoor ambient dry bulb temperature range and the outdoor and indoor ambient wet bulb temperature range within which the report form's data was recorded. Record these temperatures at beginning and at the end of data taking.

3.4.5.4 Water Chillers

Water chillers: For water chillers, report data as required by NEBB Form TAB 15-83, NEBB PROCEDURAL STANDARDS, including refrigeration operational data.

3.4.5.5 Coils

Report heating and cooling performance capacity tests for hot water and chilled water coils for the purpose of verifying that the coils meet the indicated design capacity. Submit the following data and calculations with the coil test reports:

a. For Central station air handlers with capacities greater than 7.5 tons (90,000 Btu) cooling, such as factory manufactured units, central built-up units and rooftop units, conduct capacity tests in accordance with AABC MN-4, procedure 3.5, "Coil Capacity Testing."

Entering and leaving wet and dry bulb temperatures are not determined by single point measurement, but by the average of multiple readings in compliance with paragraph 3.5-5, "Procedures", (in subparagraph d.) of AABC MN-4, Procedure 3.5, "Coil Capacity Testing."

Submit part-load coil performance data from the coil manufacturer converting test conditions to design conditions; use the data for the purpose of verifying that the coils meet the indicated design capacity in compliance with AABC MN-4, Procedure 3.5, "Coil Capacity Testing," paragraph 3.5.7, "Actual Capacity Vs. Design Capacity" (in subparagraph c.).

b. For units with capacities of 7.5 tons (90,000 Btu) or less, such as fan coil units, duct mounted reheat coils associated with VAV terminal units, and unitary units, such as through-the-wall heat pumps:

Determine the apparent coil capacity by calculations using single point measurement of entering and leaving wet and dry bulb temperatures; submit the calculations with the coil reports.

3.4.6 Workmanship

Conduct TAB work on the HVAC systems until measured flow rates are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. This TAB work includes adjustment of balancing valves, balancing dampers, and sheaves. Further, this TAB work includes changing out fan sheaves and pump impellers if required to obtain air and water flow rates specified or indicated. The Contractor is responsible for cleaning strainers and coils (interior and exterior as necessary) if required to obtain air and water flow rates specified or indicated. If,
with these adjustments and equipment changes, the specified or indicated design flow rates cannot be attained, contact the Contracting Officer for direction.

3.4.7 Deficiencies

Strive to meet the intent of this section to maximize the performance of the equipment as designed and installed. However, if deficiencies in equipment design or installation prevent TAB work from being accomplished within the range of design values specified in the paragraph entitled "Workmanship," provide written notice as soon as possible to the Contractor and the Contracting Officer describing the deficiency and recommended correction.

Responsibility for correction of installation deficiencies is the Contractor's. If a deficiency is in equipment design, call the TAB team supervisor for technical assistance. Responsibility for reporting design deficiencies to Contractor is the TAB team supervisor's.

3.4.8 TAB Reports

Additional requirements for TAB Reports are specified in Appendix B REPORTS - DALT and TAB

After completion of the TAB field work, prepare the TAB field data for TAB supervisor's review and certification, using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms is to be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and thereby the TAB report is considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph entitled "Workmanship."

3.4.9 Quality Assurance - COTR TAB Field Acceptance Testing

3.4.9.1 TAB Field Acceptance Testing

During the field acceptance testing, verify, in the presence of the COTR, random selections of data (water, air quantities, air motion) recorded in the TAB Report. Points and areas for field acceptance testing are to be selected by the COTR. Measurement and test procedures are the same as approved for TAB work for the TAB Report.

Field acceptance testing includes verification of TAB Report data recorded for the following equipment groups:

Group 1: All chillers, boilers, and air handling units (rooftop and central stations).

Group 2: 25 percent of the VAV terminal boxes and associated diffusers and registers.

Group 3: 25 percent of the supply diffusers, registers, grilles.

Group 4: 25 percent of the return grilles, return registers, exhaust grilles and exhaust registers.

Group 5: 25 percent of the supply fans, and exhaust fans.
Further, if any data on the TAB Report for Groups 2 through 5 is found not to fall within the range of plus 5 to minus 5 percent of the TAB Report data, additional group data verification is required in the presence of the COTR. Verify TAB Report data for one additional piece of equipment in that group. Continue this additional group data verification until out-of-tolerance data ceases to be found.

3.4.9.2 Additional COTR TAB Field Acceptance Testing

If any of the acceptance testing measurements for a given equipment group is found not to fall within the range of plus 5 to minus 5 percent of the TAB Report data, terminate data verification for all affected data for that group. The affected data for the given group will be disapproved. Make the necessary corrections and prepare a revised TAB Report. Reschedule acceptance testing of the revised report data with the COTR. Further, if any data on the TAB Report for a given field acceptance test group is out-of-tolerance, then field test data for one additional field test group as specified herein. Continue this increase field test work until out-of-tolerance data ceases to be found. This additional field testing is up and above the original 25 percent of the reported data entries to be field tested.

If there are no more similar field test groups from which to choose, additional field testing from another, but different, type of field testing group must be tested.

3.4.9.3 Prerequisite for Approval

Compliance with the field acceptance testing requirements of this section is a prerequisite for the final Contracting Officer approval of the TAB Report submitted.

3.5 MARKING OF SETTINGS

Upon the final TAB work approval, permanently mark the settings of HVAC adjustment devices including valves, gauges, splitters, and dampers so that adjustment can be restored if disturbed at any time. Provide permanent markings clearly indicating the settings on the adjustment devices which result in the data reported on the submitted TAB report.

3.6 MARKING OF TEST PORTS

The TAB team is to permanently and legibly mark and identify the location points of the duct test ports. If the ducts have exterior insulation, make these markings on the exterior side of the duct insulation. Show the location of test ports on the as-built mechanical drawings with dimensions given where the test port is covered by exterior insulation.

3.7 APPENDICES

Appendix A WORK DESCRIPTIONS OF PARTICIPANTS
Appendix B REPORTS – DALT and TAB
Appendix C REQUIREMENTS FOR DUCT AIR LEAK TESTING
Appendix A

WORK DESCRIPTIONS OF PARTICIPANTS

The Contractor is responsible for ensuring compliance with all requirements of this specification section. However, the following delineation of specific work items is provided to facilitate and co-ordinate execution of the various work efforts by personnel from separate organizations.

1. Contractor

a. HVAC documentation: Provide pertinent contract documentation to the TAB Firm, to include the following: the contract drawings and specifications; copies of the approved submittal data for all HVAC equipment, air distribution devices, and air/water measuring/balancing devices; the construction work schedule; and other applicable documents requested by the TAB Firm. Provide the TAB Firm copies of contract revisions and modifications as they occur.

b. Schedules: Ensure the requirements specified under the paragraph "DALT and TAB Schedule" are met.

c. Pre-DALT and TAB meeting: Arrange and conduct the Pre-DALT and TAB meeting. Ensure that a representative is present for the sheet metal contractor, the mechanical contractor, the electrical contractor, and the automatic temperature controls contractor.

d. Coordinate Support: Provide and coordinate support personnel required by the TAB Firm in order to accomplish the DALT and TAB field work. Support personnel may include factory representatives, HVAC controls installers, HVAC equipment mechanics, sheet metal workers, pipe fitters, and insulators. Ensure support personnel are present at the work site at the times required.

e. Correct Deficiencies: Ensure the notifications of Construction Deficiencies are provided as specified herein. Refer to the paragraph entitled "Construction Deficiencies." Correct each deficiency as soon as practical with the Contracting Officer, and submit revised schedules and other required documentation.

f. Pre-TAB Work Checklists: Complete check out and debugging of HVAC equipment, ducts, and controls prior to the TAB engineer arriving at the project site to begin the TAB work. Debugging includes searching for and eliminating malfunctioning elements in the HVAC system installations, and verifying all adjustable devices are functioning as designed. Include as pre-TAB work checklist items, the deficiencies pointed out by the TAB team supervisor in the design review report.

Prior to the TAB field team's arrival, ensure completion of the applicable inspections and work items listed in the TAB team supervisor's DALT and TAB Work Procedures Summary. Do not allow the TAB team to commence TAB field work until all of the following are completed.

g. Give Notice of Testing: Submit advance notice of TAB field work accompanied by completed prerequisite HVAC Work List

h. Insulation work: Ensure that no insulation is shall not be installed on ducts to be DALT'd until DALT work on the subject ducts is complete.
Ensure the duct and piping systems are properly insulated and vapor sealed upon the successful completion and acceptance of the DALT and TAB work.

2. TAB Team Supervisor
 a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical DALT and TAB procedures and TAB team field work.
 b. Schedule: Ensure the requirements specified under the paragraph "DALT and TAB Schedule" are met.
 c. Submittals: Provide the submittals specified herein.
 d. Pre-DALT/TAB meeting: Attend meeting with Contractor. Ensure TAB personnel that will be involved in the TAB work under this contract attend the meeting.
 e. Design Review Report: Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.
 f. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment. Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the DALT and TAB Procedures Summary, the during the DALT or TAB field work.

 Ensure the Contractor is properly notified and aware of all support personnel needed to perform the TAB work. Maintain communication with the Contractor regarding support personnel throughout the duration of the TAB field work, including the TAB field acceptance testing checking.

 Ensure all inspections and verifications for the Pre-Final DALT and Pre-TAB Checklists are completely and successfully conducted before DALT and TAB field work is performed.
 g. Advance Notice: Monitor the completion of the duct system installations and provide the Advance Notice for Pre-Final DALT field work as specified herein.
 h. Technical Assistance: Provide technical assistance to the DALT and TAB field work.
 i. Deficiencies Notification: Ensure the notifications of Construction Deficiencies are provided as specified herein. Comply with requirements of the paragraph entitled "Construction Deficiencies." Resolve each deficiency as soon as practical and submit revised schedules and other required documentation.
 j. Procedures: Develop the required TAB procedures for systems or system components not covered in the TAB Standard.
3. TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work specified in Part 3, "Execution."

b. Full time: Be present at the contract site when DALT field work or TAB field work is being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC work list, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.
Appendix B

REPORTS - DALT and TAB

All submitted documentation must be typed, neat, and organized. All reports must have a waterproof front and back cover, a title page, a certification page, sequentially numbered pages throughout, and a table of contents. Tables, lists, and diagrams must be titled. Generate and submit for approval the following documentation:

1. DALT and TAB Work Execution Schedule

Submit a detailed schedule indicating the anticipated calendar date for each submittal and each portion of work required under this section. For each work entry, indicate the support personnel (such as controls provider, HVAC mechanic, etc.) that are needed to accomplish the work. Arrange schedule entries chronologically.

2. DALT and TAB Procedures Summary

Submit a detailed narrative describing all aspects of the DALT and TAB field work to be performed. Clearly distinguish between DALT information and TAB information. Include the following:

a. A list of the intended procedural steps for the DALT and TAB field work from start to finish. Indicate how each type of data measurement will be obtained. Include what Contractor support personnel are required for each step, and the tasks they need to perform.

b. A list of the project's submittals that are needed by the TAB Firm in order to meet this Contract's requirements.

c. The schematic drawings to be used in the required reports, which may include building floor plans, mechanical room plans, duct system plans, and equipment elevations. Indicate intended TAB measurement locations, including where test ports need to be provided by the Contractor.

d. The data presentation forms to be used in the report, with the preliminary information and initial design values filled in.

e. A list of DALT and TAB instruments to be used, edited for this project, to include the instrument name and description, manufacturer, model number, scale range, published accuracy, most recent calibration date, and what the instrument will be used for on this project.

f. A thorough checklist of the work items and inspections that need to be accomplished before DALT field work can be performed. The Contractor must complete, submit, and receive approval of the Completed Pre-Final DALT Work Checklist before DALT field work can be accomplished.

g. A thorough checklist of the work items and inspections that need to be accomplished before the Season 1 TAB field work can be performed. The Contractor must complete, submit, and receive approval of the Completed Season 1 Pre-TAB Work Checklist before the Season 1 TAB field work can be accomplished.

h. A thorough checklist of the work items and inspections that need to be
accomplished before the Season 2 TAB field work can be performed. The Contractor must complete, submit, and receive approval of the Completed Season 2 Pre-TAB Work Checklist before the Season 2 TAB field work can be accomplished.

i. The checklists specified above shall be individually developed and tailored specifically for the work under this contract. Refer to NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under the paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" for examples of items to include in the checklists.

3. Design Review Report

Submit report containing the following information:

a. Review the contract specifications and drawings to verify that the TAB work can be successfully accomplished in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

b. Submit a typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the DALT work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. If no deficiencies are evident, state so in the report.

4. Pre-Final DALT Report for COTR DALT Field Checks

Report the data for the Pre-Final DALT Report meeting the following requirements:

a. Submit a copy of the approved DALT and TAB Procedures Summary: Provide notations describing how actual field procedures differed from the procedures listed.

b. Report format: Submit a comprehensive report for the DALT field work data using data presentation forms equivalent to the "Air Duct Leakage Test Summary Report Forms" located in the SMACNA 1143. In addition, submit in the report, a marked duct shop drawing which identifies each section of duct tested with assigned node numbers for each section. Node numbers shall be included in the completed report forms to identify each duct section.

c. Calculations: Include a copy of all calculations prepared in determining the duct surface area of each duct test section. Include in the DALT reports copy(s) of the calibration curve for each of the DALT test orifices used for testing.

d. Instruments: List the types of instruments actually used to measure the data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date. Instruments are to be calibrated within one year of the date of use in the field; instrument calibration is to be traceable to the measuring standards of the National Institute of Standards and Technology.
e. TAB Supervisor Approval: Include on the submitted report the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

5. Final DALT Report

On successful completion of all COTR field checks of the Pre-final DALT Report data for all systems, the TABS Supervisor shall assemble, review, sign and submit the Final DALT Report to the Contracting Officer for approval.

6. TAB Reports: Submit TAB Report for Season 1 and TAB Report for Season 2 in the following manner:

a. Procedure Summary: Submit a copy of the approved DALT and TAB Procedures Summary. When applicable, provide notations describing how actual field procedures differed from the procedures listed.

b. Report format: Submit the completed data forms approved in the pre-field TAB Engineering Report completed by TAB field team, reviewed, approved and signed by the TAB supervisor. Bind the report with a waterproof front and back cover. Include a table of contents identifying by page number the location of each report. Report forms and report data shall be typewritten. Handwritten report forms or report data are not acceptable.

c. Temperatures: On each TAB report form reporting TAB work accomplished on HVAC thermal energy transfer equipment, include the indoor and outdoor dry bulb temperature range and indoor and outdoor wet bulb temperature range within which the TAB data was recorded. Include in the TAB report continuous time versus temperature recording data of wet and dry bulb temperatures for all new systems in the building.

 (1) Data shall be measured and compiled on a continuous basis for the period in which TAB work affecting those rooms is being done.

 (2) Data shall be measured/recorded only after the HVAC systems installations are complete, the systems fully balanced and the HVAC systems controls operating in fully automatic mode. Provide a detailed explanation wherever a final measurement did not achieve the required value.

 (3) Data may be compiled using direct digital controls trend logging where available. Otherwise, the Contractor shall temporarily install calibrated time versus temperature/humidity recorders for this purpose. The HVAC systems and controls shall have been fully operational a minimum of 24 hours in advance of commencing data compilation. The specified data shall be included in the Season I and Season 2 TAB Report.

d. Air System Diagrams: Provided updated diagrams with final installed locations of all terminals and devices, any numbering changes, and actual test locations.

e. Air Static Pressure Profiles: Report static pressure profiles for air duct systems including: all air handlers, energy recovery ventilators, and VAVs. Report static pressure data for all supply, return, exhaust and outside air ducts for the systems listed. The static pressure
report data shall include, in addition to AABC or NEBB or TABB required data, the following:

(1) Report supply fan, and exhaust fan inlet and discharge static pressures.

(2) Report static pressure drop across chilled water coils, hot water coils and heat reclaim devices installed in unit cabinetry or the system ductwork.

(3) Report static pressure drop across outside air, return air, and supply air automatic control dampers, both proportional and two-position, installed in unit cabinetry.

(4) Report static pressure drop across air filtersair flow measuring stations or other pressure drop producing specialty items installed in unit cabinetry, or in the system ductwork. Examples of these specialty items are smoke detectors, and small pipes passing through ductwork, and duct mounted humidifiers.

Do not report static pressure drop across duct fittings provided for the sole purpose of conveying air, such as elbows, transitions, offsets, plenums, manual dampers, and branch takes-offs.

(5) Report static pressure drop across outside air and exhaust air louvers.

(6) Report static pressure readings of supply air, return air, exhaust air, and outside air in duct at the point where these ducts connect to each air moving unit.

f. Instruments: List the types of instruments actually used to measure the tab data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date.

Instrumentation, used for taking wet bulb temperature readings shall provide accuracy of plus or minus 5 percent at the measured face velocities. Submit instrument manufacturer's literature to document instrument accuracy performance is in compliance with that specified.

g. Performance Curves: The TAB Supervisor shall include, in the TAB Reports, factory pump curves and fan curves for pumps and fans TAB'd on the job.

h. Calibration Curves: The TAB Supervisor shall include, in the TAB Reports, a factory calibration curve for installed flow control balancing valves, flow venturis and flow orifices TAB'd on the job.

i. Data From TAB Field Work: After completion of the TAB field work, prepare the TAB field data for TAB supervisor's review and approval signature, using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms shall be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and thereby the TAB report shall be considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph entitled "Workmanship."

SECTION 23 05 93 Page 32
Appendix C
REQUIREMENTS FOR DUCT AIR LEAK TESTING

<table>
<thead>
<tr>
<th>SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Handling Units and Energy Recovery Ventilators</td>
</tr>
</tbody>
</table>

Duct System Static Pressure, in inches W.C.

<table>
<thead>
<tr>
<th>Supply</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>2</td>
</tr>
<tr>
<td>Exhaust</td>
<td>2</td>
</tr>
<tr>
<td>Outside Air</td>
<td>2</td>
</tr>
</tbody>
</table>

System Oval/Round Duct and Rectangular Duct SMACNA Seal Class

<table>
<thead>
<tr>
<th>Supply</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>C</td>
</tr>
<tr>
<td>Exhaust</td>
<td>C</td>
</tr>
<tr>
<td>Outside Air</td>
<td>C</td>
</tr>
</tbody>
</table>
Appendix C

REQUIREMENTS FOR DUCT AIR LEAK TESTING

<table>
<thead>
<tr>
<th>SYSTEMS</th>
<th>Oval/Round Duct SMACNA Leak Class</th>
<th>Rectangular Duct SMACNA Leak Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Handling Units and Energy Recovery Ventilators</td>
<td>for Supply: 12</td>
<td>for Supply: 24</td>
</tr>
<tr>
<td></td>
<td>for Return: 12</td>
<td>for Return: 24</td>
</tr>
<tr>
<td></td>
<td>for Exhaust: 12</td>
<td>for Exhaust: 24</td>
</tr>
<tr>
<td></td>
<td>for Outside Air: 12</td>
<td>for Outside Air: 24</td>
</tr>
</tbody>
</table>
REQUIREMENTS FOR DUCT AIR LEAK TESTING

<table>
<thead>
<tr>
<th>Duct Test Pressure, in inches W.C.</th>
<th>for Supply</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>for Return</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Exhaust</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Outside Air</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

--- End of Section ---
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Year; Edition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C 533</td>
<td>(1995)</td>
<td>Calcium Silicate Block and Pipe Thermal Insulation</td>
</tr>
<tr>
<td>ASTM C 534</td>
<td>(1994)</td>
<td>Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form</td>
</tr>
</tbody>
</table>
| ASTM C 578 | (2010a) | Standard Specification for Rigid,
Cellular Polystyrene Thermal Insulation

ASTM C 916 (1985; R 1990) Adhesives for Duct Thermal Insulation

ASTM E 96 (1997; Rev A) Water Vapor Transmission of Materials

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

FS L-P-535 (Rev. E; Notice 2) Plastic Sheet (Sheeting): Plastic Strip: Poly (Vinyl Chloride) and Poly(Vinyl Chloride-Vinyl Acetate), Rigid

U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-A-3316 (Rev. C; Am. 2) Adhesives, Fire-Resistant, Thermal Insulation

MIL-C-19565 (Rev. C; Am. 1) Coating Compounds, Thermal Insulation, Fire- and Water-Resistant, Vapor Barrier

MIL-C-20079 (Rev. H) Cloth, Glass: Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

MIL-A-24179 (Rev. A) (Valid Notice 1) Adhesive, Flexible Unicellular-Plastic Thermal Insulation

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

UNDERWRITERS LABORATORIES (UL)

UL 723 (2008; Reprint Aug 2013) Test for Surface Burning Characteristics of Building
1.2 SYSTEM DESCRIPTION

Provide field-applied insulation for heating, ventilating, and cooling (HVAC) air distribution systems and piping systems which are located within, on, under, and adjacent to buildings; and for plumbing piping systems.

1.2.1 Air Distribution System

Obtain Contracting Officer's written approval of systems under Section 23 05 93, "Testing, Adjusting, and Balancing for HVAC" before applying field-applied insulation to air distribution systems.

1.2.2 Piping Systems

Obtain Contracting Officer's written approval of HVAC water distribution systems under Section 23 05 93, "Testing, Adjusting, and Balancing for HVAC" before applying field-applied insulation to HVAC water distribution systems. At the Contractor's option and with Contracting Officer's written approval, the piping systems may be insulated before systems are tested, adjusted, and balanced (TAB'd). Piping insulation shall terminate immediately adjacent to each flow control valve, automatic control valve, or device. For chilled water and chilled-hot water piping, the ends of pipe insulation and the space between ends of pipe insulation and piping shall be sealed with waterproof vapor barrier coating. After systems are TAB'd, the control valves and devices shall be insulated.

1.3 DEFINITIONS

1.3.1 Finished Spaces

Spaces used for habitation or occupancy where rough surfaces are plastered, panelled, or otherwise treated to provide a pleasing appearance.

1.3.2 Unfinished Spaces

Spaces used for storage or work areas where appearance is not a factor, such as unexcavated spaces and crawl space.

1.3.3 Concealed Spaces

Spaces out of sight. For example, above ceilings; below floors; between double walls; furred-in areas; pipe and duct shafts; and similar spaces.

1.3.4 Exposed

Open to view. For example, pipe running through a room and not covered by other construction.

1.3.5 Fugitive Treatments

Treatment subject to deterioration due to aging, moisture, high humidity, oxygen, ozone, and heat. Fugitive materials are entrapped materials that can cause deterioration, such as solvents and water vapor.
1.3.6 Outside

Open to view up to 5 feet beyond the exterior side of walls, above the roof, and unexcavated or crawl spaces.

1.3.7 Conditioned Space

An area, room or space normally occupied and being heated or cooled for human habitation by any equipment.

1.4 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-03 Product Data

- Piping insulation
- Piping insulation finishes
- Heating, ventilating, and air conditioning systems insulation
- Duct insulation finishes
- Accessory materials
- Adhesives, sealants, and coating compounds

1.5 QUALITY ASSURANCE

Every package or standard container of insulation, jackets, cements, adhesives, and coatings delivered to the project site shall have the manufacturer's stamp or label attached giving name of manufacturer, brand and description of material. Insulation packages and containers shall be asbestos-free.

1.6 FLAME-SPREAD AND SMOKE-DEVELOPED RATINGS

In accordance with NFPA 255, ASTM E 84 or UL 723, the materials on interior of the building shall have a flame-spread rating of not more than 25 and a smoke-developed rating of not more than 150 interior to the building.

1.6.1 Materials Tests

Test factory-applied materials as assembled. Field-applied materials may be tested individually. Use no fugitive or corrosive treatments to impart flame resistance. UL label or satisfactory certified test report from a testing laboratory will be required to indicate that fire hazard ratings for materials proposed for use do not exceed those specified. Flame-proofing treatments subject to deterioration due to effects of moisture or high humidity are not acceptable.

1.6.2 Materials Exempt From Fire-Resistant Rating

Nylon anchors.
PART 2 PRODUCTS

2.1 PIPING INSULATION

Piping systems, except buried pipe requiring insulation, types of insulation required, and insulation thickness shall be as listed in Tables I herein. Unless otherwise specified, insulate all fittings, flanges, and valves, except valve stems, hand wheels, and operators. Provide factory premolded, precut, or field-fabricated insulation of the same thickness and conductivity as insulation on adjacent piping. Insulation exterior shall be factory cleanable, grease resistant, non-flaking and non-peeling. Pipe insulation shall conform to the referenced publications.

2.1.1 Flexible Unicellular Insulation

2.1.1.1 Recommended Adhesive

ASTM C 534. Provide adhesive as recommended by insulation manufacturer or conforming with MIL-A-24179, Type II, Class 1.

2.1.1.2 Polyolefin thermoplastic

Polyolefin thermoplastic meets ASTM C 534, except density.

2.1.1.3 Adhesive For Finishing Flexible Unicellular Insulation

MIL-A-3316, Class 1, Grade A.

2.1.1.4 Glass Cloth For Finishing Flexible Unicellular Insulation

MIL-C-20079, Type I, Class 1, 3, or 5.

2.1.2 Cellular Glass Insulation

ASTM C 552, Type II.

2.1.3 Cellular Phenolic Insulation

ASTM C 1136.

2.1.4 Mineral Fiber

ASTM C 547, Class I.

2.1.5 Calcium Silicate

ASTM C 533, Class I.

2.1.6 Cellular Polystyrene

ASTM C 578, Expanded Polystyrene (EPS).

2.1.7 Piping Insulation Finishes

2.1.7.1 All-Purpose Jacket

Provide a factory applied all-purpose jacket when field applied jacketing is not specified. All purpose jackets shall include integral vapor barrier as required by service. Provide jackets in exposed locations with a white
surface suitable for field painting. Allow a maximum water vapor permeance of 0.05 perm in accordance with ASTM E 96, a puncture resistance of not less than 50 Beach units, and a minimum tensile strength of 35 pounds-force per inch of width in accordance with ASTM D 828.

2.1.7.2 Vapor-Barrier Material

ASTM C 1136. Resistant to flame, moisture penetration, and mold growth. Provide vapor-barrier material on pipe insulation as required in Table I.

2.1.7.3 Metal Jackets

a. Aluminum Jackets: ASTM B 209, Temper H14, minimum thickness of 27 gage (0.016 inch), with factory-applied polyethylene and kraft paper moisture barrier on inside surface. Provide smooth surface jackets for jacket outside diameters less than 8 inches. Provide corrugated surface jackets for jacket outside diameters 8 inches and larger. Provide stainless steel bands, minimum width of 0.5 inch. Provide factory prefabricated aluminum covers for insulation on fittings, valves and flanges.

b. Stainless Steel Jackets: ASTM A 167 or ASTM A 240/A 240M; Type 304, minimum thickness of 33 gage (0.010 inch), smooth surface with factory-applied polyethylene and kraft paper moisture barrier on inside surface. Provide stainless steel bands, minimum width of 0.5 inch. Provide factory prefabricated stainless steel covers for insulation on fittings, valves, and flanges.

c. Piping, Fittings, Flanges, and Valves in Outside Locations: Finish elbows and curved piping with factory-fabricated metal covers. Finish tees, flanges, and valves with metal covers. Covers shall be same thickness and material as jackets on adjacent piping.

2.2 HEATING, VENTILATING, AND AIR CONDITIONING SYSTEMS INSULATION

Provide insulation on ducts, plenums, mixing boxes, filter boxes, casings and diffusers of Heating, Ventilating and Air Conditioning Systems (HVAC).

2.2.1 Duct Insulation in Concealed Spaces, Mechanical Rooms, and Attics

Blanket flexible mineral fiber insulation conforming to ASTM C 553, Type 1, Class B-3, .75 pound per cubic foot nominal, 3.0 inches thick, minimum installed R8. Provide flexible insulation in concealed spaces only.

2.2.2 Duct Insulation Not in Concealed Spaces

Mineral fiber in accordance with ASTM C 612, Class 2 (maximum surface temperature 400 degrees F), 6 pcf (pounds per cubic foot) average, 1.5 inch thick.

2.2.3 Exhaust Ductwork

Insulate ductwork with a minimum thickness of 2-inch blocks or boards, either mineral fiber conforming to ASTM C 612, Class 5, 20 pcf average or calcium silicate conforming to ASTM C 533, Type II.
2.2.4 All Types of Ductwork Located Outside

Provide ASTM C 591, polyisocyanurate or polyurethane board insulation, minimum density of 1.7 pcf, 1.5 inch thick, and weatherproof finish.

2.2.5 Duct Insulation Finishes

2.2.5.1 All-Purpose Jacket

Provide a factory applied all-purpose jacket with or without integral vapor barrier as required by the service. In exposed locations, provide jackets with a white surface suitable for field painting. All-purpose jacket shall have a maximum water vapor permeance of 0.05 perm per ASTM E 96; a puncture resistance of not less than 50 Beach units; and a tensile strength of not less than 35 pounds-force per inch of width in accordance with ASTM D 828.

2.2.5.2 Vapor-Barrier Material

ASTM C 1136, for duct in equipment/mechanical rooms and exposed areas and Type I or II in remaining areas. Material shall be resistant to flame, moisture penetration, and shall not support mold growth. Provide vapor barrier on HVAC duct insulation, except insulation for heating only.

2.2.5.3 Metal Jackets

Provide metal jackets with moisture barrier lining for externally insulated ductwork located outside.

a. Aluminum Jackets: ASTM B 209, Alloy 3003 or 3004, Temper H14, 0.020- inch thick, smooth.

b. Stainless Steel Jackets: ASTM A 167, Type 316, 0.016- inch thick, smooth.

2.3 EQUIPMENT

Insulate all equipment and accessories as specified in Table II. In outside locations, provide insulation one inch thicker than specified. Increase the specified insulation thickness for equipment only where necessary to equal the thickness of angles or other structural members to make a smooth, exterior surface. Factory applied insulation shall meet the flame spread and smoke-developed rating of 25/50.

2.4 ADHESIVES, SEALANTS, AND COATING COMPOUNDS

2.4.1 Insulation and Vapor Barrier Adhesive

Provide ASTM C 916, Type I or Type II adhesive for securing insulation to metal surfaces and for vapor barrier lap only in building interior. Provide Type I when an adhesive in which the vehicle is nonflammable in the liquid (wet) state and which will pass the edge-burning test is required. Provide Type II when an adhesive in which the vehicle is nonflammable in the liquid (wet) state and which will not pass the edge-burning test is required.

2.4.2 Lagging Adhesive

MIL-A-3316, Class 1, for bonding fibrous glass cloth to unfaced fibrous glass insulation; for bonding cotton brattice cloth to faced and unfaced
fibrous glass insulation board; for sealing edges of and bounding fibrous glass tape to joints of fibrous glass board; or for bonding lagging cloth to thermal insulation, or Class 2, for attaching fibrous glass insulation to metal surfaces.

2.4.3 Mineral Fiber Insulation Cement

ASTM C 195, thermal conductivity 0.85 maximum at 200 degrees F mean when tested in accordance with ASTM C 177.

2.4.4 Vapor Barrier Coating

MIL-C-19565, Type II, indoor only above surface temperature 60 degrees F, color white.

2.4.5 Weatherproof Coating

For outside applications provide a weatherproof coating recommended by the manufacturer of the insulation and jackets.

2.4.6 Flexible Unicellular Insulation Adhesive

MIL-A-24179, Type II, Class 1 or Type III.

2.5 ACCESSORY MATERIALS

2.5.1 Staples

ASTM A 167, Type 304 or 316 stainless steel outside-clinch type.

2.5.2 Insulation Bands

1/2 inch wide; 0.24 gage galvanized steel or 0.26 gage stainless steel or 0.24 gage aluminum.

2.5.3 Bands for Metal Jackets

3/8-inch minimum width; 0.26 gage stainless steel or 0.24 gage aluminum.

2.5.4 Anchor Pins

Provide anchor pins and speed washers recommended by insulation manufacturer.

2.5.5 Glass Cloth and Tape

MIL-C-20079, Type I, Class 1 or Class 3 cloth, and Type II, Class 1 or tape; 20 by 20 maximum size mesh. Tape shall be 4-inch wide rolls. Class 3 tape shall be 4.5 ounces per square yard. In lieu of glass cloth and tape, open weave glass membrane may be provided.

2.5.6 Wire

Soft annealed stainless steel, 0.047-inch nominal diameter.

2.5.7 PVC Pipe Fitting Cover

FS L-P-535, Composition A, Type II, Grade GU, factory premolded, one-piece.
PART 3 EXECUTION

3.1 PREPARATION

Do not insulate materials until system tests have been completed and surfaces to be insulated have been cleaned of dirt, rust, and scale and dried. Insulate return ducts, outside air intakes and supply ducts to the room outlets, flexible runouts, plenums, casings, mixing boxes, filter boxes, coils, fans, and the portion of air terminals not in the conditioned spaces. Ensure full range of motion of equipment actuators. Modify insulation to avoid obstruction with valve handles, safety reliefs, and other such items. Allow adequate space for pipe expansion. Install insulation with jackets drawn tight and cement down on longitudinal and end laps. Do not use scrap pieces where a full length section will fit. Insulation shall be continuous through sleeves, wall and ceiling openings, except at fire dampers in duct systems. Extend surface finishes to protect surfaces, ends, and raw edges of insulation. Apply coatings and adhesives at the manufacturer's recommended coverage per gallon. Individually insulate piping and ductwork. Provide a moisture and vapor seal where insulation terminates against metal hangers, anchors and other projections through the insulation on surfaces for which a vapor seal is specified. Keep insulation dry during application of finish. Bevel and seal the edges of exposed insulation. Unless otherwise indicated, do not insulate the following:

a. Factory preinsulated flexible ductwork;
b. Vertical portion of interior roof drain pipelines, chrome plated pipes, and fire protection pipes;
c. Vibration isolating connections;
d. Adjacent insulation;
e. ASME stamps;
f. Fan name plates; and
g. Access plates in fan housings.

3.2 PIPING INSULATION

3.2.1 Mineral Fiber Pipe Insulation

Place sections of insulation around the pipe and joints tightly butted into place. The jacket laps shall be drawn tight and smooth. Secure jacket with fire resistant adhesive factory applied self sealing lap, or stainless steel outward clinching staples spaced not over 4 inches on centers and 1/2 inch minimum from edge of lap. Cover circumferential joints with butt strips, not less than 3 inches wide, of material identical to the jacket material. Overlap longitudinal laps of jacket material not less than 1 1/2 inches. Adhesive used to secure the butt strip shall be the same as used to secure the jacket laps. Apply staples to both edges of the butt strips. Patch damaged jacket material by wrapping a strip of jacket material around the pipe and cementing, stapling, and coating as specified for butt strips. Extend the patch not less than 1 1/2 inches past the break in both directions. At penetrations by pressure gages and thermometers, fill the voids with the vapor barrier coating for outside service. Seal with a
brush coat of the same coating. Where penetrating roofs, insulate piping to a point flush with the top of the flashing and seal with the vapor barrier coating. Butt tightly the exterior insulation to the top of the flashing and interior insulation. Extend the exterior metal jacket 2 inches down beyond the end of the insulation. Seal the flashing and counterflashing underneath with the vapor barrier coating.

3.2.2 Flexible Unicellular Insulation

Bond cuts, butt joints, ends, and longitudinal joints with adhesive, miter 90-degree turns and elbows, tees, and valve insulation. Where pipes penetrate fire walls, provide mineral fiber insulation inerts and sheet metal sleeves. Insulate flanges, unions, valves, and fittings in accordance with manufacturer's published instructions. Tape all butt joints with adhesive backed insulation tape. On elastomeric insulation (Rubatex, Armorflex) located outside provide weather covering as follows:

(1) Coat entire surface of insulation with MIL-A-3316

(2) While the adhesive is tacky, apply a layer of MIL-C-20079 glass cloth. Stretch tightly and overlap all joints by a minimum of 2-inches. Glass cloth at elbows and fittings shall be mitered.

(3) Apply a final coat of MIL-A-3316 adhesive.

3.2.3 Calcium Silicate Pipe Insulation

Secure insulation with stainless steel metal bands on 12-inch maximum centers. For high temperature piping (above 600 degrees F); unless single layer insulation is recommended by the manufacturer, apply insulation in two layers with the joints tightly butted and staggered a minimum of 3 inches. Secure the inner layer of insulation with 14-gage soft annealed stainless steel wire on 12-inch maximum centers. The outer layer shall be secured with stainless steel metal bands on 12-inch maximum centers. Apply a skim coat of hydraulic setting cement directly to the insulation. When dry, apply a flooding coat of adhesive over the hydraulic setting cement. Press a layer of MIL-C-20079 glass cloth or tape into adhesive and seal laps and edges with adhesive. Coat cloth with adhesive cut at a ratio of one part water to five parts adhesive in color other than white for the purpose of visual inspection to ensure sizing of entire surface.

3.2.4 Cellular Glass, Cellular Phenolic, and Polyisocyanurate

Secure outer most layer of insulation with metal bands 12-inch on center. If a factory installed all service jacket is used, the metal bands shall be applied to the outside of the all service jacket. If two or more layers are applied, the inner layers may be secured with fiber reinforced tape. For cold or chilled piping all joints both longitudinal and circumferential shall be sealed. Use the manufacturer's recommended cement or sealant. Apply all-purpose jacket, vapor barrier if required by Table I, and metal jacket if outside. Elbows shall be four piece miter if field fabricated. Pre-manufactured elbows can be held in place with metal bands. All elbows shall be finished as follows: Apply a skim coat of hydraulic setting cement directly to the insulation. When dry, apply a flooding coat of adhesive over the hydraulic setting cement. Press a layer of MIL-C-20079 glass cloth or tape into adhesive and seal laps and edges with adhesive. Coat cloth with adhesive cut at a ratio of one part water to five parts adhesive in color other than white for the purpose of visual inspection to ensure sizing of entire surface. Insulate flexible connection at pumps and
other equipment with unicellular plastic insulation, unless otherwise indicated. Factory-fabricated removable and reusable insulated covers shall be provided for all valves, circuit setters, unions and flow control devices. The insulation cover shall be reusable without the need for special material or tools. Insulation shall be two piece molded cellular to fit the valve or device. Flexible unicellular insulation may be used in lieu of molded cellular insulation.

3.2.5 Expanded Cellular Polystyrene

Secure outer most layer of insulation with metal bands 9 inch on center. If a factory installed all service jacket is used, the metal bands shall be applied to the outside of the all service jacket. If two or more layers are applied, the inner layers may be secured with fiber reinforced tape. For cold or chilled piping all joints both longitudinal and circumferential shall be sealed. Use the manufacturer's recommended cement or sealant. Apply all-purpose jacket, vapor barrier if required by Table 1, and metal jacket if outside. Elbows shall be four piece miter if field fabricated. Pre-manufactured elbows can be held in place with metal bands. All elbows shall be finished according to manufacturer's recommended method. Insulate flexible connection at pumps and other equipment with unicellular plastic insulation, unless otherwise indicated. Factory-fabricated removable and reusable insulated covers shall be provided for all valves, circuit setters, unions and flow control devices. The insulation cover shall be reusable without the need for special material or tools. Insulation shall be two piece molded cellular to fit the valve or device. Flexible unicellular insulation may be used in lieu of molded cellular insulation.

3.2.6 Hangers and Anchors

Pipe insulation shall be continuous through pipe hangers. Where pipe is supported by the insulation, provide galvanized steel shields protection saddles. Band and secure insulation protection shields without damaging pipe insulation. Where shields are used on pipes 2 inches and larger, provide insulation inserts at points of hangers and supports. Insulation inserts shall be of calcium silicate, cellular glass (minimum 8 pcf), molded glass fiber (minimum 8 pcf), or other approved material of the same thickness as adjacent insulation. Inserts shall have sufficient compressive strength to adequately support the pipe without compressing the inserts to a thickness less than the adjacent insulation. Insulation inserts shall cover the bottom half of the pipe circumference 180 degrees and be not less in length than the protection shield. Vapor-barrier facing of the insert shall be of the same material as the facing on the adjacent insulation. Seal inserts into the insulation with vapor barrier coating, Type II or for exterior work, manufacturer's recommended weatherproof coating, as applicable. Where protection saddles are used, fill all voids with the same insulation material as used on the adjacent pipe. Where anchors are secured to chilled piping that is to be insulated, insulate the anchors the same as the piping for a distance not less than four times the insulation thickness to prevent condensation. Vapor seal insulation around anchors.

3.2.7 Sleeves and Wall Chases

Where penetrating interior walls, extend a metal jacket 2 inches out on either side of the wall and secure on each end with a band. Where penetrating floors, extend a metal jacket from a point below the back-up material to a point 10 inches above the floor with one band at the floor and one not more than one inch from end of metal jacket. Where penetrating
exterior walls, extend the metal jackets through the sleeve to a point 2 inches beyond the interior surface of the wall.

3.2.8 Flanges, Unions, Valves and Fittings for Hot Piping

Flanges, Unions, Valves, and Fittings Insulation (Except Flexible Unicellular) for Hot Piping: Factory fabricated removable and reusable insulation covers may be used. For inside domestic hot water, heating hot water, A/C condensate drains, high temperature hot water, steam and condensate return systems; exposed hot water piping and drains in handicap areas, place factory premolded, precut or field-fabricated segmented insulation of the same thickness and conductivity as the adjoining pipe insulation around the flange, union, valve, and fitting abutting the adjoining pipe insulation. If nesting size insulation is used, overlap 2 inches or one pipe diameter, whichever is larger. Use insulating cement to fill voids. Elbows insulated using segments shall have not less than three segments per elbow. Place and joint the segments with manufacturer's recommended water-vapor resistant, fire retardant, and adhesive appropriate for the temperature limit of the service. Upon completion of installation of insulation, apply two coats lagging adhesive with glass tape embedded between coats. Overlap tape seams one inch. Extend adhesive onto adjoining insulation not less than two inches. The total dry film thickness shall be not less than 1/16 inch. Where unions are indicated not to be insulated, taper the insulation to the union at a 45 degree angle. Coat the insulation and all purpose jacket with two coats of lagging adhesive and with glass tape embedded between coats. The total dry film thickness shall be not less than 1/16 inch. At the option of the Contractor, factory premolded one-piece PVC fitting covers may be provided in lieu of two coats of adhesive with tape embedded between coats. Factory premolded field-fabricated segment or blanket insert insulation shall be provided under the fitting covers. Install factory premolded one-piece PVC fitting covers over the insulation and secure by stapling, taping with PVC vapor barrier tape, or with metal or plastic tacks made for securing PVC fitting covers. Do not provide PVC fitting covers where exposed to the weather. Provide PVC fitting covers only in ambient temperatures below 150 degrees F.

3.2.9 Piping Exposed to Weather

3.2.9.1 Metal Jackets

Install over the insulation. Metal jackets shall have side and end lap at least 2 inches wide with the cut edge of the side tap turned inside one inch to provide a smooth edge. Overlap the jacket not less than 2 inches at longitudinal and circumferential joints and secure with metal bands at not more than 9-inch centers or with screws at not more than 5-inch centers. Overlap longitudinal joints down to shed water. Seal circumferential joints with a coating recommended by the insulation manufacturer for weatherproofing.

3.2.9.2 Flanges, Unions, Valves, Fittings, and Accessories

Insulate and finish as specified for the applicable service. Apply two coats of an emulsion type weatherproof mastic for hot service and vapor barrier mastic for cold service recommended by the insulation manufacturer. Embed glass tape in the first coat. Overlap tape not less than one inch and the adjoining metal jacket not less than 2 inches. Factory preformed metal jackets may be provided in lieu of the above for hot service.
3.3 DUCTS PLENUMS AND CASINGS (HVAC) INSULATION

3.3.1 Rigid Insulation

Secure rigid insulation by impaling over pins or anchors located not more than 3 inches from joint edges of boards, spaced not more than 12 inches on centers and secure with washers and clips. Spot weld anchor pins or attach with a waterproof adhesive especially designed for use on metal surfaces. Apply insulation with joints tightly butted. Neatly bevel insulation around name plates and access plates and doors. Each pin or anchor shall be capable of supporting a 20-pound load. Cut off protruding ends of pins, after clips are sealed with coating compound for inside work or manufacturer's recommended weatherproof coating for outside work, and reinforced with open weave glass membrane.

3.3.2 Flexible Blanket Insulation

Apply insulation with all joints tightly butted. Secure insulation to ductwork with adhesive in 6-inch wide strips on 12-inch centers. Staple laps of jacket with outward clinching staples. Sealing shall be in accordance with paragraph 3.3.3 below. For ductwork over 24 inches on horizontal duct runs, provide pins, washers and clips. Provide pins on sides of vertical ductwork being insulated. Space pins and clips on 18-inch centers and not more than 18 inches from duct corners. Carry insulation over standing seams and trapeze-type hangers. Install speed washers with pins and pin trimmed to washer. Sagging of flexible duct insulation will not be permitted. Cut off protruding ends of pins after clips are secured and sealed with coating compound for inside work. For warm air ducts, overlap insulation not less than 2 inches at joints and secure the laps with outward clinch staples on 4-inch centers. In cold air ducts, vapor seal all joints and staple as specified.

3.3.3 Insulation Finishes and Joint Sealing

Fill all breaks, punctures, and voids with vapor barrier coating compound for inside work or manufacturer's recommended weatherproof coating for outside service. Vapor seal all joints by embedding a single layer of 3-inch wide open weave glass membrane, 20 by 20 mesh maximum size between two 1/16-inch wet film thickness coats of vapor barrier coating compound. Draw glass fabric smooth and tight with a 1 1/2-inch overlap. At jacket penetrations such as hangers, thermometers, and damper operating rods, fill voids in the insulation with vapor barrier coating. Brush a coat of vapor barrier coating where required on HVAC ducts. Provide vapor barrier jacket continuous across seams, reinforcing, and projections. Where height of projections is greater than insulation thickness, carry insulation and jacket over the projection. For joints for heating only systems, provide insulation with two coats of fire resistant adhesive with glass fabric mesh embedded between coats.

3.3.4 Metal Jackets for Outside Ductwork

Ensure metal-jacket side and end laps at least 2 inches wide, with the cut edge of the side lap turned under one inch to provide a smooth edge. Place horizontal laps to shed water. Seal vertical laps with insulation manufacturer's recommended weatherproof coating. Secure jackets in place with aluminum or stainless steel bands on 9-inch centers aluminum or stainless steel screws on 5-inch centers. Where ducts penetrate exterior walls, continue the increased thickness required for ductwork exposed to weather and the metal jackets through the sleeve to a point 2 inches beyond
the interior surface of the wall. Where metal jacket abuts an uninsulated surface, seal joints with a weatherproof mastic recommended by the insulation manufacturer. For rectangular ducts, provide corner angles to exposed corners of the insulation. Apply two coats of weatherproof coating recommended by the insulation manufacturer to the entire surface with a layer of glass cloth embedded between coats. Ensure glass cloth overlaps not less than 2 inches at joints and adjoining surface. Each coat of weatherproof coating shall be 1/16-inch minimum thickness.

3.3.5 Exhaust Duct Insulation

Provide insulation with 3/4-inch wide, minimum 0.15-inch thick galvanized steel bands spaced not over 12 inches on centers; or 16-gage galvanized steel wire with corner clips under the wire; or with heavy welded pins spaced not over 12 inches apart each way. Do not use adhesives.

3.3.6 Access Plates and Doors

On acoustically lined ducts, plenums, and casings, provide insulation on access plates and doors. On externally insulated ducts, plenums, and casings, provide insulation-filled hollow steel panels and doors for access openings. Bevel insulation around access plates and doors.

3.4 EQUIPMENT INSULATION

3.4.1 General Procedures

Apply equipment insulation suitable for temperature and service in rigid block or semirigid board or flexible form to fit as closely as possible to equipment. Groove or score insulation where necessary to fit the contours of equipment. Stagger end joints where possible. Bevel the edges of the insulation for cylindrical surfaces to provide tight joints. Join sections of cellular glass insulation with bedding compound. After the cellular glass insulation is in place on areas to be insulated, except where metal-encased, fill joints, seams, chipped edges, or depressions with bedding compound to form a smooth surface. Fill mineral fiber joints with insulating cement. Bevel insulation around name plates, ASME and access plates. For insulation on equipment that must be opened periodically for inspection, cleaning, or repair, construct insulation to be removable and replaceable without damage. Protect exposed insulation corners with corner angles under wires and bands.

3.4.2 Heating Equipment (Except Pumps)

Insulate shell and tube heat exchangers for the temperature of the shell medium indicated on the drawings. Insulation on heads of heat exchangers shall be removable. Fabricate a male-female shiplap type joint for the removable section. On equipment with ribs such as boiler flue gas connection, draft fans, and fly ash or soot collectors, apply insulation over 6- by 6- by 12-gage welded wire fabric spot welded to the equipment over the ribs. Secure insulation to the fabric with J hooks and 2-by-2 washers or wire loop insulation to the fabric. Use 16-gage stainless steel wire or 3/4-inch wide 20-gage stainless steel bands spaced on 12-inch centers. Seal joints with bedding compound for cellular glass or for mineral fiber with insulating cement and cover insulation with a smoothing coat of insulating cement. Apply two coats of adhesive with a layer of glass cloth embedded between coats. The dry film thickness of the finish shall be 1/32-inch minimum. On cylindrical equipment a metal jacket may be provided instead of the adhesive and glass cloths on the cylinder, ends.
must have adhesive and glass cloth.

3.4.3 Cold Equipment (Except Pumps)

Secure insulation with 16-gage, galvanized steel or copper clad wire or with 3/4-inch wide 20-gage stainless steel bands spaced on 12-inch centers. Seal joints with joint sealer. Cover non-removable irregular surfaces such as corner angles with a smoothing coat of insulating cement. Provide removable heat exchanger head covers with a male-female shiplap type joint. Apply two coats of vapor barrier coating with a layer of glass cloth embedded between coats. The dry film thickness of the finish shall be 1/32-inch minimum.

3.4.4 Pumps

Insulate pumps used for hot service with 2-inch thick rigid mineral fiber insulation and pumps used for chilled water and brine service with 2-inch thick flexible unicellular sheets as follows: Insulate pumps by forming a box around the pump housing, drive shaft, and piping. Apply insulation to inside surfaces of 20-gage galvanized or stainless steel sheet-metal boxes having openings for drive shaft and pipes. Construct the box by forming the bottom and sides using joints which do not leave raw ends of insulation exposed. Band bottom and sides to form a rigid housing that does not rest on the pump. Between top cover and sides, fit joints tightly forming a female shiplap joint on the side pieces and a male joint on the top cover to make the top cover removable. Secure insulation to the box with adhesive. Allow clearance for draining and adjustment of pump shaft seal.

3.5 PAINTING AND IDENTIFICATION

Paint in accordance with Section 09 90 00, "Paints and Coatings." Piping identification shall be as specified in other sections.

3.6 FIELD INSPECTION

Visually inspect to ensure that materials provided conform to specifications. Inspect installations progressively for compliance with requirements.
TABLE I

Piping Insulation Wall Thickness

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>1/4-1</th>
<th>1/4</th>
<th>1 1/2-3</th>
<th>3 1/2-5</th>
<th>6-& Larger</th>
<th>Vapor Barrier Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water & Dual Temperature & Refrigerant Suction Pipe</td>
<td>Cellular Glass</td>
<td>1.5</td>
<td>(2.0)</td>
<td>1.5</td>
<td>(2.0)</td>
<td>2.0</td>
<td>(2.0) Yes</td>
</tr>
<tr>
<td></td>
<td>Polyisocyanurate</td>
<td>1</td>
<td>(1)</td>
<td>1</td>
<td>(1.0)</td>
<td>1.5</td>
<td>(2.0) Yes</td>
</tr>
<tr>
<td></td>
<td>Polystyrene</td>
<td>1</td>
<td>(1.5)</td>
<td>1</td>
<td>(1.5)</td>
<td>1.5</td>
<td>(2) Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Cold Water, Drains</td>
<td>Polyisocyanurate</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>and Horizontal Roof Drains</td>
<td>Polystyrene</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Polyisocyanurate</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcium Silicate</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mineral Fiber</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cellular Glass</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cellular Phenolic</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polystyrene</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Heating Hot Water & Pipes (90 to 200 Degrees F)</td>
<td>Polyisocyanurate</td>
<td>1</td>
<td>(1.5)</td>
<td>1</td>
<td>(1.5)</td>
<td>1.5</td>
<td>(2.0) No</td>
</tr>
<tr>
<td></td>
<td>Calcium Silicate</td>
<td>1.5</td>
<td>(2.5)</td>
<td>2</td>
<td>(2.5)</td>
<td>2.5</td>
<td>(3.0) No</td>
</tr>
<tr>
<td></td>
<td>Mineral Fiber</td>
<td>1.5</td>
<td>(2.0)</td>
<td>1.5</td>
<td>(2.5)</td>
<td>2</td>
<td>(2.5) No</td>
</tr>
<tr>
<td></td>
<td>Cellular Glass</td>
<td>1.5</td>
<td>(2.5)</td>
<td>1.5</td>
<td>(2.5)</td>
<td>2.5</td>
<td>(3.0) No</td>
</tr>
<tr>
<td></td>
<td>Cellular Phenolic</td>
<td>1</td>
<td>(1.25)</td>
<td>1</td>
<td>(1.25)</td>
<td>1 (1.25)</td>
<td>1.5 (1.5) No</td>
</tr>
</tbody>
</table>

NOTE: Thickness in parenthesis are for:

1. Cold piping - crawl spaces, mechanical rooms, and outside locations
2. Hot Piping - outside locations, not including tunnels and crawl spaces.
3. NP - Not permitted.
TABLE II

Insulation For Equipment

<table>
<thead>
<tr>
<th>Material</th>
<th>Spec</th>
<th>Type</th>
<th>Class</th>
<th>Vapor Barrier Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Flexible Mineral Fiber,</td>
<td>ASTM C 553</td>
<td>I</td>
<td>B-3</td>
<td>Yes*/No</td>
</tr>
<tr>
<td>2 Rigid Mineral Fiber,</td>
<td>ASTM C 612</td>
<td>I</td>
<td>2</td>
<td>Yes*/No</td>
</tr>
<tr>
<td>3 or Cellular Glass</td>
<td>ASTM C 552</td>
<td>I</td>
<td></td>
<td>Yes*/No</td>
</tr>
</tbody>
</table>

*Yes for chilled water service and no for other services.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Recommended Wall Thickness</th>
<th>Vapor Barrier Required</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Exchangers Systems</td>
<td>2"</td>
<td>For Chilled Water</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Expansion Tanks</td>
<td>2"</td>
<td>For Chilled Water</td>
<td>2</td>
</tr>
<tr>
<td>Dirt-Air Separators</td>
<td>2"</td>
<td>For Chilled Water</td>
<td>3</td>
</tr>
<tr>
<td>Hydraulic Separators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer Tanks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Pumps</td>
<td>2"</td>
<td>For Chilled Water</td>
<td></td>
</tr>
<tr>
<td>Hot Water Duct Mounted Coils</td>
<td>2"</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Drain Pans</td>
<td>2"</td>
<td>For Chilled Water</td>
<td></td>
</tr>
<tr>
<td>Water Boxes and Headers</td>
<td>2"</td>
<td>For Chilled Water</td>
<td></td>
</tr>
</tbody>
</table>

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 500-D (2012) Laboratory Methods of Testing Dampers for Rating

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 135.1 (Errata 1 2015; INT 1 2013; Addenda O 2014) Method of Test for Conformance to BACnet

ARCNET TRADE ASSOCIATION (ATA)

ATA 878.1 (1999) Local Area Network: Token Bus

ASME INTERNATIONAL (ASME)

ASME B31.1 (2014; INT 1-47) Power Piping

ASTM INTERNATIONAL (ASTM)

CONSUMER ELECTRONICS ASSOCIATION (CEA)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE C62.45 (2002; R 2008) Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000v and less)AC Power Circuits

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

UNDERWRITERS LABORATORIES (UL)

UL 1449 (2014; Reprint Mar 2015) Surge Protective Devices

UL 506 (2008; Reprint Oct 2013) Specialty Transformers

UL 508A (2013; Reprint Jan 2014) Industrial Control Panels

1.2 DEFINITIONS

1.2.1 ANSI/ASHRAE Standard 135

ANSI/ASHRAE Standard 135: BACnet - A Data Communication Protocol for Building Automation and Control Networks, referred to as "BACnet". ASHRAE developed BACnet to provide a method for diverse building automation devices to communicate and share data over a network.

1.2.2 ARCNET

ATA 878.1 - Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.

1.2.3 BACnet

Building Automation and Control Network; the common name for the communication standard ASHRAE 135. The standard defines methods and protocol for cooperating building automation devices to communicate over a variety of LAN technologies.

1.2.4 BACnet/IP

An extension of BACnet, Annex J, defines this mechanism using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number. See also "BACnet Broadcast Management Device".

1.2.5 BACnet Internetwork

Two or more BACnet networks, possibly using different LAN technologies, connected with routers. In a BACnet internetwork, there exists only one message path between devices.

1.2.6 BACnet Network

One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.

1.2.7 BACnet Segment

One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.

1.2.8 BBMD

BACnet Broadcast Management Device (BBMD). A communications device, typically combined with a BACnet router. A BBMD forwards BACnet broadcast messages to BACnet/IP devices and other BBMDs connected to the same BACnet/IP network. Every IP subnetwork that is part of a BACnet/IP network must have only one BBMD. See also "BACnet/IP".

1.2.9 BAS

Building Automation Systems, including DDC (Direct Digital Controls) used for facility automation and energy management.
1.2.10 BAS Owner

The regional or local user responsible for managing all aspects of the BAS operation, including: network connections, workstation management, technical support, control parameters, and daily operation. The BAS Owner for this project is Camp Lejeune Public Works.

1.2.11 BIBBs

BACnet Interoperability Building Blocks. A collection of BACnet services used to describe supported tasks. BIBBs are often described in terms of "A" (client) and "B" (server) devices. The "A" device uses data provided by the "B" device, or requests an action from the "B" device.

1.2.12 BI

BACnet International, formerly two organizations: the BACnet Manufacturers Association (BMA) and the BACnet Interest Group - North America (BIG-NA).

1.2.13 BI/BTL

BACnet International/BACnet Testing Laboratories (Formerly BMA/BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.

1.2.14 Bridge

Network hardware that connects two or more network (or BACnet internetwork) segments at the physical and data link layers. A bridge may also filter messages.

1.2.15 Broadcast

A message sent to all devices on a network segment.

1.2.16 Device

Any control system component, usually a digital controller, that contains a BACnet Device Object and uses BACnet to communicate with other devices. See also "Digital Controller".

1.2.17 Device Object

Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.

1.2.18 Device Profile

A collection of BIBBs determining minimum BACnet capabilities of a device, defined in ASHRAE Standard 135-2004, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing BIBBs supported.
1.2.19 Digital Controller

An electronic controller, usually with internal programming logic and
digital and analog input/output capability, which performs control
functions. In most cases, synonymous with a BACnet device described in
this specification. See also "Device".

1.2.19.1 Terminal Device Controllers

Terminal device controllers typically are controllers with less control
features, may have integrated actuators, and may be mounted directly on
equipment (with enclosures).

1.2.19.2 Field Controllers

Field controllers typically have a greater capability for input/output and
customization, do not have integral actuators, are mounted in an enclosure
not on the equipment and are used for equipment such as VAV air handlers.

1.2.19.3 Plant Controllers

Plant controllers are typically used to control various equipment in
mechanical rooms such as pumps, heat exchangers, and chillers.

1.2.19.4 Supervisory Building Controller (SBC)

The Supervisory Building Controller is used to coordinate all equipment in
a building, input scheduling, and is used as a connection point for
transferring configuration files to the other controllers. The SBC shall
communicate with other controllers and equipment through a BACnet MS/TP
bus. Depending on approvals and capabilities, the SBC may be used as a
point of connection between the Camp Lejeune EMCS network (IP) and the
building level control network (BACnet MS/TP).

1.2.20 Direct Digital Control (DDC)

Digital controllers performing control logic. Usually the controller
directly senses physical values, makes control decisions with internal
programs, and outputs control signals to directly operate switches, valves,
dampers, and motor controllers.

1.2.21 DDC System

A network of digital controllers, communication architecture, and user
interfaces. A DDC system may include programming, sensors, actuators,
switches, relays, factory controls, operator workstations, and various
other devices, components, and attributes.

1.2.22 Energy Management & Control System (EMCS)

The EMCS at Camp Lejeune is an enterprise system that actively receives
energy and building condition information from multiple sources and
provides load shedding, electric metering, alarming, trending, scheduling,
set point adjustment and device status of all supervisory building
controllers for maintenance personnel. The EMCS receives real time
electrical utility pricing data and automatically manages to Camp Lejeune's
energy target. The existing EMCS consists of two servers, 1) Johnson
Controls Incorporated (JCI) Metasys Extended Architecture (ADX server), and
2) Niagara AX supervisor (JCI FX web supervisor). Both of the systems
communicate over the MRAN and either may be used to fulfill the requirements of this specification.

1.2.23 Ethernet

A family of local-area-network technologies providing high-speed networking features over various media.

1.2.24 Firmware

Software programmed into read only memory (ROM), flash memory, electrically erasable programmable read only memory (EEPROM), or erasable programmable read only memory (EPROM) chips.

1.2.25 Gateway

Communication hardware and software connecting two or more different protocols, similar to human language translators. The Gateway translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a Gateway has BACnet on one side and non-BACnet protocols on the other side.

1.2.26 Global ID

An identification number assigned to each Supervisory Building Controller. The Global ID includes assigned MSTP Trunk Instance Numbers and a range of BACnet Instance Numbers to be used for the Field Controllers. The Global ID is assigned by Public Works.

1.2.27 Half Router

A device that participates as one partner in a BACnet point-to-point (PTP) connection. Two half-routers in an active PTP connection combine to form a single router.

1.2.28 Hub

A common connection point for devices on a network.

1.2.29 Internet Protocol (IP, TCP/IP, UDP/IP)

A communication method, the most common use is the World Wide Web. At the lowest level, it is based on Internet Protocol (IP), a method for conveying and routing packets of information over various LAN media. Two common protocols using IP are User Datagram Protocol (UDP) and Transmission Control Protocol (TCP). UDP conveys information to well-known "sockets" without confirmation of receipt. TCP establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.

1.2.30 Input/Output (I/O)

Physical inputs and outputs to and from a device, although the term sometimes describes software, or "virtual" I/O. See also "Points".

1.2.31 I/O Expansion Unit

An I/O expansion unit provides additional point capacity to a digital controller.
1.2.32 IP subnet

Internet protocol (IP) identifies individual devices with a 32-bit number divided into four groups from 0 to 255. Devices are often grouped and share some portion of this number. For example, one device has IP address 209.185.47.68 and another device has IP address 209.185.47.82. These two devices share Class C subnet 209.185.47.00.

1.2.33 Local-Area Network (LAN)

A communication network that spans a limited geographic area and uses the same basic communication technology throughout.

1.2.34 LonTalk

CEA-709.1-D. A communication protocol developed by Echelon Corp. LonTalk is not permitted.

1.2.35 MAC Address

Media Access Control address. The physical node address that identifies a device on a Local Area Network.

1.2.36 Master-Slave/Token-Passing (MS/TP)

ISO 8802-3. One of the LAN options for BACnet. MSTP uses twisted-pair wiring for relatively low speed and low cost communication (up to 4,000 ft at 76.8K bps).

1.2.37 Native BACnet Device

A device that uses BACnet as its primary, if not only, method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.

1.2.38 Network

Communication technology for data communications. BACnet approved network types are BACnet over Internet Protocol (IP), Point to Point (PTP) Ethernet, ARCNET, MS/TP, and LonTalk®. In general, networks within the building, all controllers and equipment will be BACnet MS/TP, unless noted otherwise.

1.2.39 Network Number

A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.

1.2.40 Object

The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.

1.2.41 Object Identifier

An object property used to identify the object, including object type and...
instance. Object Identifiers must be unique within a device.

1.2.42 Object Properties

Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.

1.2.43 Peer-to-Peer

Peer-to-peer refers to devices where any device can initiate and respond to communication with other devices.

1.2.44 Performance Verification Test (PVT)

The procedure for determining if the installed BAS meets design criteria prior to final acceptance. The PVT is performed after installation, testing, and balancing of mechanical systems. Typically the PVT is performed by the Contractor in the presence of the Government.

1.2.45 PID

Proportional, integral, and derivative control; three parameters used to control modulating equipment to maintain a setpoint. Derivative control is often not required for HVAC systems (leaving "PI" control).

1.2.46 PICS

Protocol Implementation Conformance Statement (PICS), describing the BACnet capabilities of a device. See BACnet, Annex A for the standard format and content of a PICS statement.

1.2.47 Points

Physical and virtual inputs and outputs. See also "Input/Output".

1.2.48 PTP

Point-to-Point protocol connects individual BACnet devices or networks using serial connections like modem-to-modem links.

1.2.49 Repeater

A network component that connects two or more physical segments at the physical layer.

1.2.50 Router

A BACnet router is a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN. If a router is connected directly to the MRAN, it must be listed on the approved DIACAP equipment list and must be Marine Corps DADMS listed and approved.

1.2.51 Stand-Alone Control

Refers to devices performing equipment-specific and small system control without communication to other devices or computers for physical I/O,
excluding outside air and other common shared conditions. Devices are located near controlled equipment, with physical input and output points limited to 64 or less per device, except for complex individual equipment or systems. Failure of any single device or communications will not cause other network devices to fail. Internal time clocks and onboard scheduling are required to allow for stand-alone control. BACnet "Smart" actuators (B-SA profile) and sensors (B-SS profile) communicating on a network with a parent device are exempt from stand-alone requirements. Provide stand-alone control routines to provide for energy saving sequences such as free cooling. Provide stand-alone control routines that operate without connection to the BACnet/IP and MS/TP networks during a loss of communication.

1.2.52 Supervisory Building Controller

Supervisory Controller that is the main interface for the building control system.

1.3 SUBCONTRACTOR SPECIAL REQUIREMENTS

Perform all work in this section in accordance with the paragraph SUBCONTRACTOR SPECIAL REQUIREMENTS in Section 01 30 00 ADMINISTRATIVE REQUIREMENTS. The paragraph specifies that all contract requirements of this section shall be accomplished directly by a first tier subcontractor. No work required shall be accomplished by a second tier subcontractor.

1.4 BACnet DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC DESCRIPTION

a. Remove entire existing system and provide entire new BACnet DDC system(s) including associated equipment and accessories.

d. All new devices are accessible using a Web browser interface and communicate using ASHRAE 135 BACnet communications without the use of gateways, unless gateways are shown on the design drawings and specifically requested by the Government. Where gateways are allowed, they must support ASHRAE 135, including all object properties and read-write services shown on Government approved interoperability schedules. Manufacturer's products, including design, materials, fabrication, assembly, inspection, and testing shall be in accordance with ASHRAE 135, ASME B31.1, and NFPA 70, except where indicated otherwise.

1.4.1 Design Requirements

1.4.1.1 Control System Drawings Title Sheet

Provide a title sheet for the control system drawing set. Include the project title, project location, contract number, the controls contractor preparing the drawings, an index of the control drawings in the set, and a legend of the symbols and abbreviations used throughout the control system drawings. The Title Block of each drawing must include the Drawing revision, i.e. Submittal, Revision 1, Revision 2, As-Built, etc., including the date.

1.4.1.2 List of I/O Points

Also known as a Point Schedule, provide for each input and output point physically connected to a digital controller: point name, point description, point type (Analog Output (AO), Analog Input (AI), Binary
Output (BO), Binary Input (BI), point sensor range, point actuator range, point address, BACnet object, associated BIBBS (where applicable), and point connection terminal number. Typical schedules for multiple identical equipment are allowed unless otherwise requested in design or contract criteria. All points shall adhere to the Camp Lejeune Standard naming conventions.

1.4.1.3 Control System Components List

Provide a complete list of control system components installed on this project. Include for each controller and device: control system schematic name, control system schematic designation, device description, manufacturer, model, part number, firmware version, serial number, physical location (e.g. Building 4, room 112 overhead), and power requirements (i.e. AC/DC voltage and power draw). For sensors, include point name, sensor range, and operating limits. For valves, include body style, Cv, design flow rate, pressure drop, valve characteristic (linear or equal percentage), and pipe connection size. For actuators, include point name, spring or non-spring return, modulating or two-position action, normal (power fail) position, nominal control signal operating range (0-10 volts DC or 4-20 milliamps), and operating limits.

1.4.1.4 Control System Schematics

Provide control system schematics. Typical schematics for multiple identical equipment are allowed unless otherwise requested in design or contract criteria. Include the following:

a. Location of each input and output device, specify room # for remote devices.

b. Flow diagram for each piece of HVAC equipment

c. Name or symbol for each control system component, such as V-1 for a valve

d. Setpoints, with differential or proportional band values

e. Written sequence of operation for the HVAC equipment

f. Valve and Damper Schedules, with normal (power fail) position

g. Control cabinet general layout, include all devices, point count, cable type (18/2, 18/3, etc), 24VAC VA power requirement for all devices including those powered from the cabinet.

1.4.1.5 HVAC Equipment Control Ladder Diagrams

Provide HVAC equipment control ladder diagrams. Indicate required electrical interlocks.

1.4.1.6 Component Wiring Diagrams

Provide a wiring diagram for each type of input device and output device. Indicate how each device is wired and powered; showing typical connections at the digital controller and power supply. Show for all field connected devices such as control relays, motor starters, actuators, sensors, and transmitters.
1.4.1.7 Terminal Strip Diagrams

Provide a diagram of each terminal strip. Indicate the terminal strip location, termination numbers, and associated point names.

1.4.1.8 BACnet Communication Architecture Schematic (Network Riser)

Provide a schematic showing the project's entire BACnet communication network, including Internet Protocol (IP), Media Access Control (MAC), BACnet network, Device ID, field bus address, BBMDs, any devices using BACnet FDR, and Firmware version / Operating System, LAN devices including routers and bridges, gateways, controllers, workstations, and field interface devices. If applicable, show connection to existing networks.

1.5 SUBMITTALS

Submit detailed and annotated manufacturer's data, drawings, and specification sheets for each item listed, that clearly show compliance with the project specifications.

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Include the following in the project's control system drawing set:

Control System Drawings Title Sheet
List of I/O Points
Control System Components List
Control System Schematics
HVAC Equipment Control Ladder Diagrams
Component Wiring Diagrams
Terminal Strip Diagrams
BACnet Communication Architecture Schematic

SD-03 Product Data

Direct Digital Controllers

Include BACnet PICS for each controller/device type, including smart sensors (B-SS) and smart actuators (B-SA).

BACnet Gateways

Include BACnet and workstation display information; bi-directional communication ability; compliance with interoperability schedule; expansion capacity; handling of alarms, events, scheduling and trend data; and single device capability (not depending on multiple devices for exchanging information from either side of the gateway).
Notebook Computer Software

Notebook Computer

Sensors and Input Hardware

Output Hardware

Surge and Transient Protection

Duct smoke detectors

Variable Frequency (Motor) Drives

SD-05 Design Data

Performance Verification Testing Plan

Pre-PVT Checklist

SD-06 Test Reports

Performance Verification Testing Report

Bus Waveform Report

SD-07 Certificates

Contractor's Qualifications

SD-09 Manufacturer's Field Reports

Field Reports

SD-10 Operation and Maintenance Data

Comply with requirements for data packages in Section 01 78 23 OPERATION AND MAINTENANCE DATA, except as supplemented and modified in this specification.

BACnet Direct Digital Control Systems, Data Package 4

Controls System Operators Manuals, Data Package 4

VFD Service Manuals, Data Package 4

SD-11 Closeout Submittals

Training Documentation

1.6 QUALITY ASSURANCE

1.6.1 Standard Products

Provide material and equipment that are standard manufacturer's products currently in production and supported by a local service organization.
1.6.2 Delivery, Storage, and Handling

Handle, store, and protect equipment and materials to prevent damage before and during installation according to manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.

1.6.3 Operating Environment

Protect components from humidity and temperature variation, dust, and contaminants. If components are stored before installation, keep them within the manufacturer's limits.

1.6.4 Finish of New Equipment

New equipment finishing shall be factory provided. Manufacturer's standard factory finishing shall be proven to withstand 125 hours in a salt-spray fog test. Equipment located outdoors shall be proven to withstand 500 hours in a salt-spray fog test.

Salt-spray fog test shall be according to ASTM B117, with acceptance criteria as follows: immediately after completion of the test, the finish shall show no signs of degradation or loss of adhesion beyond 0.125 inch on either side of the scratch mark.

1.6.5 Verification of Dimensions

The contractor shall verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing work.

1.6.6 Contractor's Qualifications

Submit documentation certifying the controls Contractor performing the work has completed at least three DDC systems installations of a similar design to this project, and programmed similar sequences of operation for at least two years.

1.6.7 Modification of References

The advisory provisions in ASME B31.1, NFPA 70 and the manufacturer's recommendations are mandatory. Substitute "shall" for "should" wherever it appears and interpret all references to the "authority having jurisdiction" and "owner" to mean the Contracting Officer.

1.6.8 Project Sequence

The control system work for this project shall proceed in the following order:

a. Preparatory meeting for controls work.

b. Submit and receive approval on the Shop Drawings, Product Data, and Certificates specified under the paragraph SUBMITTALS

c. Submit and receive approval for Performance Verification Testing (PVT) Plan.

d. Perform the control system installation work, including all field check-outs and tuning.
e. Provide support to TAB personnel as specified under the paragraph TEST AND BALANCE SUPPORT.

f. Submit and receive approval of the Controls System Operators Manual specified under the paragraph CONTROLS SYSTEM OPERATORS MANUALS.

g. Perform the Performance Verification Testing.

h. Submit and receive approval on the PVT Report. Submit As-Built Control Drawings

i. PVT Report Acceptance test for Season 1.

j. Submit and receive approval on the Training Documentation specified under the paragraph INSTRUCTION TO GOVERNMENT PERSONNEL and VFD Service Support. Submit at least 30 days before training.

k. Deliver the final Controls System Operators Manuals and VFD Service Manuals.

l. Conduct the Phase I Training and VFD on-site/hands-on training.

m. Conduct the Phase II Training.

n. Submit and receive approval of Closeout Submittals.

o. PVT Report Acceptance Test for Season 2.

PART 2 PRODUCTS

2.1 DDC SYSTEM

a. Provide a networked DDC system for stand-alone control in compliance with the latest revision of the ASHRAE 135 BACnet standard. Include all programming, objects, and services required to meet the sequence of control. Provide BACnet MS/TP communications between the DDC system and native BACnet devices furnished with HVAC equipment and plant equipment including boilers, chillers, and variable frequency drives. Devices provided shall be certified in the BACnet Testing Laboratories (BTL) Product Listing and in accordance with ASHRAE 135.1 Method of Test for Conformance to BACnet. Controls provided integral to equipment shall be part of the DDC system and shall fully comply with this specification. Coordinate integration of integral controls into the system as a whole. BACnet over IP is not permitted within the DDC system.

b. Assist the Government in interfacing the new DDC system with the site's existing server and operator workstation and software. Create graphics, scheduling, alarming, and trending.

2.1.1 Supervisory Building Controller (SBC)

ASHRAE 135 building controller that is the main interface for the building control system. Provide either a Johnson Controls Incorporated NAE or NCE; OR a JACE based on the Niagara AX platform. The JACE (JAVA Application Control Engine) shall be minimally based on a Tridium 700 with expanded memory and embedded "workplace" software.
2.1.2 EMCS Interface

The Energy Management & Control System (EMCS) at Camp Lejeune is comprised of two separate systems. Both of the systems communicate over the basewide Marine Air-Ground Task Force Regional Area Network (MRAN). One uses the Johnson Controls Metasys extended architecture including an ADX server and NAE 8500(s). Connection from the building BAS is by a Johnson Controls Network Automation Engine (NAE) or Network Control Engine (NCE) to the ADX server, or by a LOYTEC Router connected to the DDC MS/TP bus and MRAN using BACnet over IP to communicate to the NAE 8500. The second system uses a Niagara AX web supervisor with a JACE in the building communicating using Fox protocol. Because of IT security and permissions, only these systems and equipment are permitted as part of the EMCS.

2.1.2.1 Supervisory Building Controller

Provide either a Johnson Controls NAE, NCE, or a JACE. This will serve as both the Supervisory Building Controller and the connection point between the buildings DDC and the EMCS.

2.1.2.2 LOYTEC Router

In addition to the BACnet Building Controller, provide a LOYTEC LIP-ME201 or LIP-ME204 to act as a BACnet MS/TP to BACnet IP gateway. The installing contractor shall determine which router(s) is required.

2.1.3 Direct Digital Controllers

Direct digital controllers shall be UL 916 rated.

2.1.3.1 I/O Point Limitation

The total number of I/O hardware points used by a single stand-alone digital controller, including I/O expansion units, shall not exceed 64, except for complex individual equipment or systems. Place I/O expansion units in the same cabinet as the digital controller.

2.1.3.2 Environmental Limits

Controllers shall be suitable for, or placed in protective enclosures suitable for the environment (temperature, humidity, dust, and vibration) where they are located.

2.1.3.3 Stand-Alone Controllers

Provide stand-alone direct digital controllers with internal time clocks. Each piece of equipment shall be controlled by a single controller to provide stand-alone control in the event of any building communication failure. All I/O points specified for a piece of equipment shall be integral to its controller and serial connected expansion modules. Provide stable and reliable stand-alone control using default values or other method for values normally read over the network.

2.1.3.4 Internal Clock

Provide internal clocks and scheduling for all Direct Digital Controllers. Provide controllers with BTL listed profiles for all BACnet Building Controllers (B-BC) and BACnet Advanced Application Controllers (B-AAC) using BACnet time synchronization services. This includes but is not
limited to VAV Controllers, Fan Coil controllers, Heat Pump controllers and any terminal controllers. BACnet Application specific controllers (B-ASC) will only be accepted for dedicated small exhaust system control such as restroom and mechanical room exhaust fans. Automatically synchronize system clocks daily from an operator-designated controller. The system shall automatically adjust for daylight saving time.

2.1.3.5 Memory

Provide sufficient memory for each controller to support the required control, communication, trends, alarms, and messages. Protect programs residing in memory with EEPROM, flash memory, or by an uninterruptible power source (battery or uninterruptible power supply). The backup power source shall have capacity to maintain the memory during a 72-hour continuous power outage. Rechargeable power sources shall be constantly charged while the controller is operating under normal line power. Batteries shall be replaceable without soldering. Trend and alarm history collected during normal operation shall not be lost during power outages less than 72 hours long.

2.1.3.6 Immunity to Power Fluctuations

Controllers shall operate at 90 percent to 110 percent nominal voltage rating.

2.1.3.7 Transformer

The controller power supply shall be fused or current limiting and rated at 125 percent power consumption. Each transformer must singularly serve the connected load, i.e. do not wire transformers in parallel on the load side.

2.1.3.8 Wiring Terminations

Use screw terminal wiring terminations for all field-installed controllers. Provide field-removable modular terminal strip or a termination card connected by a ribbon cable for all controllers other than terminal units.

2.1.3.9 Input and Output Interface

Provide hard-wired input and output interface for all controllers as follows:

a. Protection: Shorting an input or output point to itself, to another point, or to ground shall cause no controller damage. Input or output point contact with sources up to 24 volts AC or DC for any duration shall cause no controller damage.

b. Binary Inputs: Binary inputs shall monitor on and off contacts from a "dry" remote device without external power, and external 5-24 VDC voltage inputs.

c. Pulse Accumulation Inputs: Pulse accumulation inputs shall conform to binary input requirements and accumulate pulses at a resolution suitable to the application.

d. Analog Inputs: Analog inputs shall monitor low-voltage (0-10 VDC), current (4-20 mA), or resistance (thermistor or RTD) signals.
e. Binary Outputs: Binary outputs shall send a pulsed 24 VDC low-voltage signal for modulation control, or provide a maintained open-closed position for on-off control. Where appropriate, provide a method to select normally open or normally closed operation.

f. Analog Outputs: Analog outputs shall send modulating 0-10 VDC or 4-20 mA signals to control output devices.

g. Tri-State Outputs: Tri-State outputs shall provide three-point floating control of terminal unit electronic actuators.

2.1.3.10 Digital Controller BACnet Internetwork

Provide intermediate gateways, only when requested by the Government and shown on the contract drawings, to connect existing non-BACnet devices to the BACnet internetwork. Controller and operator interface communication shall conform to ASHRAE 135, BACnet. If a controller becomes non-responsive, the remaining controllers shall continue operating and not be affected by the failed controller.

2.1.3.11 Communications Ports

a. Direct-Connect Interface Ports: Provide at least one extra communication port at each local BACnet network for direct connecting a notebook computer or BACnet hand-held terminal so all network BACnet objects and properties may be viewed and edited by the operator.

b. BACnet routers supporting ARCnet shall also be capable of supporting MS/TP.

2.1.3.12 BACnet Gateways

Provide BACnet communication ports, whenever available as a plant equipment OEM standard option, for DDC integration via a single communication cable. Typical BACnet controlled plant equipment includes, but is not limited to, boilers, chillers, and variable frequency motor drives.

Provide gateways to connect BACnet to legacy systems, existing non-BACnet devices, and existing non-BACnet DDC controlled plant equipment, only when specifically requested and approved by the Government, and shown on the Government approved BACnet Communication Architecture Schematic. Provide with each gateway an interoperability schedule, showing each point or event on the legacy side that the BACnet "client" will read, and each parameter that the BACnet network will write to. Describe this interoperability in terms of BACnet services, or Interoperability Building Blocks (BIBBS), defined in ASHRAE 135 Annex K. Provide two-year minimum warranty for each gateway, including parts and labor.

The following minimum capabilities are required:

a. Gateways shall be able to read and view all readable object properties listed in the interoperability schedule on the non-BACnet network to the BACnet network and vice versa where applicable.

b. Gateways shall be able to write to all writeable object properties listed in the interoperability schedule on the non-BACnet network from the BACnet network and vice versa where applicable.
c. Gateways shall provide single-pass (only one protocol to BACnet without intermediary protocols) translation from the non-BACnet protocol to BACnet and vice versa.

d. Gateways shall meet the requirements of Data Sharing Read Property (DS-RP-B), Data Sharing Write Property (DS-WP-B), Device Management Dynamic Device Binding-B (DM-DDB-B), and Device Management Communication Control (DM-DCC-B) BIBBs, in accordance with ASHRAE 135.

e. Gateways shall include all hardware, software, software licenses, and configuration tools for operator-to-gateway communications. Provide backup programming and parameters on CD media and the ability to modify, download, backup, and restore gateway configuration.

2.1.3.13 Digital Controller Cabinet

Provide each digital controller including gateways, in a factory fabricated locked cabinet enclosure.

Cabinets located indoors shall protect against dust and have a minimum NEMA 1 rating, except where indicated otherwise. Cabinets located outdoors or in damp environments shall protect against all outdoor conditions and have a minimum NEMA 4 rating. Mechanical rooms that contain steam service or equipment including new steam boiler rooms are considered damp environments. Outdoor control panels and controllers must be able to withstand extreme ambient conditions, without malfunction or failure, whether or not the controlled equipment is running. If necessary, provide a thermostatically controlled panel heater in freezing locations, and an internal ventilating fan in locations exposed to direct sunlight. Cabinets shall have a hinged lockable door and an offset removable metal back plate, except controllers integral with terminal units, like those mounted on VAV boxes. Provide like-keyed locks for all hinged panels provided and a set of two keys at each panel, with one key inserted in the lock.

2.1.3.14 Main Power Switch and Receptacle

Provide each control cabinet with a main external power on/off switch located inside the cabinet. Also provide each cabinet with a separate 120 VAC duplex convenience receptacle.

2.1.4 DDC Software

2.1.4.1 Programming

Provide programming to execute the sequence of operation indicated. Provide all programming and tools to configure and program all controllers. All software shall be licensed to Marine Corps Base, Camp Lejeune Complex for unrestricted use on Camp Lejeune Complex and reproduction for use on Camp Lejeune Complex. Software keys and "dongles" are not permitted. Provide programming routines in simple, easy-to-follow logic with detailed text comments describing what the logic does and how it corresponds to the project's written sequence of operation. All logic programming and control functions shall be closed loop, command and feedback for fault detection and alarming when status != command.

a. Graphic-based programming shall use a library of function blocks made from pre-programmed code designed for BAS control. Function blocks shall be assembled with interconnecting lines, depicting the control sequence in a flowchart. If providing a computer with device
programming tools as part of the project, graphic programs shall be viewable in real time showing present values and logical results from each function block.

b. Menu-based programming shall be done by entering parameters, definitions, conditions, requirements, and constraints.

c. For line-by-line and text-based programming, declare variable types (variable types include but are not limited to the following: local, global, real, and integer) at the beginning of the program. Use descriptive comments frequently to describe the programming.

d. If providing a computer with device programming tools as part of the project, provide a means for detecting program errors and testing software strategies with a simulation tool. Simulation may be inherent within the programming software suite, or provided by physical controllers mounted in a NEMA 1 test enclosure. The test enclosure shall contain one dedicated controller of each type provided under this contract, complete with power supply and relevant accessories.

2.1.4.2 Parameter Modification

All writeable object properties, and all other programming parameters needed to comply with the project specification shall be adjustable for devices at any network level, including those accessible with web-browser communication, and regardless of programming methods used to create the applications.

2.1.4.3 Short Cycling Prevention

Provide setpoint differentials and minimum on/off times to prevent equipment short cycling.

2.1.4.4 Equipment Status Delay

Provide an adjustable delay from when equipment is commanded on or off and when the control program looks to the status input for confirmation.

2.1.4.5 Run Time Accumulation

Use the Elapsed Time Property to provide re-settable run time accumulation for each Binary Output Object connected to mechanical loads greater than 1 HP, electrical loads greater than 10 KW, or wherever else specified.

2.1.4.6 Timed Local Override

Provide an adjustable override time for each push of a timed local override button.

2.1.4.7 Time Synchronization

Provide time synchronization, including adjustments for leap years, daylight saving time, and operator time adjustments.

2.1.4.8 Scheduling

Provide operating schedules as indicated, with equipment assigned to groups. Changing the schedule of a group shall change the operating schedule of all equipment in the group. Groups shall be capable of
operator creation, modification, and deletion. Provide capability to view and modify schedules in a seven-day week format. Provide capability to enter holiday and override schedules one full year at a time.

2.1.4.9 Object Property Override

Allow writeable object property values to accept overrides to any valid value. Where specified or required for the sequence of control, the Out-Of-Service property of Objects shall be modifiable using BACnet's write property service. When documented, exceptions to these requirement are allowed for life, machine, and process safeties.

2.1.4.10 Alarms and Events

Alarms and events shall be capable of having programmed time delays and high-low limits. When a web server is connected to the BACnet internetwork, alarms/events shall report to web server as defined by an authorized operator. Otherwise alarms/events shall be stored within a device on the BACnet network until connected to a user interface device and retrieved. Provide alarms/events in agreement with the point schedule, sequence of operation, and the BAS Owner. At a minimum, provide programming to initiate alarms/events any time a piece of equipment fails to operate, a control point is outside normal range or condition shown on schedules, communication to a device is lost, a device has failed, or a controller has lost its memory.

2.1.4.11 Trending

Provide BACnet trending all object present values, set points, and other parameters indicated for trending on project schedules. Trends may be associated into groups, and a trend report may be set up for each group. Trends are stored within a device on the BACnet network, with operator selectable trend intervals from 10 seconds up to 60 minutes. The minimum number of consecutive trend values stored at one time shall be 100 per variable. When trend memory is full, the most recent data shall overwrite the oldest data.

The BACnet system shall allow for Change-Of-Value (COV) subscription based trending at user defined thresholds.

The B-BC shall upload trends automatically upon reaching 3/4 of the device buffer limit (via Notification_Threshold property), by operator request, or by time schedule for archiving. Archived and real-time trend data shall be available for viewing numerically and graphically for at the workstation and connected notebook computers.

Allocate sufficient memory to store 24 months data.

2.1.4.12 Device Diagnostics

Each controller shall have diagnostic LEDs for power, communication, and device fault condition. The DDC system shall recognize and report a non-responsive controller.

2.1.4.13 Power Loss

Upon restoration of power, the DDC system shall perform an orderly restart and restoration of control.
2.1.5 Notebook Computer

Provide a notebook computer, complete with the project's installed DDC software, applications database, and graphics to fully troubleshoot and program the project's devices. Provide the notebook computer with ballistic nylon carrying case with shoulder strap with all necessary cables and interface hardware needed for setup and communication with the controllers and control system components.

At a minimum the notebook computer shall include: Common Access Card Reader, Windows based operating system, minimum 2.7 GHz processor with 3 MB Cache, discrete switchable graphics card with minimum 1 GB dedicated memory, 1 Terabyte hard drive, 6 GB DDR3 RAM, 2 USB 3.0 ports, 10/100/1000 network interface card, 802.11 b/g/n WLAN, 17-inch display, keyboard with numeric keypad, 6-hour battery with charger, internal or external 8X DVD+/-R/RW drive with double layer support with DVD creator software, and Microsoft Office Home and Business bundled software. Provide all original licenses, installation media, documentation, and recovery CDs capable of restoring the original configuration. Provide a means to connect the notebook computer to the installed field bus. Provide the manufacturer's 3-year accidental damage protection with 3-day on site response for 2 year warranty with the Government listed as the warranty owner.

2.1.6 Notebook Computer Software

2.1.6.1 Password Protection

System shall support role based access. At a minimum OS administrator, auditor, DDC operator and user roles must be defined. The system must be capable of enforcing role based access by location (e.g., Bob may alter operating parameters for Building 1 but not Building 2. Building 2 is Alice's responsibility).

Workstation shall be capable of DoD Common Access Card (CAC) login in addition to traditional username and password.

The lowest level only allow viewing graphics. The second level allows viewing graphics and changing space temperature setpoints. The third level allows the previous level's capability, plus changing operating schedules. The fourth level allows access to all functions except passwords. The highest level provides all administrator rights and allows full access to all programming, including setting new passwords and access levels. Provide the BAS Owner with the highest level password access. Provide automatic log out if no keyboard or mouse activity is detected after a user-defined time delay.

2.1.6.2 Notebook Computer DDC Software

Provide the workstation software with the manufacturer's installation CDs and licenses. Configure the software according to the DDC system manufacturer's specifications, cybersecurity requirements, and in agreement with BACnet Operator Workstation (B-OWS) device standards found in ASHRAE 135, Annex L.

The workstation software shall permit complete monitoring, modification, archiving, programming and troubleshooting interface with the DDC system including supervisory controller and field controllers. The operator interface with the software shall be menu-driven with appropriate displays and menu commands to manipulate the DDC system's objects, point data,
operating schedules, control routines, system configuration, trends, alarms, messages, graphics, and reports. Trends shall be capable of graphic display in real time, with variables plotted as functions of time. Each alarmed point shall be capable of displaying its alarm history, showing when it went into alarm, if and when it was acknowledged, and when it went out of alarm. The modification of DDC system parameters and object properties shall be accomplished with "fill in the blank" and/or "point and drag" methods. Modifications shall download to the appropriate controllers at the operator's request.

2.1.6.3 Web-Based User Interface (UI) and Graphics

Provide web-based graphics fully compatible with Internet Explorer 9+, Safari, Firefox, and Google Chrome. Web-based user interface shall be browser agnostic and shall not rely on proprietary client side scripting to function.

Graphic displays shall have full-screen resolution when viewed on the workstation and notebook computers. Dynamic data on graphics pages shall refresh within 10 seconds using an Internet connection, or 30 seconds using a dial-up modem connection. Web-based user interface shall not rely on additional third-party browser "plug-in" software like Adobe Flash. Java client side applets may be used if appropriately signed. If Java client side runtimes are used they shall not require deprecated or otherwise unsupported Java runtime environments.

The graphics shall show the present value and object name for each of the project's I/O points on at least one graphic page. Arrange point values and names on the graphic displays in their appropriate physical locations with respect to the floor plan or equipment graphic displayed. Graphics shall allow the operator to monitor current status, view zone and equipment summaries, use point-and-click navigation between graphic pages, and edit setpoints and parameters directly from the screens. Items in alarm shall be displayed using a different color or other obvious visual indicator.

Provide graphics with the following:

a. Graphic Types: Provide at least one graphic display for each piece of HVAC equipment, building floor, and controlled zone. Indicate dynamic point values, operating statuses, alarm conditions, and control setpoints on each display. Provide summary pages where appropriate.

(1) Building Elevation: For buildings more than one story, provide an elevation view of the building with links to each of the building's floor plans. Simulate the building's architecture and include the building number and floor numbers. If possible, use an actual photograph of the building.

(2) Building Floor Plans: Provide a floor plan graphic for each of the building's floors and roof with dynamic display of space temperature and other important data. If used, indicate and provide links to sub-plan areas. If possible, use the project's electronic drawing files for the graphic backgrounds. Provide clear names for important areas, such as "Main Conference Room." Include room names and numbers where applicable. Include features such as stairwells, elevators, and main entrances. Where applicable, include the mechanical room, HVAC equipment, and control component locations, with corresponding links to the equipment graphics.
(3) Sub-plan Areas: Where a building's floor plan is too large to adequately display on the screen, sub-divide the plan into distinct areas, and provide a separate graphic display for each area. Provide same level of detail requested in building floor plan section above.

(4) HVAC Equipment: Provide a graphic display for each piece of HVAC equipment, such as a fan coil unit, VAV terminal, or air handling unit. Equipment shall be represented by a two or three-dimensional drawing. Where multiple pieces of equipment combine to form a system, such as a central chiller plant or central heating plant, provide one graphic to depict the entire plant. Indicate the equipment, piping, ductwork, dampers, and control valves in the installed location. Include labels for equipment, piping, ductwork, dampers, and control valves. Show the direction of air and water flow. Include dynamic display of applicable object data with clear names in appropriate locations.

(5) Sequence of Operation: Provide a graphic screen displaying the written out full sequence of operation for each piece of HVAC equipment. Provide a link to the sequence of operation displays on their respective equipment graphics. Include dynamic real-time data within the text for setpoints and variables.

b. Graphic Title: Provide a prominent, descriptive title on each graphic page.

c. Dynamic Update: When the workstation is on-line, all graphic I/O object values shall update with change-of-value services, or by operator selected discrete intervals.

d. Graphic Linking: Provide forward and backward linking between floor plans, sub-plans, and equipment.

e. Graphic Editing: Provide installed software to create, modify, and delete the DDC graphics. Include the ability to store graphic symbols in a symbol directory and import these symbols into the graphics.

f. Dynamic Point Editing: Provide full editing capability for deleting, adding, and modifying dynamic points on the graphics.

2.2 SENSORS AND INPUT HARDWARE

Coordinate sensor types with the BAS Owner to keep them consistent with existing installations.

2.2.1 Field-Installed Temperature Sensors

Where feasible, provide the same sensor type throughout the project. Avoid using transmitters unless absolutely necessary.

2.2.1.1 Thermistors

Precision thermistors may be used in applications below 200 degrees F. Sensor accuracy over the application range shall be 0.36 degree F or less between 32 to 150 degrees F. Stability error of the thermistor over five years shall not exceed 0.25 degrees F cumulative. A/D conversion resolution error shall be kept to 0.1 degrees F. Total error for a thermistor circuit shall not exceed 0.5 degrees F.
2.2.1.2 Resistance Temperature Detectors (RTDs)

Provide RTD sensors with platinum elements compatible with the digital controllers. Encapsulate sensors in epoxy, series 300 stainless steel, anodized aluminum, or copper. Temperature sensor accuracy shall be 0.1 percent (1 ohm) of expected ohms (10k ohms) at 32 degrees F. Temperature sensor stability error over five years shall not exceed 0.25 degrees F cumulative. Direct connection of RTDs to digital controllers without transmitters is preferred. When RTDs are connected directly, lead resistance error shall be less than 0.25 degrees F. The total error for a RTD circuit shall not exceed 0.5 degrees F.

2.2.1.3 Temperature Sensor Details

a. Room Type: Provide the sensing element components within a decorative protective cover suitable for surrounding decor.

b. Duct Probe Type: Ensure the probe is long enough to properly sense the air stream temperature.

c. Duct Averaging Type: Continuous averaging sensors shall be one foot in length for each 4 square feet of duct cross-sectional area, and a minimum length of 6 feet.

d. Pipe Immersion Type: Provide minimum three-inch immersion. Provide each sensor with a corresponding pipe-mounted sensor well, unless indicated otherwise. Sensor wells shall be stainless steel when used in steel piping, and brass when used in copper piping. Provide the sensor well with a heat-sensitive transfer agent between the sensor and the well interior.

e. Outside Air Type: Provide the sensing element on the building's north side with a protective weather shade that positions the sensor approximately 3 inches off the wall surface, does not inhibit free air flow across the sensing element, and protects the sensor from snow, ice, and rain.

2.2.2 Transmitters

Provide transmitters with 4 to 20 mA or 0 to 10 VDC linear output scaled to the sensed input. Transmitters shall be matched to the respective sensor, factory calibrated, and sealed. Size transmitters for an output near 50 percent of its full-scale range at normal operating conditions. The total transmitter error shall not exceed 0.1 percent at any point across the measured span. Supply voltage shall be 12 to 24 volts AC or DC. Transmitters shall have non-interactive offset and span adjustments. For temperature sensing, transmitter drift shall not exceed 0.03 degrees F a year.

2.2.2.1 Relative Humidity Transmitters

Provide transmitters with an accuracy equal to plus or minus 3 percent from 0 to 90 percent scale, and less than one percent drift per year. Sensing elements shall be the polymer type.

2.2.2.2 Pressure Transmitters

Provide transmitters integral with the pressure transducer.
2.2.3 Current Transducers

Provide current transducers to monitor motor amperage, unless current switches are shown on design drawings or point tables.

2.2.4 Motor Run Status

Unless otherwise noted, provide current switches to indicate run status of pumps and fans. Sensitivity of the switch on belt driven equipment should distinguish between loaded motor and unloaded motor such as a fan with a broken belt.

2.2.5 Pneumatic to Electric Transducers

Pneumatic to electronic transducers shall convert a 0 to 20 psig signal to a proportional 4 to 20 mA or 0 to 10 VDC signal (operator scaleable). Supply voltage shall be 24 VDC. Accuracy and linearity shall be 1.0 percent or better.

2.2.6 Air Quality Sensors

Provide power supply for each sensor.

2.2.6.1 CO2 Sensors

Provide photo-acoustic type CO2 sensors with integral transducers and linear output. The devices shall read CO2 concentrations between 0 and 2000 ppm with full scale accuracy of at least plus or minus 100 ppm.

2.2.6.2 Air Quality Sensors

Provide full spectrum air quality sensors using a hot wire element based on the Taguchi principle. The sensor shall monitor a wide range of gaseous volatile organic components common in indoor air contaminants like paint fumes, solvents, cigarette smoke, and vehicle exhaust. The sensor shall automatically compensate for temperature and humidity, have span and calibration potentiometers, operate on 24 VDC power with output of 0-10 VDC, and have a service rating of 32 to 140 degrees F and 5 to 95 percent relative humidity.

2.2.7 Input Switches

2.2.7.1 Timed Local Overrides

Provide buttons or switches to override the DDC occupancy schedule programming for each major building zone during unoccupied periods, and to return HVAC equipment to the occupied mode. This requirement is waived for zones clearly intended for 24 hour continuous operation.

2.2.7.2 Emergency Shut Down Switches (ATFP)

Anti Terrorism Force Protection emergency shut down switches must be two action to prevent accidental initiation, such as a mushroom push button with a cover.

2.2.8 Freeze Protection Thermostats

Provide special purpose thermostats with flexible capillary elements 20
feet minimum length for coil face areas up to 40 square feet. Provide longer elements for larger coils at 1-foot of element for every 4 square feet of coil face area, or provide additional thermostats. Provide switch contacts rated for the respective motor starter's control circuit voltage. Include auxiliary contacts for the switch's status condition. A freezing condition at any 18-inch increment along the sensing element's length shall activate the switch. The thermostat shall be equipped with a manual push-button reset switch so that when tripped, the thermostat requires manual resetting before the HVAC equipment can restart.

2.2.9 Air Flow Measurement Stations

Air flow measurement stations shall have an array of velocity sensing elements and straightening vanes inside a flanged sheet metal casing. The velocity sensing elements shall be the RTD or thermistor type, traversing the ducted air in at least two directions. The air flow pressure drop across the station shall not exceed 0.08 inch water gage at a velocity of 2,000 fpm. The station shall be suitable for air flows up to 5,000 fpm, and a temperature range of 40 to 120 degrees F. The station's measurement accuracy over the range of 125 to 2,500 fpm shall be plus or minus 3 percent of the measured velocity. Station transmitters shall provide a linear, temperature-compensated 4 to 20 mA or 0 to 10 VDC output. The output shall be capable of being accurately converted to a corresponding air flow rate in cubic feet per minute. Transmitters shall be a 2-wire, loop powered device. The output error of the transmitter shall not exceed 0.5 percent of the measurement.

2.2.10 Air Flow Measurement for Terminal Devices

Air flow measurement for terminal devices such as variable air volume boxes, with or without fan power shall have an array of pressure sensing elements than sense total pressure and static pressure. The flow measurement shall be integral to the device controller and shall be by differential pressure sensor. The air flow shall measure flows down to 300 fpm with an accuracy of 5 percent of reading.

2.3 OUTPUT HARDWARE

2.3.1 Control Dampers

Provide factory manufactured galvanized steel dampers where indicated. Dampers shall be opposed blade for rectangular applications 10-inches and taller, and single blade for round dampers and rectangular dampers shorter than 10-inches. Control dampers shall comply with SMACNA 1966 except as modified or supplemented by this specification. Published damper leakage rates and respective pressure drops shall have been verified by tests in compliance with AMCA 500-D requirements.

Provide damper assembly frames constructed of minimum thickness galvanized steel channels with mitered and welded corners. Damper axles shall be 0.5 inches minimum diameter plated steel rods supported in the damper frame by stainless steel or bronze bearings. Blades mounted vertically shall be supported by thrust bearings.

Dampers shall be rated for not less than 2000 fpm air velocity. The pressure drop through each damper when full-open shall not exceed 0.04 inches water gage at 1000 fpm face velocity. Damper assemblies in ductwork shall be constructed to meet SMACNA Seal Class "A" construction requirements.
Provide the damper operating linkages outside of the air stream, including crank arms, connecting rods, and other hardware that transmits motion from the damper actuators to the dampers, shall be adjustable. Additionally, operating linkages shall be designed and constructed to have a 2 to 1 safety factor when loaded with the maximum required damper operating force. Linkages shall be brass, bronze, galvanized steel, or stainless steel.

Provide access doors or panels in hard ceilings and walls for access to all concealed damper operators and damper locking setscrews.

For field-installed control dampers, a single damper section shall have blades no longer than 48 inches and no higher than 72 inches. The maximum damper blade width shall be 12 inches. Larger sized dampers shall be built using a combination of sections.

Frames shall be at least 2 inches wide. Flat blades shall have edges folded for rigidity. Blades shall be provided with compressible gasket seals along the full length of the blades to prevent air leakage when closed.

The damper frames shall be provided with jamb seals to minimize air leakage. Seals shall be suitable for an operating temperature range of minus 40 degrees F to 200 degrees F.

The leakage rate of each damper when full-closed shall be no more than 3 cfm per sq. foot of damper face area at 1.0 inches water gage static pressure.

2.3.2 Control Valves

2.3.2.1 Valve Assembly

Valve bodies shall be designed for 125 psig minimum working pressure or 150 percent of the operating pressure, whichever is greater. Valve stems shall be Type 316 stainless steel. Valve leakage ratings shall be 0.01 percent of rated Cv value. Class 125 copper alloy valve bodies and Class 150 steel or stainless steel valves shall meet the requirements of ASME B16.5. Cast iron valve components shall meet the requirements of ASTM A126 Class B or C.

2.3.2.2 Butterfly Valves

Butterfly valves shall be the threaded lug type suitable for dead-end service and for modulation to the fully-closed position, with stainless steel shafts supported by bearings, non-corrosive discs geometrically interlocked with or bolted to the shaft (no pins), and EPDM seats suitable for temperatures from minus 20 degrees F to plus 250 degrees F. Valves shall have a means of manual operation independent of the actuator.

2.3.2.3 Two-Way Valves

Two-way modulating valves shall have an equal percentage characteristic.

2.3.2.4 Three-Way Valves

Three-way valves shall have an equal percentage characteristic.

2.3.2.5 Valves for Chilled Water

a. Bodies for valves 1-1/2 inches and smaller shall be brass or bronze,
with threaded or union ends. Bodies for valves from 2 inches to 3 inches inclusive shall be of brass, bronze, or iron. Bodies for 2 inch valves shall have threaded connections. Bodies for valves from 2-1/2 to 3 inches shall have flanged connections.

b. Internal valve trim shall be brass or bronze, except that valve stems shall be stainless steel.

c. Unless indicated otherwise, provide modulating valves sized for 2 psi minimum and 4 psi maximum differential across the valve at the design flow rate.

d. Valves 4 inches and larger shall be butterfly valves, unless indicated otherwise.

2.3.2.6 Valves for Hot Water Service

Valves for hot water service below 250 Degrees F:

a. Bodies for valves 1-1/2 inches and smaller shall be brass or bronze, with threaded or union ends. Bodies for valves from 2 inches to 3 inches inclusive shall be of brass, bronze, or iron. Bodies for 2 inch valves shall have threaded connections. Bodies for valves from 2-1/2 to 3 inches shall have flanged connections.

b. Internal trim (including seats, seat rings, modulation plugs, valve stems, and springs) of valves controlling water above 210 degrees F shall be Type 316 stainless steel.

c. Internal trim for valves controlling water 210 degrees F or less shall be brass or bronze. Valve stems shall be Type 316 stainless steel.

d. Non-metallic parts of hot water control valves shall be suitable for a minimum continuous operating temperature of 250 degrees F or 50 degrees F above the system design temperature, whichever is higher.

e. Unless indicated otherwise, provide modulating valves sized for 2 psi minimum and 4 psi maximum differential across the valve at the design flow rate.

f. Valves 4 inches and larger shall be butterfly valves, unless indicated otherwise.

2.3.3 Actuators

Provide direct-drive electric actuators for all control applications, except where indicated otherwise. All actuators shall include a feedback loop for detecting actuator faults. The actuator shall report actual position back to the control system. Binary actuators shall provide open/closed status, at a minimum. Modulating actuators and process shall provide position feedback expressed (directly or through span conversion) as percent open/closed. Actuator status shall be derived from actuator position; however, effect may be used in cases where direct feedback is not practical such as VAV coils and dampers.

Use airflow sensors as a feedback loop for damper actuators. Use differential temperature as a feedback mechanism for VAV coil valve actuation.
2.3.3.1 Electric Actuators

Each actuator shall deliver the torque required for continuous uniform motion and shall have internal end switches to limit the travel, or be capable of withstanding continuous stalling without damage. Actuators shall function properly within 85 to 110 percent of rated line voltage. Provide actuators with hardened steel running shafts and gears of steel or copper alloy. Fiber or reinforced nylon gears may be used for torques less than 16 inch-pounds. Provide two-position actuators of single direction, spring return, or reversing type. Provide modulating actuators capable of stopping at any point in the cycle, and starting in either direction from any point. Actuators shall be equipped with a switch for reversing direction, and a button to disengage the clutch to allow manual adjustments. Provide the actuator with a hand crank for manual adjustments, as applicable. Thermal type actuators may only be used on terminal fan coil units, terminal VAV units, convectors, and unit heaters. Spring return actuators shall be provided on all control dampers and all control valves except terminal fan coil units, terminal VAV units, convectors, and unit heaters; unless indicated otherwise. Each actuator shall have distinct markings indicating the full-open and full-closed position, and the points in-between.

2.3.4 Output Switches

2.3.4.1 Control Relays

Field installed and DDC panel relays shall be double pole, double throw, UL listed, with contacts rated for the intended application, indicator light, and dust proof enclosure. The indicator light shall be lit when the coil is energized and off when coil is not energized. Relays shall be the socket type, plug into a fixed base, and replaceable without tools or removing wiring. Encapsulated "PAM" type relays may be used for terminal control applications.

2.4 ELECTRICAL POWER AND CONTROL WIRING

2.4.1 Transformers

Transformers shall conform to UL 506. For control power other than terminal level equipment, provide a fuse or circuit breaker on the secondary side of each transformer.

2.4.2 Surge and Transient Protection

Provide each control cabinet with surge and transient power protection. Surge protection is not required for small terminal unit controllers such as VAV controllers. Surge and transient protection shall consist of the following devices, installed externally to the controllers.

2.4.2.1 Power Line Surge Protection

Provide surge suppressors on the incoming power at each direct digital controller or grouped terminal controllers and shall be installed externally to the device or devices being protected. Surge suppressors shall be rated in accordance with UL 1449, have a fault indicating light, and conform to the following:

a. The device shall be a transient voltage surge suppressor, hard-wire type individual equipment protector for 120 VAC/1 phase/2 wire plus
b. The device shall react within 5 nanoseconds and automatically reset.

c. The voltage protection threshold, line to neutral, shall be no more than 211 volts.

d. The device shall have an independent secondary stage equal to or greater than the primary stage joule rating.

e. The primary suppression system components shall be pure silicon avalanche diodes.

f. The secondary suppression system components shall be silicon avalanche diodes or metal oxide varistors.

g. The device shall have an indication light to indicate the protection components are functioning.

h. All system functions of the transient suppression system shall be individually fused and not short circuit the AC power line at any time.

i. The device shall have an EMI/RFI noise filter with a minimum attenuation of 13 dB at 10 kHz to 300 MHz.

j. The device shall comply with IEEE C62.41.1 and IEEE C62.41.2, Class "B" requirements and be tested according to IEEE C62.45.

k. The device shall be capable of operating between minus 20 degrees F and plus 122 degrees F.

2.4.2.2 MS/TP Communication Line Surge Protection

Provide surge and transient protection for DDC controllers and DDC network related devices connected to phone lines, network communication lines, lines from exterior equipment, and lines from other buildings including mechanical buildings in accordance with the following:

a. The device shall provide continuous, non-interrupting protection, and shall automatically reset after safely eliminating transient surges.

b. The protection shall react within 5 nanoseconds using only solid-state silicon avalanche technology.

c. The device shall be installed at the distance recommended by its manufacturer.

2.4.3 Wiring

Provide complete electrical wiring for the DDC System, including wiring to transformer primaries. Unless indicated otherwise, provide all normally visible or otherwise exposed wiring in conduit. Where conduit is required, control circuit wiring shall not run in the same conduit as power wiring over 100 volts. Circuits operating at more than 100 volts shall be in accordance with Section 26 20 00, INTERIOR DISTRIBUTION SYSTEM. Run all circuits over 100 volts in conduit, metallic tubing, covered metal raceways, or armored cable.

Provide 2 inch, underground, low-voltage conduit between mechanical...
outbuilding and the BEQ building mechanical room containing the main building BACnet controller to route DDC wiring. Additionally, provide a "pull-through" cable with a device on each end to prevent the cable from being pulled completely through the conduit for ease of wire routing. The "pull-through" cable shall be at least twice the length of the conduit for ease of future wire routing.

2.4.3.1 Power Wiring

The following requirements are for field-installed wiring:

a. Wiring for 24 V circuits shall be insulated copper 18 AWG minimum and rated for 300 VAC service.

b. Wiring for 120 V circuits shall be insulated copper 12 AWG minimum and rated for 600 VAC service.

2.4.3.2 Analog Signal Wiring

Provide in accordance with control manufacturer's recommendations and the following: Field-installed analog signal wiring shall be 18 AWG single or multiple twisted pair. Each cable shall be 100 percent shielded and have a 20 AWG drain wire. Each wire shall have insulation rated for 300 VAC service. Cables shall have an overall aluminum-polyester or tinned-copper cable-shield tape.

2.4.3.3 MS/TP Communication Bus

Provide system manufacturer's recommended or preferred cabling.

2.4.3.4 Conduit

Conduit for controls less than 100 volts shall be colored blue. Junction box cover plates for controls shall be blue. Fittings and boxes do not need to be blue.

2.5 FIRE PROTECTION DEVICES

2.5.1 Duct Smoke Detectors

Provide duct smoke detectors in HVAC ducts in accordance with NFPA 72 and NFPA 90A, except as indicated otherwise. Provide UL listed or FM approved detectors, designed specifically for duct installation.

Furnish detectors under Section 28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM and install under this section. Connect new detectors to the building fire alarm panel.

2.6 VARIABLE FREQUENCY (MOTOR) DRIVES

Provide variable frequency drives (VFDs) as indicated. VFDs shall convert 208 or 480 volt (plus or minus 10 percent), three phase, 60 hertz (plus or minus 2Hz), utility grade power to adjustable voltage/frequency, three phase, AC power for stepless motor control from 5 percent to 200 percent of base speed. VFDs shall be UL listed as delivered to the end user. The VFD shall meet the requirements specified in the most current National
Electrical Code. Each VFD shall also meet the following:

a. The VFD shall use sine coded Pulse Width Modulation (PWM) technology. PWM calculations shall be performed by the VFD microprocessor.

b. The VFD shall be capable of automatic control by a remote 4-20 mA or 0 to 10 VDC signal as required by the design, by network command, or manually by the VFD control panel.

2.6.1 VFD Quality Assurance

VFDs shall be the manufacturer's current standard production unit with at least 10 identical units successfully operating in the field.

2.6.2 VFD Service Support

a. Warranty: Provide the VFDs with a minimum 24-month full parts and labor warranty. The warranty shall start when the contract's HVAC system is accepted by the Government. Include warranty documentation, dates, and contact information with the VFD on-site service manuals.

b. VFD Service Manuals: Provide the VFDs with all necessary installation, operation, maintenance, troubleshooting, service, and repair manuals in English including related factory technical bulletins. Provide the documents factory bound, in sturdy 3-ring binders, or hard bound covers. Provide a title sheet on the outside of each binder indicating the project title, project location, installing contractor, contract number, and the VFD manufacturer, address, and telephone number. Each binder shall include a table of contents and tabbed dividers, with all material neatly organized. The documentation provided shall be specifically applicable to this project, shall be annotated to reflect the actual project conditions, and shall provide a complete and concise depiction of the installed work. Provide a storage cabinet on or near the VFD large enough to hold all of the documentation. Have the cabinet's proposed installation site approved in advance by the Contracting Officer. Prominently label the cabinet "VFD OPERATION AND MAINTENANCE MANUALS." Clearly label each manual with the wording "MECHANICAL ROOM COPY – DO NOT REMOVE".

c. Technical Support: Provide the VFDs with manufacturer's technical telephone support in English, readily available during normal working hours, and free of charge for the life of the equipment.

d. Initial Start-Up: Provide the VFDs with factory-trained personnel for the on-site start-up of the HVAC equipment and associated VFD. The personnel shall be competent in the complete start-up, operation, and repair of the particular model VFD installed. The factory start-up representative shall perform the factory's complete recommended start-up procedures and check-out tests on the VFD. Include a copy of the start-up test documentation with the VFD on-site service manuals.

e. Provide the VFDs with on-site/hands-on training for the user and maintenance personnel. Provide a capable and qualified instructor with minimum two years field experience with the operation and maintenance of similar VFDs. The training shall occur during normal working hours and last not less than 2 hours. Coordinate the training time with the Contracting Officer and the end user. The VFD service manuals shall be used during the training. The contractor shall ensure the manuals are on-site before the start of training. The training shall cover all
operational aspects of the VFD.

2.6.3 VFD Features

VFDs shall have the following features:

a. A local operator control keypad capable of:
 (1) Remote/Local operator selection with password access.
 (2) Run/Stop and manual speed commands.
 (3) All programming functions.
 (4) Scrolling through all display functions.

b. Digital display capable of indicating:
 (1) VFD status.
 (2) Frequency.
 (3) Motor RPM.
 (4) Phase current.
 (5) Fault diagnostics in descriptive text.
 (6) All programmed parameters.
 (7) Load power.

c. Standard PI loop controller with input terminal for controlled variable and parameter settings.

d. User interface terminals for remote control of VFD speed, speed feedback, and an isolated form C SPDT relay, which energizes on a drive fault condition.

e. An isolated form C SPDT auxiliary relay which energizes on a run command.

f. A metal NEMA 1 enclosure for indoors, NEMA 4 with heater for outdoors.

g. An adjustable carrier frequency with 16 KHz minimum upper limit.

h. A built in DC buss reactor with 3 percent minimum impedance to protect the VFDs DC buss capacitors and rectifier section diodes.

2.6.4 Programmable Parameters

VFDs shall include the following operator programmable parameters:

a. Upper and lower limit frequency.

b. Acceleration and Deceleration rate.

c. Variable torque volts per Hertz curve.
d. Starting voltage level.
e. Starting frequency level.
f. Display speed scaling.
g. Enable/disable auto-restart feature.
h. Enable/disable soft stall feature.
i. Motor overload level.
j. Motor stall level.
k. Jump frequency and hysteresis band.
l. PWM carrier frequency.

2.6.5 Protective Features

VFDs shall have the following protective features:

a. An electronic adjustable inverse time current limit with consideration for additional heating of the motor at frequencies below 45Hz, for the protection of the motor.

b. An electronic adjustable soft stall feature, allowing the VFD to lower the frequency to a point where the motor will not exceed the full-load amperage when an overload condition exists at the requested frequency. The VFD will automatically return to the requested frequency when load conditions permit.

c. A separate electronic stall at 110 percent VFD rated current, and a separate hardware trip at 190 percent current.

d. Ground fault protection that protects the output cables and motor from grounds during both starting and continuous running conditions.

e. The ability to restart after the following faults:
 (1) Overcurrent (drive or motor).
 (2) Power outage.
 (3) Phase loss.
 (4) Over voltage/Under voltage.

f. The ability shut down if inadvertently started into a rotating load without damaging the VFD or the motor.

g. The ability to keep a log of a minimum of four previous fault conditions, indicating the fault type and time of occurrence in descriptive text.

h. The ability to sustain 110 percent rated current for 60 seconds

i. The ability to shutdown safely or protect against and record the following fault conditions:
(1) Over current (and an indication if the over current was during acceleration, deceleration, or running).

(2) Over current internal to the drive.

(3) Motor overload at start-up.

(4) Over voltage from utility power.

(5) Motor running overload.

(6) Over voltage during deceleration.

(7) VFD over heat.

(8) Load end ground fault.

(9) Abnormal parameters or data in VFD EEPROM.

2.6.6 Minimum Operating Conditions

VFDs shall be designed and constructed to operate within the following service conditions:

a. Ambient Temperature Range, 0 to 120 degrees F.

b. Non-condensing relative humidity to 90 percent.

2.6.7 Additional Features

Provide VFDs with the following additional features:

a. BACnet communication interface port

PART 3 EXECUTION

3.1 INSTALLATION

Perform the installation under the supervision of competent technicians regularly employed in the installation of DDC systems. All material and equipment shall be installed in accordance with the manufacturer's recommendations for the intended purpose. Maintain a copy of the manufacturer's recommendations on the construction site. Use the more stringent methods when manufacturer's recommendations, and plans & specification requirements differ. Use the "Preferred" method when alternative methods are given. The word "should" will be considered to mean "shall". Bring any conflicts between manufacturer's recommendations and plans & specification requirements to the Government's attention. All equipment shall be installed level and plumb.

3.1.1 Pre-Installation Meeting

Prior to starting the installation, meet with the Contracting Officer's Technical Representative (COTR) and the BAS owner to develop a mutual understanding relative to the details of the DDC system requirements. Requirements to be discussed include required submittals, work schedule, and field quality control.
3.1.2 Demolition

Remove and/or demolish all existing controls, cabling, conductors, conduit, controllers, power circuits and cabinets that are no longer needed after new work is installed. Any existing systems to remain, must remain functional and operate properly after all demolition is complete.

3.1.3 BACnet Naming and Addressing

Coordinate with the EMCS Owner and provide unique naming and addressing consistent with existing buildings already loaded on the EMCS server. All DDC controllers shall have a Camp Lejeune unique instance number and all Supervisory Building Controllers shall have a Camp Lejeune unique name. Names are managed by the Government.

a. MAC Address

Every BACnet device shall have an assigned and documented MAC Address unique to its network. For Ethernet networks, document the MAC Address assigned at its creation. For MS/Tp networks, assign addresses from 0 to 127. Supervisory Controller Global ID and instance numbers are to be obtained from Camp Lejeune Public Works Operations to ensure duplicates do not occur. Point of Contact:

Bill Schrader
Public Works Division/EMCS
1005 Michael Road / Building 1005
MCB Camp Lejeune, NC 28547
(910) 450-7846

For MS/TP, assign from 01 to 127.

b. Network Numbering

Assign unique numbers to each new network installed on the BACnet internetwork. Provide ability for changing the network number; either by device switches, network computer, or field operator interface. The BACnet internetwork (all possible connected networks) can contain up to 65,534 possible unique networks.

c. Device Object Identifier Property Number

Assign unique Device "Object_Identifier" property numbers or device instances for each device on the BACnet internetwork. Provide for future modification of the device instance number; either by device switches, network computer, or field interface. Instance numbers must be field assignable. BACnet allows up to 4,194,302 possible unique devices per internetwork.

d. Device Object Name Property Text

Each object on the Camp Lejeune EMCS has a unique point name, which is made up of the object or short name stored in the controller and the equipment identifier, which is stored in the supervisory building controller (SBC). The long point name combines this object name with the name stored in the SBC that describes the controller or location of the object. The device object name property field shall support 32 minimum printable characters. The point name follows the general convention:
Area.Building.Location.Equipment.Object Name

Example: Hadnot Point.HP512.Second Floor.AHU-3.ASTATIC-SP. See Attachments one through four for equipment names, object names, object groupings, and area names.

e. Object Name Property Text (Other than Device Objects)

The object name identifies the specific point. Only object names on the approved Camp Lejeune list shall be used. From the example above, the point name is: "ASTATIC-SP". See Attachment for the approved Camp Lejeune list. The object name property field shall support 32 minimum printable characters.

f. Object Description

The controller shall also store an alpha numeric description of the object name. The controller shall support a minimum of 30 printable characters. From the example above the object description is: "Actual Static Pressure Setpoint".

g. List of Attachments

Attachment 1 - Equipment Names
Attachment 2 - Object Names
Attachment 3 - Object Grouping
Attachment 4 - Area Names

3.1.4 Minimum BACnet Object Requirements

a. Use of Standard BACnet Objects in accordance with existing Camp Lejeune Standards

For the following points and parameters, use standard BACnet objects, where all relevant object properties can be read using BACnet's Read Property Service, and all relevant object properties can be modified using BACnet's Write Property Service:
all device physical inputs and outputs, all set points, all PID tuning parameters, all calculated pressures, flow rates, and consumption values, all alarms, all trends, all schedules, and all equipment and lighting circuit operating status.

b. BACnet Object Description Property

The Object Description property shall support 32 minimum printable characters. For each object, complete the description property field using a brief, narrative, plain English description specific to the object and project application. For example: "HW Pump 1 Proof." Document compliance, length restrictions, and whether the description is writeable in the device PICS.

c. Analog Input, Output, and Value Objects

Support and provide Description and Device_Type text strings matching signal type and engineering units shown on the points list.

d. Binary Input, Output, and Value Objects
Support and provide Inactive_Text and Active_Text property descriptions matching conditions shown on the points list.

e. Calendar Object

For devices with scheduling capability, provide at least one Calendar Object with ten-entry capacity. All operators may view Calendar Objects; authorized operators may make modifications from a workstation. Enable the writeable Date List property and support all calendar entry data types.

f. Schedule Object

Use Schedule Objects for all building system scheduling. All operators may view schedule entries; authorized operators may modify schedules from a workstation.

g. Loop Object or Equal

Use Loop Objects or equivalent BACnet objects in each applicable field device for PID control. Regardless of program method or object used, allow authorized operators to adjust the Update Interval, Setpoint, Proportional Constant, Integral Constant, and Derivative Constant using BACnet read/write services.

h. Setpoints

All setpoints must be BACnet exposed for auto discovery purposes if needed.

3.1.5 Minimum BACnet Service Requirements

a. Command Priorities

Use commandable BACnet objects to control machinery and systems, providing the priority levels listed below. If the sequence of operation requires a different priority, obtain approval from the Contracting Officer.

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manual-Life Safety</td>
</tr>
<tr>
<td>2</td>
<td>Automatic-Life Safety</td>
</tr>
<tr>
<td>3</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>4</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>5</td>
<td>Critical Equipment Control</td>
</tr>
<tr>
<td>6</td>
<td>Minimum On/Off</td>
</tr>
<tr>
<td>7</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>8</td>
<td>Manual Operator</td>
</tr>
<tr>
<td>Priority Level</td>
<td>Application</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>9</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>10</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>11</td>
<td>Load Shedding</td>
</tr>
<tr>
<td>12</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>13</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>14</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>15</td>
<td>(User Defined)</td>
</tr>
<tr>
<td>16</td>
<td>(User Defined)</td>
</tr>
</tbody>
</table>

b. Alarming

(1) Alarm Priorities - Coordinate alarm and event notification with the BAS Owner.

(2) Notification Class - Enable writeable Priority, Ack Required, and Recipient List properties of Notification Class objects.

(3) Event Notification Message Texts - Use condition specific narrative text and numerical references for alarm and event notification.

c. Updating Displayed Property Values

Allow workstations to display property values at discrete polled intervals, or based on receipt of confirmed and unconfirmed Change of Value notifications. The COV increment shall be adjustable by an operator using BACnet services, and polled intervals shall be adjustable at the operator workstation.

3.1.6 Local Area Networks

Obtain Government approval before connecting new networks with existing networks. Network numbers and device instance numbers shall remain unique when joining networks. Do not change existing network addressing without Government approval. See also "BACnet Naming and Addressing".

3.1.7 BACnet Routers and Protocol Gateways

Provide the quantity of BACnet routers necessary for communications shown on the BACnet Communication Architecture schematic. Provide BACnet routers with BACnet Broadcast Message Device (BBMD) capability on each BACnet internetwork communicating across an IP network. Configure BBMD tables to enable unicast forwarding of broadcast messaging across Layer-3 IP subnets.

3.1.8 Plant Controllers

Equipment such as VFD's, chillers, and boilers shall have hardwired enable(start/stop), and status points from the plant controller, VFD's shall also have a hardwired speed command. Additionally, this equipment
shall have a BACnet interface for monitoring.

3.1.9 Wiring Criteria

a. Run circuits operating at more than 100 volts in rigid or flexible conduit, metallic tubing, covered metal raceways, or armored cable.

b. Run all control wiring in rigid or flexible conduit, metallic tubing, or covered metal raceways, unless noted otherwise. All control wiring located inside mechanical rooms shall be in conduit or metallic tubing.

c. Do not run binary control circuit wiring in the same conduit as power wiring over 100 volts. Where analog signal wiring requires conduit, do not run in the same conduit with AC power circuits or control circuits operating at more than 100 volts.

d. Provide circuit and wiring protection required by NFPA 70.

e. Minimum conduit size is 3/4-inch, except 1/2-inch may be used from last junction box to the terminal device. Maximum conduit fill is 40% or the cable manufacturer's recommended amount whichever is less. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.

f. Do not bury aluminum-sheathed cable or aluminum conduit in concrete.

g. Input/output identification: Permanently label each field-installed wire, cable, and pneumatic tube at each end with descriptive text using a commercial wire marking system. Labels shall fully encircle the wire, cable, or tube. The single line text shall run parallel to the wire, cable, or tube and shall be repeated so as to be viewable without twirling or twisting the wire. Locate the markers within 2 inches of each termination. Label shall include type of network and destination of cable (ex. BACnet/AHU-1). Match the names and I/O number to the project's point list. Similarly label all power wiring serving control devices, including the word "power" and panel board and circuit number, or transformer location in the label. Number each pneumatic tube every six feet. Label all terminal blocks with alpha/numeric labels. All wiring and the methods shall be in accordance with UL 508A.

h. Permanently display controller wiring diagram for each controller on the inside of the control cabinet door. Diagram shall be neatly lettered and taped or adhered with sticky back label.

i. Conduit identification: All conduits shall be labeled at 36 inches from terminations, boxes, or bends. Labels shall be 3/8 inches black lettering on white background and indicate what system the conduit contains. Label shall be visible and legible from at least three sides with a minimum dimension of 1.9 inches x 4 inches. Conduit that includes power circuits shall be labeled with source panel and circuit, and destination cabinet or equipment.

j. Each terminal device shall have its own terminal conduit run. Device boxes or devices shall not be used as "pass thru" for wiring.

k. Conduit to equipment and devices shall be run tight to walls, and ceilings. Avoid conduit on the floor, i.e. conduit shall not block access to or past equipment. Flex conduit is to be used only when EMT or rigid conduit is not able to satisfy the application such as a
transition to a sensor or equipment. Flex conduit shall be limited to a maximum length of 3 ft.

1. For controller power, provide new 120 VAC circuits, with ground if not defined on the electrical drawings. Provide each circuit with a dedicated breaker, and run wiring in its own conduit, separate from any control wiring. Connect the controller's ground wire to the electrical panel ground; conduit grounds are not acceptable.

m. Supervisory Building Controllers (SBC) shall be powered from a dedicated transformer for the SBC only. Each control cabinet shall have a dedicated 24 volt transformer. The 120 VAC power branch circuit shall be dedicated to the DDC control system. Factory provided transformers in equipment must be used as a source of power only for the control devices intended by the equipment manufacturer.

n. Surge Protection: Install surge protection according to manufacturer's instructions. Multiple controllers fed from a common power supply may be protected by a common surge protector, properly sized for the total connected devices.

o. All terminations in panels shall be made at a terminal block. No wire nuts are allowed in panels. High and low voltage wires must not land on the same terminal block unless they are separated and of a different color and/or clearly identified.

p. Grounding: Ground controllers and cabinets to a good earth ground as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Conduit grounding is not acceptable; all grounding shall have a direct path to the building earth ground. Ground sensor drain wire shields at the controller end.

q. The Contractor shall be responsible for correcting all associated MS/TP and SA bus wiring, termination, end of line, and ground loop problems.

r. Run wiring in panel enclosures in covered wire track.

s. Control cabinets and wiring boxes must be clean of all debris.

t. Low voltage cable must not be supported directly from "all thread" rod. If cabling/wiring is permitted to be run without conduit/raceway it must be supported using a retaining device such as a bridle ring or J hook, and where appropriate connected to the all thread rod using a standoff device.

3.1.10 Accessibility

Install all equipment so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install digital controllers, data ports, and concealed actuators, valves, dampers, and like equipment in locations freely accessible through access doors. Install power surge protection such that it is replaceable without removing other components.

3.1.11 Digital Controllers

a. Install as stand alone control devices (see definitions).

b. Locate control cabinets at the locations shown on the drawings. If not
shown on the drawings, install in the most accessible space, close to the controlled equipment. Controllers must be installed in a manufacturer's required/recommended enclosure for each type of controller.

c. Provide a dedicated analog output to each output device, such as variable frequency driven pump motors in an alternating arrangement.

d. Equipment such as VFD's must have hardwired enable(start/stop), speed command and status points from the controller. Software points are not allowable. Additionally, this equipment shall have a BACnet interface for monitoring.

3.1.12 Hand-Off-Auto Switches

Wire safety controls such as smoke detectors, freeze protection thermostats, and emergency shut down switches to protect the equipment during both hand and auto operation.

3.1.13 Emergency Shut Down Switches (ATFP)

Quantity and location as shown on the drawings. Switches must be hardwired such that all fans and dampers that circulate air between rooms, or between inside and outside must shut down/close regardless of equipment HOA switch position. Additionally, activation of the switch must signal the DDC system to shut all air moving equipment off/closed and initiate an alarm. Reset of the DDC system must be manual.

3.1.14 Temperature Sensors

Install temperature sensors in locations that are accessible and provide a good representation of sensed media. Installations in dead spaces are not acceptable. Calibrate sensors according to manufacturer's instructions. Do not use sensors designed for one application in a different application.

3.1.14.1 Room Temperature Sensors

Mount the sensors on interior walls to sense the average room temperature at the locations indicated. Avoid locations near heat sources such as copy machines or locations by supply air outlet drafts. Mount the center of the sensor 54 inches above the floor to meet ADA requirements.

3.1.14.2 Duct Temperature Sensors

a. Probe Type: Provide a gasket between the sensor housing and the duct wall. Seal the duct penetration air tight. Seal the duct insulation penetration vapor tight.

b. Averaging Type (and coil freeze protection thermostats): Weave the capillary tube sensing element in a serpentine fashion perpendicular to the flow, across the duct or air handler cross-section, using durable non-metal supports. Prevent contact between the capillary and the duct or air handler internals. Provide a duct access door at the sensor location. The access door shall be hinged on the side, factory insulated, have cam type locks, and be as large as the duct will permit, maximum 18 by 18 inches. For sensors inside air handlers, the sensors shall be fully accessible through the air handler's access doors without removing any of the air handler's internals.
3.1.14.3 Immersion Temperature Sensors

Provide thermowells for sensors measuring piping, tank, or pressure vessel temperatures. Locate wells to sense continuous flow conditions. Do not install wells using extension couplings. Where piping diameters are smaller than the length of the wells, provide wells in piping at elbows to sense flow across entire area of well. Wells shall not restrict flow area to less than 70 percent of pipe area. Increase piping size as required to avoid restriction. Provide thermal conductivity material within the well to fully coat the inserted sensor.

3.1.14.4 Outside Air Temperature Sensors

Provide outside air temperature sensors in weatherproof enclosures on the north side of the building, away from exhaust hoods and other areas that may affect the reading. Provide a shield to shade the sensor from direct sunlight.

3.1.15 Energy Meters

Provide and locate energy meters as indicated. Connect each meter output to the DDC system, to measure both instantaneous and accumulated energy usage.

3.1.16 Damper Actuators

Where possible, mount actuators outside the air stream in accessible areas.

3.1.17 Pressure Sensors

Locate pressure sensors as indicated.

3.1.18 Component Identification Labeling

Using an electronic hand-held label maker with white tape and bold black block lettering, provide an identification label on the exterior of each new control panel, control device, actuator, and sensor. Also provide labels on the exterior of each new control actuator indicating the (full) open and (full) closed positions. For labels located outdoors, use exterior grade label tape, and provide labels on both the inside and outside of the panel door or device cover. Acceptable alternatives are white plastic labels with engraved bold black block lettering permanently attached to the control panel, control device, actuator, and sensor. Have the labels and wording approved by the BAS Owner prior to installation.

3.1.19 Network and Telephone Communication Lines

When telephone lines or network connections by the Government are required, provide the Contracting Officer at least 120 days advance notice of need. Provide one inch conduit and Cat 6 cable from the point of connection of the BAS to the point of connection to the MRAN (most likely in the telephone equipment room).

3.2 TESTING, BALANCING AND COMMISSIONING SUPPORT

The controls contractor shall coordinate with and provide on-site support to the test and balance (TAB) personnel specified under Section 23 05 93 TESTING, ADJUSTING AND BALANCING or Section 23 05 93 TESTING, ADJUSTING, BALANCING SMALL HEATING/VENTILATING/COOLING SYSTEMS. This support shall
include:

a. On-site operation and manipulation of control systems during the testing, balancing and functional performance testing.

b. Adjustment of control setpoints required for balancing and functional performance testing.

c. Tuning control loops with setpoints and adjustments determined by TAB personnel or the Commissioning Authority.

3.3 INTERFACE WITH EXISTING EMCS

Provide 16 hours of assistance to the Government with interfacing the BAS to the Base wide EMCS. The Government will make the final connection of the BAS to the MRAN. This 16 hours does not include completion or corrections to the installed BAS as defined in the contract documents. This 16 hours is for assisting the interface and for making revisions to the BAS that may be needed outside of the contract requirements. As-Build control drawings must be available for the EMCS operator performing the interacing.

3.4 CONTROLS SYSTEM OPERATORS MANUALS

Provide four electronic and printed copies of a Controls System Operators Manual. The manual shall be specific to the project, written to actual project conditions, and provide a complete and concise depiction of the installed work. Provide information in detail to clearly explain all operation requirements for the control system.

Provide with each manual: CDs of the project's control system drawings, control programs, data bases, graphics, and all items listed below. Include gateway back-up data and configuration tools where applicable. Provide CDs in jewel case with printed and dated project-specific labels on both the CD and the case. For text and drawings, use Adobe Acrobat or MS Office file types. When approved by the Government, AutoCAD and Visio files are allowed. Give files descriptive English names and organize in folders.

Provide printed manuals in sturdy 3-ring binders with a title sheet on the outside of each binder indicating the project title, project location, contract number, and the controls contractor name, address, and telephone number. Each binder shall include a table of contents and tabbed dividers, with all material neatly organized. Manuals shall include the following:

a. A copy of the as-built control system (shop) drawings set, with all items specified under the paragraph SUBMITTALS. Indicate all field changes and modifications. As-Built Control Drawings shall be marked "As-Built" on the cover page and in the title block of each page. Revisions must be dated, may be hand or CAD annotated.

b. A copy of the project's mechanical design drawings, including any official modifications and revisions.

c. A copy of the project's approved Product Data submittals provided under the paragraph SUBMITTALS.

d. A copy of the project's approved Performance Verification Testing Plan and Report.
e. A copy of the project's approved final TAB Report.

f. Printouts of all control system programs, including controller setup pages if used. Include plain-English narratives of application programs, flowcharts, and source code.

g. Printouts of all physical input and output object properties, including tuning values, alarm limits, calibration factors, and set points.

h. A table entitled "AC Power Table" listing the electrical power source for each controller. Include the building electrical panel number, panel location, and circuit breaker number.

i. The DDC manufacturer's hardware and software manuals in both print and CD format with printed project-specific labels. Include installation and technical manuals for all controller hardware, operator manuals for all controllers, programming manuals for all controllers, operator manuals for all workstation software, installation and technical manuals for the workstation and notebook, and programming manuals for the workstation and notebook software.

j. A list of qualified control system service organizations for the work provided under this contract. Include their addresses and telephone numbers.

k. A written statement entitled "Technical Support" stating the control system manufacturer or authorized representative will provide toll-free telephone technical support at no additional cost to the Government for a minimum of two years from project acceptance, will be furnished by experienced service technicians, and will be available during normal weekday working hours. Include the toll-free technical support telephone number.

l. A written statement entitled "Software Upgrades" stating software and firmware patches and updates will be provided upon request at no additional cost to the Government for a minimum of two years from contract acceptance. Include a table of all DDC system software and firmware provided under this contract, listing the original release dates, version numbers, part numbers, and serial numbers.

m. Submit any and all updated field controller files, and BACnet Building Controller data base during the acceptance and warranty periods or as a result of a latent defect.

3.4.1 Storage Cabinets

In one project mechanical room, typically near the BACnet Building Controller provide a wall-mounted storage cabinet with hinged doors. In addition to the number of manuals specified above, provide an additional copy of the manuals in this mechanical room storage cabinet. Provide cabinets large enough to hold the entire set of Controls System Operators Manuals, and the HVAC operation and maintenance manuals provided under Division 15 MECHANICAL. Locate cabinets adjacent to DDC control panels where applicable. Have each cabinet's proposed installation site approved in advance by the Contracting Officer and the BAS Owner. Prominently label each cabinet with the wording "OPERATION AND MAINTENANCE MANUALS." Prominently label each binder with the wording "MECHANICAL ROOM COPY - DO NOT REMOVE."
3.5 PERFORMANCE VERIFICATION TESTING (PVT)

3.5.1 General

The PVT shall demonstrate compliance of the control system work with the contract requirements. The PVT shall be performed by the Contractor and may be witnessed by the Government. If the project is phased, provide separate testing for each phase. A Pre-PVT meeting to review the Pre-PVT Checklist is required to coordinate all aspects of the PVT and shall include the Contractor's QA representative, the Contractor's PVT administrator, the Contracting Officer's representative, and the BAS Owner.

3.5.2 Performance Verification Testing Plan

Submit a detailed PVT Plan of the proposed testing for Government approval. Develop the PVT Plan specifically for the control system in this contract. The PVT Plan shall be a clear list of test items arranged in a logical sequence. It shall include each and all sequences of all controllers. Include sequence tested, intended test procedure, required assisted personnel (such as the mechanical contractor), the expected response, and the pass/fail criteria for every component tested. Include pass/fail column for test, and space for comments, signature and date lines for Contractor's PVT administrator and Contractor's QA representative. The PVT plan shall include the prescriptive pre-PVT check list in addition to the Contractor generated controller specific testing sequences. The final part of the PVT Report shall be 48 hour trends. Propose criteria for the trends, ie, change of state, change of value with the trigger value, time in the PVT Plan.

3.5.3 PVT Sample Size

Test all controllers unless otherwise directed. Trends will be reported on all central plant equipment and primary air handling unit controllers, and 20% of terminal controllers such as VAV boxes and fan coil units.

3.5.4 Pre-PVT Checklist

Submit the following as a part of the PVT Plan and the PVT Report. Each item shall include a column for the Contractor's initial/date. This form may be a general form applicable to all controllers and submitted only once in the PVT Plan. Each controller shall have an individual checklist with controller title and identified in the PVT Report.

a. Verify all mechanical installation work is successfully completed and started up by the appropriate personnel.

b. Verify all required control system components, wiring, and accessories are installed.

c. Verify the installed control system architecture matches approved drawings.

d. Verify all control circuits operate at the proper voltage and are free from grounds or faults.

e. Verify all required surge protection is installed.

f. Verify the A/C Power Table specified in the paragraph CONTROLS SYSTEM
g. Verify all DDC network communications function properly, including uploading and downloading programming changes.

h. Verify each digital controller’s programming is backed up.

i. Verify all wiring, components, and panels are properly labeled.

j. Verify all required points are programmed into devices.

k. Verify all valve and actuator zero and span adjustments are set properly. List each device and span for that device. Label device with span setting and adjustment date.

l. Verify all sensor readings are accurate and calibrated. List each sensor, sensor reading, and measured value. Label device with calibrated value and the calibration date.

m. Verify each control valve and actuator goes to normal position upon loss of power. List each device and normal position.

n. Verify each controller works properly in stand-alone mode by disconnecting the BACnet bus.

3.5.5 Conducting Performance Verification Testing

a. Conduct PVT after approval of the PVT Plan and successful completion of Functional Performance Testing with the Commissioning Authority. Notify the Contracting Officer of the planned PVT at least 15 days prior to testing. Provide an estimated time table required to perform the testing. Furnish personnel, equipment, instrumentation, and supplies necessary to perform all aspects of the PVT. Ensure that testing personnel are regularly employed in the testing and calibration of DDC systems. Using the project's as-built control system (shop) drawings, the project's mechanical design drawings, and the approved PVT Plan, conduct the PVT.

b. During testing, identify any items that do not meet the contract requirements and if time permits, conduct immediate repairs and re-test. Otherwise, deficiencies shall be investigated, corrected, and re-tested later. Document each deficiency and corrective action taken.

c. If re-testing is required, follow the procedures for the initial PVT. The Government may require re-testing of any control system components affected by the original failed test.

3.5.6 Controller Capability and Labeling

Test the following for each controller:

a. Memory: Demonstrate that programmed data, parameters, and trend/ alarm history collected during normal operation is not lost during power failure.

b. Direct Connect Interface: Demonstrate the ability to connect directly to each type of digital controller with a portable electronic device like a notebook computer or PDA. Show that maintenance personnel interface tools perform as specified in the manufacturer's technical
c. Stand Alone Ability: Demonstrate controllers provide stable and reliable stand-alone operation using default values for values normally read over the network.

d. Wiring and AC Power: Demonstrate the ability to disconnect any controller safely from its power source using the AC Power Table. Demonstrate the ability to match wiring labels easily with the control drawings. Demonstrate the ability to locate a controller's location using the BACnet Communication Architecture Schematic and floor plans.

e. Nameplates and Tags: Show the nameplates and tags are accurate and permanently attached to control panel doors, devices, sensors, and actuators.

3.5.7 Workstation and Software Operation

For every user workstation or notebook provided:

a. Show points lists agree with naming conventions.

b. Show that graphics are complete.

c. Show the UPS operates as specified.

3.5.8 BACnet Communications and Interoperability Areas

a. Data Presentation: On each BACnet Operator Workstation, demonstrate graphic display capabilities.

b. Reading of Any Property: Demonstrate the ability to read and display any used readable object property of any device on the network.

c. Setpoint and Parameter Modifications: Show the ability to modify all setpoints and tuning parameters in the sequence of control or listed on project schedules. Modifications are made with BACnet messages and write services initiated by an operator using workstation graphics, or by completing a field in a menu with instructional text.

d. Peer-to-Peer Data Exchange: Show all BACnet devices are installed and configured to perform BACnet read/write services directly (without the need for operator or workstation intervention), to implement the project sequence of operation, and to share global data.

e. Alarm and Event Management: Show that alarms/events are installed and prioritized according to the BAS Owner. Demonstrate time delays and other logic is set up to avoid nuisance tripping, e.g., no status alarms during unoccupied times or high supply air during cold morning start-up. Show that operators with sufficient privilege can read and write alarm/event parameters for all standard BACnet event types. Show that operators with sufficient privilege can change routing (BACnet notification classes) for each alarm/event including the destination, priority, day of week, time of day, and the type of transition involved (types of transition include but are not limited to the following: TO-OFF NORMAL and TO-NORMAL).

f. Schedule Lists: Show that schedules are configured for start/stop, mode change, occupant overrides, and night setback as defined in the
sequence of operations.

g. Schedule Display and Modification: Show the ability to display any schedule with start and stop times for the calendar year. Show that all calendar entries and schedules are modifiable from any connected workstation by an operator with sufficient privilege.

h. Archival Storage of Data: Show that data archiving is handled by the operator workstation/server, and local trend archiving and display is accomplished with BACnet Trend Log objects.

i. Modification of Trend Log Object Parameters: Show that an operator with sufficient privilege can change the logged data points, sampling rate, and trend duration.

j. Device and Network Management: Show the following capabilities:

 (1) Display of Device Status Information
 (2) Display of BACnet Object Information
 (3) Silencing Devices that are Transmitting Erroneous Data
 (4) Time Synchronization
 (5) Remote Device Reinitialization
 (6) Backup and Restore Device Programming and Master Database(s)
 (7) Configuration Management of Half-Routers, Routers and BBMDs

3.5.9 Execution of Sequence of Operation

Demonstrate that the HVAC system operates properly through the complete sequence of operation. Use read/write property services to globally read and modify parameters over the internetwork.

3.5.10 Control Loop Stability and Accuracy

For all control loops tested, give the Government trend graphs of the control variable over time, demonstrating that the control loop responds to a 20 percent sudden change of the control variable set point without excessive overshoot and undershoot. If the process does not allow a 20 percent set point change, use the largest change possible. Show that once the new set point is reached, it is stable and maintained. Control loop trend data shall be in real-time with the time between data points 30 seconds or less.

3.5.11 Performance Verification Testing Report

Upon successful completion of the PVT, submit a PVT Report to the Government and prior to the Government taking use and possession of the facility. Do not submit the report until all problems are corrected and successfully re-tested. The report shall include the annotated PVT Plan used during the PVT. Where problems were identified, explain each problem and the corrective action taken. Include a written certification that the installation and testing of the control system is complete and meets all of the contract's requirements.
3.5.12 Bus Waveform Report

Provide printed wave form of the MS/TP bus(es). Use an oscilloscope to test and record the wave form of each bus. This wave form is useful in identifying and troubleshooting bus problems such as inappropriate taps, grounds, end of line terminations and poor connections. Identify each graphic with bus name, location, date and time, and instrument used. Include the resistor sizes needed at each Bus End of Line (EOL). Include a list of the EOL devices.

3.5.13 Performance Verification Testing Acceptance Testing Season One

After acceptance of the PVT Report, demonstrate proper and stable operation of the DDC System. During the field acceptance testing, verify, in the presence of the COTR and BAS owner, random selections of sequences reported in the PVT Report. Equipment, controllers, devices, and sequences for field acceptance testing are to be selected by the COTR. As-built control drawings must be for use and verification at acceptance testing. Field acceptance testing includes verification of the PVT for the following equipment groups:

Group 1: All pumps, chillers, boilers, return fans, computer room units, and air handling units (rooftop and central stations).

Group 2: 25 percent of terminals such as VAV and fan coil units.

Group 3: 25 percent of supply fans, and exhaust fans.

If any of the acceptance testing is found to not operate correctly, terminate verification for the given group. Make the necessary corrections and prepare a revised PVT Report. Reschedule acceptance testing of the revised report with the COTR. After the PVT has been accepted, submit the revised controller files and BACnet Building Controller database.

3.5.14 Performance Verification Testing Acceptance Testing Season Two

A minimum of 3 months after initial acceptance of the DDC system and in the opposite season of heating and cooling, demonstrate proper and stable operation of the DDC system. During the field acceptance testing, verify, in the presence of the COTR and BAS owner, random selections of sequences reported in the PCT Report. Equipment, controllers, devices, and sequences for field acceptance testing are to be selected by the COTR. Field acceptance testing includes verification of the PVT for the following equipment groups:

Group 1: All pumps, chillers, boilers, return fans, computer room units, and air handling units (rooftop and central stations).

Group 2: 25 percent of terminals such as VAV and fan coil units.

Group 3: 25 percent of supply fans, and exhaust fans.

If any of the acceptance testing is found to not operate correctly, terminate verification for the given group. Make the necessary corrections and prepare a revised PVT Report. Reschedule acceptance testing of the revised report with the COTR. After the PVT has been accepted, submit the revised controller files and BACnet Building Controller database.
3.6 TRAINING REQUIREMENTS

Provide a qualified instructor (or instructors) with two years minimum field experience with the installation and programming of similar BACnet DDC systems. Orient training to the specific systems installed. Coordinate training times and location with the Contracting Officer and BAS Owner after receiving approval of the training course documentation. Training shall take place at the job site or a nearby Government-furnished location. A training day shall occur during normal working hours, last no longer than 8 hours and include a one-hour break for lunch and two additional 15-minute breaks. The project's approved Controls System Operators Manual shall be used as the training text. The Contractor shall ensure the manuals are submitted, approved, and available to hand out to the trainees before the start of training.

3.6.1 Training Documentation

Submit training documentation for review 30 days minimum before training. Documentation shall include an agenda for each training day, objectives, a synopses of each lesson, and the instructor's background and qualifications. The training documentation can be submitted at the same time as the project's Controls System Operators Manual.

3.6.2 Phase I Training - Fundamentals

The Phase I training session shall last one day and be conducted in a classroom environment with complete audio-visual aids provided by the contractor. Provide each trainee a printed 8.5 by 11 inch hard-copy of all visual aids used. Upon completion of the Phase I Training, each trainee should fully understand the project's DDC system fundamentals. As-Built control drawings must be used for training. The training session shall include the following:

a. BACnet fundamentals (objects, services, addressing) and how/where they are used on this project

b. This project's list of control system components

c. This project's list of points and objects

d. This project's device and network communication architecture

e. This project's sequences of control, and:

f. Alarm capabilities

g. Trending capabilities

h. Troubleshooting communication errors

i. Troubleshooting hardware errors

3.6.3 Phase II Training - Operation

Provide Phase II Training shortly after completing Phase I Training. The Phase II training session shall last one day and be conducted at the DDC system workstation, at a notebook computer connected to the DDC system in the field, and at other site locations as necessary. Upon completion of the Phase II Training, each trainee should fully understand the project's
DDC system operation. The training session shall include the following:

a. A walk-through tour of the mechanical system and the installed DDC components (components include but are not limited to the following: controllers, valves, dampers, surge protection, switches, thermostats, and sensors)

b. A discussion of the components and functions at each DDC panel

c. Logging-in and navigating at each operator interface type

d. Using each operator interface to find, read, and write to specific controllers and objects

e. Modifying and downloading control program changes

f. Modifying setpoints

g. Creating, editing, and viewing trends

h. Creating, editing, and viewing alarms

i. Creating, editing, and viewing operating schedules and schedule objects

j. Backing-up and restoring programming and data bases

k. Modifying graphic text, backgrounds, dynamic data displays, and links to other graphics

l. Creating new graphics and adding new dynamic data displays and links

m. Alarm and Event management

n. Adding and removing network devices

-- End of Section --
SECTION 23 52 43.00 20

LOW PRESSURE WATER HEATING BOILERS (UNDER 800,000 BTU/HR OUTPUT)
07/06

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI Z83.3 (1971; R 1995) Gas Utilization Equipment in Large Boilers

ASME INTERNATIONAL (ASME)

ASME BPVC SEC IV (2010) BPVC Section IV-Rules for Construction of Heating Boilers

ASTM INTERNATIONAL (ASTM)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016) Motors and Generators

U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-B-18897 (Rev F; CANC Notice 1) Boilers, Steam and Hot Water, Watertube (Straight Bare and Finned Tube), Cast Iron and Firebox, Packaged Type (40,000 to 35,000,000 BTU/HR Thermal Output Capacity)

U.S. DEPARTMENT OF ENERGY (DOE)

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

FS F-B-2910 (Basic) Burners, Single Oil, Gas, and Gas-Oil Combination for Packaged Boilers (320,001 to 125,000,000 BTU/HR Thermal Output Capacity)
1.2 RELATED REQUIREMENTS

Section 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS, applies to this section, with the additions and modifications specified herein.

1.3 DESIGN REQUIREMENTS

Boiler shall be suitable for installation in the space shown with ample room for opening doors and cleaning and removal and replacement of tubes. Boilers shall have a combined output and efficiency as shown on the drawings. Boiler shall be designed, tested, and installed in accordance with ASME BPVC SEC IV and ASME CSD-1. Paint boiler in accordance with manufacturer's recommendations.

1.4 SAFETY STANDARDS

Hot water boilers, burners and supplementary control devices, safety interlocks, or limit controls required under this specification, shall meet requirements of the following standards as applicable:

d. All Units: ASME BPVC SEC IV and ASME CSD-1.

Controls not covered by the above shall have a UL label, UL listing mark, or shall be listed in the Factory Mutual Approval Guide.

1.5 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

CONDENSING BOILERS: power output, thermal efficiency, ASME certification, allowable working pressure, model number, documentation for Energy Star qualifications or meeting FEMP requirements

Boiler trim and control equipment

Burners and control equipment

SD-06 Test Reports

Operational tests

SD-07 Certificates

CONDENSING BOILERS
Burners and control equipment
Boiler trim and control equipment
Boiler manufacturer's certificate of boiler performance including evidence that the burners provided shall be a make, model, and type certified and approved by the manufacturer of the boiler being provided.

SD-08 Manufacturer's Instructions
CONDENSING BOILERS
SD-10 Operation and Maintenance Data
CONDENSING BOILERS, Data Package 4
Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.
SD-11 Closeout Submittals
 Posted operating instructions for heating water CONDENSING BOILERS

PART 2 PRODUCTS

2.1 CONDENSING BOILERS

Each boiler shall be a self-contained packaged type, complete with accessories, mounted on a structural steel base or a steel base which is integral to the boiler shell. Each boiler shall conform to the commercial design used by the manufacturer and shall permit free thermal expansion without placing undue stress on any part of the boiler. Each boiler which experiences the formation of condensate within the flue gas shall be specifically designed for condensing application. Each boiler shall withstand the corrosive effects of condensate for each part which may be in contact with the condensate at all possible operating conditions. Each boiler shall be provided with a separate air intake, exhaust, and condensate drain. Each boiler shall be designed to withstand the water temperature differentials anticipated at the required operating conditions without experiencing any damage due to thermal shock.

2.2 BURNERS AND CONTROL EQUIPMENT

2.2.1 Natural Gas Burner

Natural gas burner (under 400,000 BTU/hr input). ANSI Z21.13/CSA 4.9. ON-OFF type combustion control system, with 8:1 turndown ratio. Interrupted pilot type ignition system, and pilot shall be electrode-ignited natural gas type. Design burner and combustion control equipment for firing s natural gas having a specific gravity of 0.6 and a heating value of approximately 1000 BTU per cubic foot and be an integral part of the boiler. Burner controls and safety equipment shall conform to applicable requirements of ANSI Z21.13/CSA 4.9, including complete gas shut-off and pilot gas.
2.3 BOILER TRIM AND CONTROL EQUIPMENT

Provide in accordance with MIL-B-18897 and additional requirements specified below.

2.3.1 Emergency Disconnect Switch

Provide and locate on wall outside boiler room entrance or just inside door, when boiler room door is on building exterior to allow rapid and complete shutdown of the boiler in the event of an emergency. Emergency switch shall be a fuse-type safety switch. Switch shall be red and furnished with a label indicating function of switch.

2.3.2 Relief Valves

Provide relieving capacity for the full output of boiler installed. Relief-valve piping shall conform to ASTM A53/A53M, schedule 40 steel pipe and be piped full-size to a floor drain.

2.3.3 Pressure and Altitude Gage or Combination Pressure/Altitude Gage

Provide one located on supply water piping and one on return water piping.

2.3.4 Thermometer

Provide thermometer with a scale equivalent to 1.5 times outlet water temperature. Provide one located on supply water piping and one on return water piping.

2.3.5 Drain Tapping

Provide drain valve and piping to drain.

2.3.6 Combustion Regulator

Provide adjustable temperature, thermostatic immersion type that shall limit boiler water temperature to a maximum of 100 degrees F. Control shall actuate burner through an electric relay system to maintain boiler water temperature within normal prescribed limits at loads within rated capacity of boiler.

2.3.7 High Temperature Limit Switch

Provide immersible aquastat type with a temperature setting above that of the combustion regulator and below that of the lowest relief valve setting. Aquastat shall function to cause a safety shutdown by closing fuel valves, and shutting down burner equipment, activating a red indicating light, and sounding an alarm in the event that boiler water temperature rises to the high temperature limit setting. A safety shutdown due to high temperature shall require manual reset before operation can resume and prevent recycling of burner equipment.

2.3.8 Low Water Level Cutoff Switch

Provide float actuated type. Low water level cutoff shall cause a safety shutdown by closing fuel valves, and shutting down burner equipment, activating a red indicating light, and sounding an alarm in the event that water level drops below the lowest safe permissible water level established.
by the boiler manufacturer and ASME BPVC SEC IV. A safety shutdown due to low water shall require manual reset before operation can resume and prevent recycling of burner equipment.

2.3.9 Boiler Safety Control Circuits

Provide boiler safety control circuits, including control circuits for burner and draft fan, shall be single-phase, two-wire one-side grounded, and not over 120 volts. Provide safety control switching in ungrounded conductors. Provide overcurrent protection. In addition to circuit grounds, ground metal parts which do not carry current to a grounding conductor.

2.3.10 Indicating Lights

Provide indicating lights as follows. Each safety interlock requiring a manual reset shall have an individually-labeled indicating light. Non-recycling controls/interlocks shall have the reset located on control/interlock itself. Indicating lights shall have colors as follows in lieu of those required by FS F-B-2910:

a. Amber: Ignition on
b. Green: Main fuel safety shut-off valves open
c. Red (One for Each): Safety lockout, flame failure, low water pressure, low water level, and high temperature

2.3.11 Post-Combustion Purge

Provide controls and wiring necessary to ensure operation of draft fan for a period of not less than 15 seconds or of sufficient duration to provide four complete air changes in the boiler combustion chamber (whichever is greater) following shutdown of burner upon satisfaction of heat demand. Upon completion of post-combustion purge period, draft fan shall automatically shutdown until next restart.

2.3.12 Draft

Comply with boiler manufacturer's recommendations.

2.4 ELECTRIC MOTORS

Electric motors shall meet requirements of NEMA MG 1. Motors less than 1 hp shall meet NEMA High Efficiency requirements. Motors 1 hp and larger shall meet NEMA Premium Efficiency requirements. Motors which are an integral part of the packaged boiler system shall be the highest efficiency available by the manufacturer of the packaged boiler. Motors shall be variable speed.

PART 3 EXECUTION

3.1 EQUIPMENT INSTALLATION

Install equipment in accordance with manufacturer's installation instructions. Grout equipment mounted on concrete foundations before installing piping. Install piping in such a manner as not to place a strain on equipment. Do not bolt flanged joints tight unless they match. Grade, anchor, guide, and support piping without low pockets. Feedwater
treatment feeders shall be mounted so that the top of the feeder is no higher than 48 inches above the finished floor.

3.2 EQUIPMENT FOUNDATIONS

Locate equipment foundations as indicated, designed, and made of sufficient size and weight to preclude shifting of equipment under operating conditions or under abnormal conditions that could be imposed upon the equipment. Foundations shall meet requirements of the equipment manufacturer.

3.3 BOILER CLEANING

Before being placed in service, boiler shall be boiled out for a period of 24 hours at a pressure not exceeding 12 psig. Solution to be used in the boiler for the boiling out process shall consist of two pounds of trisodium phosphate per 100 gallons of water. Upon completion of boiling out, flush out boiler with potable water, drain, and charge with chemically treated water. Protect boiler and appurtenances against internal corrosion until testing is completed and boiler is accepted. Professional services are required for cleaning/treatment process.

3.4 FIELD QUALITY CONTROL

Perform and furnish everything required for inspections and tests as specified herein to demonstrate that boiler and auxiliary equipment, as installed, are in compliance with contract requirements. Start-up and operate the system. During this time, clean strainers until no further accumulation of foreign material occurs. Exercise care to minimize loss of water when strainers are cleaned. Adjust safety and automatic control instruments as necessary to place them in proper operation and sequence. Test instrumentation shall be calibrated and have full scale readings from 1.5 to 2 times test values.

1. Boiler start up shall be performed by manufacturer technical start up personnel.

2. Services shall be provided by manufacturer technical start up personnel or service technician to assist in the functional performance testing by the commissioning authority.

3. Services shall be provided by manufacturer technical start up personnel or service technician to assist in the Government PVT testing by the Government for both first and second season testing as specified under 23 09 23.13.

3.4.1 Operational Tests

Operate each boiler and appurtenances prior to final testing and insure that necessary adjustments have been made. Provide testing equipment required to perform tests. During this testing period, provide operating instructions and training to persons tasked with operation of the boiler. Tests shall be accomplished with both fuels on dual fuel units and include the following:

3.4.1.1 Preliminary Operational Test

Operate the boilers continuously for a period of at least 8 hours to demonstrate proper operability of the combustion control, flame safeguard
control, and safety interlocks.

3.4.1.2 Acceptance Operational Test and Inspection

Conduct a preliminary operational test prior to requesting an acceptance operational test and inspection by an approved Boiler inspector. The Contracting Officer, upon receipt of the notice from the Contractor, shall request the boiler be inspected by a boiler inspector of their choosing. Fifteen days advance notice is required for scheduling inspector to conduct acceptance operational test and inspection.

3.5 WASTE MANAGEMENT

Separate waste in accordance with the Waste Management Plan. Close and seal tightly all partly used adhesives and solvents; store protected in a well-ventilated, fire-safe area at moderate temperature.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

ARI 430 (1999) Central-Station Air-Handling Units

ARI 590 (1992) Positive Displacement Compressor Water-Chilling Packages

ARI 880 (1998) Air Terminals

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASME INTERNATIONAL (ASME)

ASME B16.18 (2012) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.23 (2002; Errata 2003; R 2006) Cast Copper Alloy Solder Joint Drainage Fittings – DWV

ASME B31.1 (2014; INT 1-47) Power Piping

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1003 (2001; Errata, 2003) Performance Requirements for Water Pressure Reducing Valves

ASTM INTERNATIONAL (ASTM)

ASTM A 525 (1991; Rev. B) Steel Sheet, Zinc-Coated (Galvanized) by the Hot-Dip Process

ASTM A 653/A 653M (2001a) Steel Sheet, Zinc-Coated (Galvanized) by Hot-Dip Process, Lock-Forming Quality

ASTM B 306 (1999) Copper Drainage Tube (DWV)

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-67 (2002a; R 2004) Standard for Butterfly Valves

MSS SP-69 (2003; R 2004) Standard for Pipe Hangers and Supports - Selection and Application

MSS SP-71 (2005) Gray Iron Swing Check Valves, Flanged and Threaded Ends
1.2 SYSTEM DESCRIPTION

Provide new and modify existing heating, ventilating, and cooling (HVAC) systems complete and ready for operation. HVAC systems include equipment, ducts, and piping which is located within, on, under, and adjacent to buildings.

1.3 SUBMITTALS

Submit the following in accordance with Section 01 33 00, "Submittal Procedures."

SD-02 Shop Drawings

Temperature control systems

Equipment layout drawings for: (1) Chillers

SD-03 Product Data
Dehumidifer Units
Packaged air-handling Units
Air-cooled water chillers
Series fan powered variable air volume (VAV) terminals
Unit heaters
Pumps, including performance curves for each impeller size
Exhaust fans
Energy Recovery Ventilator
Fire dampers
Expansion and Buffer Tanks
Dirt-Air separators
Heat Tape
Pipe hangers and supports
Flexible pipe connectors
Dampers
Diffusers, registers, and grilles
Outside air intake louvers
Duct Hot Water Coils
Flexible round ducts
Valves
Pipe and fittings
Hydraulic Separator

SD-06 Test Reports
Packaged air-handling units: greater than 2,000 cfm.
Air-cooled water chillers: greater than 180,000 Btuh.
Series fan powered variable air volume (VAV) terminals and related air handling unit

SD-07 Certificates
Certification of welders' qualifications

SD-08 Manufacturer's Instructions
Installation manual

SD-10 Operation and Maintenance Data

Packaged air-handling units, Data Package 3
Air-cooled water chillers, Data Package 3
Series fan powered variable air volume (VAV) terminals, Data Package 3. Submit with respective air handling unit.
Unit heaters, Data Package 2
Pumps, Data Package 2
Exhaust fans, Data Package 2
Fire dampers, Data Package 1
Submit in accordance with Section 01 78 23, "Operation and Maintenance Data."

SD-11 Closeout Submittals

Air-cooled water chillers start-up report
Air filter inventory

1.3.1 Temperature Control Systems

Drawings shall include point-to-point electrical wiring diagrams.

1.3.2 Equipment layout drawings

Submit drawings showing equipment layout including footprint, piping, conduit, control cabinets, door swings, and power disconnects.

1.3.3 Installation Manual

Provide for each item of equipment.

1.3.4 Certification of Welders' Qualifications

Submit copy of Welder Qualification Tests (Form QW-482) prior to site welding.

1.3.5 Air Filter Inventory

Submit an inventory of sizes and quantity of air filters required to be replaced. Inventory shall indicate location of each piece of equipment. Include sketches of drawings.

PART 2 PRODUCTS

2.1 EQUIPMENT

Dehydrate, purge, and charge refrigerant circuit with refrigerant and oil at factory. Factory oil and refrigerant charge shall be full amount.
required for operation, if within limits permitted by the Department of Transportation; otherwise, a holding charge shall be furnished. Field charging, where only a holding charge is shipped, shall be accomplished without breaking permanent refrigerant connections. Equipment using R-11, R-12, R-13, R-113, R-114, R-115, R-500, or R-502 as a refrigerant will not be permitted. Refrigerants shall have an Ozone Depletion Factor (ODF) of 0.05 or less. The ODF shall be in accordance with the "Montreal Protocol On Substances That Deplete The Ozone Layer," September 1987, sponsored by the United Nations Environment Program. Refrigerants that operate anywhere in the cycle below 20 psia will not be permitted. Efficiency of equipment shall meet the minimum's of Table 15701-1.

2.1.1 Dehumidifier Units

Provide commercial rated, UL or ETL listed, dehumidifier units with a minimum 5 year manufacturer parts warranty on the sealed refrigerant system, capable of continuous operation, equipped with replaceable or washable filter media, designed to operate continuously without emptying a tank, and able to remove a minimum of 150 pints/day of moisture at room conditions of 80 degrees F and 60% relative humidity. Unit shall be hardwired to an appropriately rated electric circuit. Each unit shall be capable of gravity drain of condensate via hose to a floor drain or equipped with a condensate pump capable of continuous condensate discharge via a hose to a floor drain. Provide a remote mounted relative humidity sensor with a wired connection to the dehumidifier. Install clean filter media following installation. Provide 5 additional filter media in the factory sealed packaging and left in the mechanical room for each unit installed. Provide a dehumidifier with ability to control humidity setpoint in 5% RH increments or provide remote mounted humidistat to control the dehumidifier as indicated on the plans.

2.1.2 Air-Handling Units

Provide units factory assembled, designed, tested, and rated in accordance with ARI 430. Units shall be ARI certified for cooling. Provide heating and cooling units including hot water coils and chilled water coils. Unit shall include fan section, coil section with drain pan, variable frequency motor controller, filter section and access panels. Insulate interior of casing with manufacturer installed closed-cell foam insulation. Provide nylon bushings for dampers.

a. Fan section: Provide draw-through fan section including motor, starter, and drives.

b. Coil section: Provide ARI 410 coils and slope for drainage. Provide insulated drain pans under cooling coils and valves.

c. Filter section: Provide UL listed throwaway 1 inch thick fiberglass filters, standard dust-holding capacity, 350 fpm maximum face velocity. Provide gasketed hinged access panel with quick opening half-twist latches at end of filter rack. Filter rack(s) shall accept 2 inch or thicker filters as required to achieve a maximum 350 fpm filter face velocity.

d. Space temperature controls: Provide controls including adjustable programmable thermostats with COOL-OFF-HEAT system switch and AUTO-ON fan switch. Thermostats shall be furnished by unit manufacturer. Provide relays, transformers, contactors, and control wiring between thermostats and unit.
g. Special corrosion protection: Provide heating and cooling coils constructed of copper tubes and plate copper fins or copper tubes and plate aluminum fins with phenolic coating factory applied to entire coil by immersion dipping and baking to 1.5 mil minimum dry film thickness. Rating of units shall be after application of phenolic coating.

h. Equipment selection: Air-handling unit (AHU) manufacturer shall certify the capability of the AHU to perform between the cumulative design minimum and maximum airflows of the variable air volume (VAV) terminals. The AHU submittal selection shall be supported by fan curves clearly annotated showing operating points of the minimum and maximum airflow of connected VAV terminals.

2.1.3 Air-Cooled Water Chillers

Provide single package units factory assembled, designed, tested, and rated in accordance with ARI 590 with air-cooled condensers. Provide not less than two independent refrigerant circuits for multicompressor units. Provide direct expansion shell and tube design, refrigerant circuits, including electric-motor-driven refrigerant compressors with integral crankcase heater, air-cooled condenser, receiver, chiller, piping, controls, and accessories mounted in a cabinet. Provide refrigerant, internal pressure relief device, solenoid valve, combination liquid-line strainer-drier, expansion valve, and service valves. Condenser discharge air shall be in vertical direction. Provide guards to protect condenser fins from mechanical damage. Provide equipment guards around base of unit. Crankcase heaters are not required when scroll compressors are provided. Provide a 5 year compressor parts warranty and, if available, a 5 year labor warranty.

a. Controls: Provide factory-wired digital electronic controls including adjustable programmable thermostat for chilled water temperature control, high-low pressure control, low water temperature safety thermostat, ON-OFF unit switch, and nonrecycling pump-down relay. Controls shall also include maximum operating pressure expansion valves and programming of microprocessor chiller controls or high temperature controller for operation of compressors in cool down mode for start-up or changeover when entering water temperature is in 60 to 90 degree F range. Provide electrical interlock between water chiller and chilled water pump to prevent chiller from operating unless pump is running. Provide flow switch or flow sensors in chilled water return piping to stop compressor in event of water flow failure. Condenser fan electric motors shall be drip-proof, with built-in three-phase overload protection, mounted inside the casing. Compressor motor stoppage due to thermal and pressure overload shall require manual restart. Provide control and interlock wiring. Provide thermostat controlled electric heater cable around chiller and exterior piping for freeze protection down to 0 degree F air temperature, to operate when ambient exterior air temperature falls below 40 degrees F. Provide low ambient control to 35 degrees F.

b. Weatherproof casing: Provide removable gasketed panels designed to exclude driving rain and hail for access to compressors, motors, and controls.
c. Condenser coils: Provide all coils on air-cooled chillers with ASTM B117 6000-hour rated salt spray corrosion protection. Rating of units shall be after application of coil protective coating.

2.1.4 Series Fan Powered Variable Air Volume (VAV) Terminals

Provide units factory assembled, designed, tested, and rated in accordance with ARI 880. Units shall be ARI certified and listed in the ARI APD. Units shall provide a supply air discharge mix by modulation of conditioned primary air (as scheduled) and recirculating of return air. Units shall include casing, centrifugal fan and motor, primary VAV damper or valve, electric volume regulator, primary air inlet cone with pressure flow sensors, and electrical disconnect. Provide hot water heating coils.

 a. Casing: Provide removable full bottom access panels for servicing internal components without disturbing duct connections. Insulate inside of casing with manufacturer's standard insulation. Units shall have round primary damper or valve, and unit mounting brackets.

 b. Fans and motors: Provide centrifugal, forward curved, multiblade, fan wheels with direct-drive motors. Motors shall be high efficiency permanent-split capacitor type with thermal overload protection and permanently lubricated bearings. Motors shall have three speeds or be equipped with solid state speed controllers. Provide isolation between fan motor assembly and unit casing. Fan and motor shall be removable through casing access panel.

 c. Flow sensor: Sensor shall be ring or cross type with minimum of two pickup points which average the velocity across the inlet. Flow measurement shall be within plus or minus 5 percent of rated airflow with 1.5 diameters of straight duct upstream of unit and inlet static variation of 0.4 to 5.0 inches W.G. Flow measuring taps and calibration flow chart shall be supplied with each unit for field balancing airflows.

 d. Primary VAV damper or valve: Galvanized steel damper blade shall close against gasket inside unit. Connect damper to operating shaft with a positive mechanical connection. Provide nylon bearing for damper shaft. Cylindrical die cast aluminum valve inlet tapered to fit round flexible ducts with integral flow diffuser and beveled self-centering disc. Damper or valve leakage at shutoff shall not exceed 2 percent of capacity at 1-inch W.G. pressure.

 e. Regulator: Volume regulator shall be electronic. Electronic controls contained in NEMA ICS 6, electric Type 1 enclosure sealed from airflow. Controls shall be mounted on side of unit or on air valve. System powered regulators shall not be permitted. Volume regulator shall reset primary air volume as determined by thermostat, within upstream static pressure variation noted in paragraph entitled "Flow Sensor." Volume regulators shall be field adjustable and factory set and calibrated to indicated maximum and minimum primary airflows. Volume regulators shall be direct acting and normally closed upon loss of power.

f. Electrical: Unit shall incorporate single point electrical connection with electrical disconnect. Electrical components shall be UL listed and installed in accordance with NFPA 70. Electrical components shall be mounted in control box. Units UL listed as an assembly do not require airflow switch.
2.1.5 Unit Heaters

Provide factory-assembled, propeller or blower type fan unit heaters arranged for horizontal air discharge. Each unit shall include hot water coil or natural gas heat furnace, fan, electric motor, housing, and air discharge vanes or diffusers. Horizontal discharge type units shall have adjustable deflectors for control of horizontal and vertical airflow. Each unit shall be provided with threaded mounting holes for attaching threaded hanger rods. Fan motor shall be controlled by wall-mounted adjustable thermostat (+/- 2 degrees F).

2.1.6 Pumps

Provide chilled and heating hot water pumps as either Option 1 or Option 2 below.

2.1.6.1 Option 1 - Vertical Twin In-Line Pumps

Provide pumps constructed of manufacturer's standard materials suitable for chilled water and hot water heating systems. Pumps shall have mechanical seals and drip-proof electric motors. Pump suction diffuser shall have internal straightening vanes dependent upon inlet flow, strainer with minimum 0.25-inch openings, and auxiliary disposable fine mesh strainer which shall be removed 30 days after start-up. Provide warning tag for operator indicating scheduled date for removal.

2.1.6.2 Option 2 - Base Mounted End Suction Pumps

Provide pumps constructed of manufacturer's standard materials suitable for chilled water and hot water heating systems. Pumps shall have mechanical seals and drip-proof electric motors. Pump suction diffuser shall have internal straightening vanes dependent upon inlet flow, strainer with minimum 0.25-inch openings, and auxiliary disposable fine mesh strainer which shall be removed 30 days after start-up. Provide warning tag for operator indicating scheduled date for removal. Casing shall have connection sizes to match pump suction and pipe sizes, and be provided with adjustable support foot or support foot boss to relieve piping strains at pump suction. Blowdown port and plug shall be provided on unit casing. Provide a magnetic insert to remove debris from system.

2.1.7 Exhaust Fans

AMCA 210 with AMCA seal. Provide centrifugal type exhaust fans with aluminum housing, fan wheel, and bird screen. Motors shall be completely shielded from the airstream. Provide exhaust opening and gravity closing type automatic backdraft dampers.

2.1.8 Energy Recovery Ventilator

Unit shall include outdoor supply fan, exhaust air fan, recovery wheel, 2-inch thick outdoor air and exhaust air filters, and outdoor and exhaust shut off dampers.

2.1.8.1 Exhaust Discharge and Outside Air Intake

Exhaust discharge and outside air intake shall not be located on the same side on roof top units. Units shall be UL listed and bear the UL label.
Energy transfer ratings shall be in accordance with ASHRAE Standard 84. Performance to be as scheduled on plans. Unit casing to be insulated with 1-inch 3# rigid board fiberglass with fire-resistant Foil-Scrim-Kraft facing. All components shall be easily accessible through removable access doors for both exhaust and supply compartments.

2.1.8.2 Energy Recovery Wheel

Energy recovery wheel shall be in cassette form mounted on slide out track and include a total energy recovery wheel for sensible and latent energy recovery, wheel drive motor with permanently sealed ball bearings and electrical disconnect. The total enthalpy wheel shall be constructed of a light weight polymer material in removable sections with a permanently bonded silica gel desiccant coating. The unit shall not require a condensation pan. Sensible only energy recovery devices are not acceptable.

2.2 ELECTRICAL

2.2.1 Electrical Motors, Controllers, Contactors, and Disconnects

Furnish with respective pieces of equipment. Motors, controllers, contactors, and disconnects shall conform to Section 26 20 00, "Interior Distribution System." Provide electrical connections under Section, 26 20 00, "Interior Distribution System." Provide controllers and contactors with maximum of 120-volt control circuits, and auxiliary contacts for use with controls furnished. When motors and equipment furnished are larger than sizes indicated, the cost of providing additional electrical service and related work shall be included under this section.

2.2.2 Electrical Work

Provide under Section 26 20 00, "Interior Distribution System." Provide control wiring under Section 23 09 23.13, "BACnet Direct Digital Control Systems."

2.3 METAL DUCT SYSTEMS

Provide shop-fabricated, zinc-coated steel ducts conforming to ASTM A 525 or ASTM A 653/A 653M coating designation G60. Fabricate, construct, brace, reinforce, install, support, and seal ducts and accessories, and test ducts in accordance with SMACNA HVAC Duct Const Stds and SMACNA Leakage Test Mn1. Cover duct transverse joints with single component synthetic rubber type compound suitable for use with passivated coating on zinc-coated steel. Lap joints in direction of flow. Provide ducts straight and smooth on inside with neatly finished airtight joints. Provide air supply and return openings in ducts with air diffusers, registers, or grilles.

2.3.1 Flexible Duct Connectors

Provide airtight flexible duct connectors at duct connections to each air-conditioning unit, air-handling unit, exhaust fan, and ventilating fan. Support connectors at each end with metal angle frame bands, securely bolt in place. Provide not less than 20 ounce glass fabric duct connectors coated on both sides with neoprene.

2.3.2 Turning Vanes

Provide fabricated tees and square elbows with turning vanes in accordance
with SMACNA HVAC Duct Const Stds for vanned elbows. Turning vanes shall be single wall with trailing edges.

2.3.3 Dampers

Provide factory manufactured opposed blade adjustable manual dampers where indicated for duct heights of 12 inches and larger. Provide factory manufactured single leaf dampers for duct heights less than 12 inches. Provide damper shafts with 2 inch standoffs to clear 2 inches of duct insulation with bearings at both ends of the shafts. Provide adjustment quadrant with indicator and locking devices. Provide galvanized steel dampers one gage heavier than duct in which dampers are installed. Provide automatic dampers under Section 23 09 23.13, "BACnet Direct Digital Control Systems."

2.3.4 Diffusers, Registers, and Grilles

Provide factory-fabricated metal units with edges rolled or rounded where exposed to view, and factory primed with white enamel finish. Provide each diffuser and register with factory-fabricated, group-operated, adjustable, opposed-blade, air-volume-control dampers, key or screwdriver operated from the face of unit without the use of a tool. Provide each unit with rubber or plastic installation gaskets. Diffusers in same room shall have same face design.

a. Diffusers: Provide round, square, or rectangular diffusers as indicated. Ceiling diffusers shall be designed to deliver air in a horizontal direction. Provide baffles or other devices as required for proper air distribution pattern.

b. Registers: Provide double deflection supply registers arranged to control air direction, throw, and drop. Exhaust and return air registers shall have single set of nondirectional face bars or vanes having the same appearance as supply registers. Provide face bars or vanes spaced not more than 0.75 inch on center and not less than 0.62 inch depth.

c. Grilles: Provide as specified for registers without air-volume-control dampers.

2.3.5 Outside Air Intake Louvers

Louvers are specified in Section 08 91 00, "Metal Wall Louvers."

2.3.6 Access Doors

Provide for access to volume dampers, fire dampers, plenum chambers, and where indicated. Provide each door with double wall zinc-coated steel construction, gasketed airtight, with continuous hinges and cam latches. Insulate access doors with one-inch thick rigid insulation. Provide 12 inch by 12 inch door, except where larger sizes are indicated, or provide 12 inches by height of duct when duct is less than 12 inches high. Provide keyed-alike 90 degree turn cam locks on each access door in sleeping rooms; furnish three keys.

2.3.7 Fire Dampers

UL 555 and NFPA 90A. Dampers shall be listed in UL Bld Mat Dir. Dampers when open shall not protrude into the ducts.
2.3.8 Duct Hot Water Coils

ARI 410, hot water coils.

2.3.9 Filter Boxes

Provide when filters are not provided integral with the air-conditioning units or air-handling units. Construct filter boxes of zinc-coated steel with track, hinged access doors with latches, seal gaskets between frame, and filters. Arrange filters to filter outside air intake and return air. Filter assemblies shall be removable from filter box and replaceable without use of tools. Replaceable filter rack shall be designed to accept 2 inch thick filters.

 a. Replaceable filters: Provide UL listed throwaway 1 inch thick fiberglass filters, standard dust-holding capacity, 350 fpm maximum face velocity.

 b. High efficiency filters: Provide UL Class 2, mean efficiency of 30 percent when tested in accordance with ASHRAE 52.1. Filter assembly shall include holding frame and fastener assembly, filter cartridge, and mounting frame and retainer assembly. High efficiency filters shall be preceded by replaceable filter.

2.3.10 Flexible Round Ducts

UL 181 and NFPA 90A with factory-applied insulation, vapor barrier, and end connections. Fire hazard rating of duct assembly shall not exceed 25 for flame spread and 50 for smoke developed. Provide ducts designed for working pressures of 2 inches W.G. positive and 1.5 inches W.G. negative. Flexible round duct length shall not exceed 5 feet. Secure connections by applying adhesive for 2 inches over rigid duct, apply flexible duct 2 inches over rigid duct, apply metal clamp, and provide minimum of three No. 8 sheet metal screws through clamp and rigid duct.

 a. Inner duct core: Flexible core shall be interlocking spiral or helically corrugated and constructed of zinc-coated steel, aluminum, or stainless steel; or shall be constructed of inner liner of continuous galvanized spring steel wire helix fused to continuous, fire-retardant, flexible vapor barrier film, inner duct core.

 b. Insulation: Inner duct core shall be insulated with mineral fiber blanket type flexible insulation, minimum of one inch thick. Insulation shall be covered on exterior with manufacturer's standard fire retardant vapor barrier jacket for flexible round duct.

2.4 PIPING SYSTEMS

Provide the following pipe and fittings. Provide dielectric fittings, unions or flanges between steel piping and copper tubing for all piping sizes; except that copper alloy valves and strainers may be used without dielectric fittings, unions or flanges. Water piping sizes 4 inches and smaller shall be copper tubing. Water piping sizes larger than 4 inches shall be copper tubing or steel piping. If steel piping is provided, provide a solids-from-water separator.
2.4.1 Soldered Joint Copper Tubing

Provide ASTM B 88, Type L for aboveground piping, Type K for buried piping, with ASME B16.18 or ASME/ANSI B16.22 solder joint fittings, unions, and flanges; provide adapters as required. Provide ASTM B 42 copper pipe nipples with threaded end connections. Provide ASTM B 32, 95-5 tin-antimony solder, or provide Plumbing Code approved lead-free solder.

2.4.2 Copper Tubing Piping Systems

Provide copper tubing for the following piping systems, except water piping sizes larger than 4 inches shall be copper tubing or steel piping.

a. Chilled water, and hot water piping.

b. Cold drain piping from drain pans.

2.4.3 Copper Cold Drain Piping

Provide copper tubing in accordance with paragraph entitled "Copper Tubing" for piping sizes one inch and smaller. Provide ASTM B 306 copper tubing and ASME B16.23 solder joint fittings for piping sizes larger than one inch. In lieu of copper tubing, 1.25 inch Schedule 40 polyvinyl chloride (PVC) plastic pipe, fittings, and solvent cement may be provided.

2.4.4 Buried Preinsulated Water Piping

For buried heating hot water supply and return piping provide expansion loops and expansion bends (Z- and L-type) factory fabricated of casing, insulation, and carrier piping identical to that furnished for straight runs. Properly design expansion loops and bends in accordance with the allowable stress limits indicated in ASME B31.1 for the type of pipe used, and size to accommodate pipe movement. Ship expansion loops and bends to the jobsite in the maximum size sections feasible to minimize the number of field joints. Make field joints in straight runs of the expansion loops and bends, keeping the number to a minimum. For steel pipe, cold springing is not allowed when sizing the expansion loops and bends. Cold spring piping one-half the calculated maximum operational expansion during field assembly is allowed. Stresses shall be less than the maximum allowable stress from the ASME B31.1. Submit pipe-stress and system-expansion calculations for each expansion compensation elbow using a finite element computer generated 3-dimensional analysis, not later than 14 days after notice to proceed. Demonstrate with calculations that pipe stresses from temperature changes are within the allowable requirements in ASME B31.1 and that the anchors and the guides will withstand the resultant forces. Detailed design layout drawings shall include all analysis node points. As a minimum, computer analysis results shall include node stresses, forces, moments and displacements. Calculations shall be stamped by a registered Professional Engineer in the employ of the UHDS manufacturer. Detailed design layout drawings and stress and anchor force calculations shall be provided for all loops and bends. Locations of all anchors, guides and supports shall be shown. The calculations shall be based on design characteristics (pressures and temperatures) specified for both the supply and return lines.

Provide buried preinsulated water piping in conduit complete and ready for operation. Install in accordance with fabricator's published literature. Provide copper tubing for carrier piping; carrier piping sizes...
larger than 4 inches may be steel piping. Minimum depth of cover shall be 2 feet.

a. Factory-applied insulation: Provide polyurethane or polyisocyanate insulation, rated for not less than 250 degrees F service, completely filling the space between carrier pipe and conduit.

b. Factory-applied conduit: Provide each section of carrier pipe with insulation and conduit complete with waterproof conduit caps at both ends. Mark each section of conduit with fabricator's name, product identification, and publications to which the items conform. Provide same type of insulation and conduit material over field-insulated joints and fittings; provide waterproof shrink sleeves over field-insulated joints to overlap not less than 6 inches of each conduit section.

c. Bedding: Accurately grade trench bedding with minimum of 6 inches of sand. Backfill sand to minimum of 6 inches above and below conduit. Lay bedding to firmly support conduit along entire length.

d. Buried utility warning tape: Provide detectable tape for warning of buried piping.

2.4.5 Valves

Valves shall have flanged end connections, except valves smaller than 2.5 inches may have threaded end connections with a union on one side of the valve. Solder end connections may be used for connections between copper alloy valves and copper tubing.

2.4.5.1 Gate Valves

MSS SP-80, Class 125, except sizes 2.5 inches and larger shall conform to MSS SP-70, Class 125.

2.4.5.2 Globe and Angle Valves

MSS SP-80, Class 125, except sizes 2.5 inches and larger shall conform to MSS SP-85, Class 125.

2.4.5.3 Check Valves

MSS SP-80, Class 125, swing check; except sizes 2.5 inches and larger shall conform to MSS SP-71, Class 125.

2.4.5.4 Butterfly Valves

MSS SP-67, except sizes 2.5 inches and larger shall have lugged or wafer body designed for installation between ASME Class 150 flanges. Valves shall have two-position lever handles, except when infinite position lever handles are indicated.

2.4.5.5 Ball Valves

Full port design, copper alloy body, except sizes 2.5 inches and larger shall be cast-iron body. Valves shall have two-position lever handles. Ball valves may be provided in lieu of gate valves.
2.4.5.6 Square Head Cocks
Provide copper alloy or cast-iron body with copper alloy plugs, suitable for 125 psig water working pressure.

2.4.5.7 Air Venting Valves
Provide copper alloy body valves with automatic or manual air vent as indicated.

2.4.5.8 Combination Pressure and Temperature Relief Valves
ASME/ANSI B16.26, copper alloy body, automatic reseating, test lever, and discharge capacity based on AGA temperature steam rating.

2.4.5.9 Water Pressure Reducing Valves
ASSE 1003, copper alloy body, automatic reseating, with test lever.

2.4.5.10 Water Temperature Regulating Valves
Provide copper alloy body, direct acting, pilot operated, for the intended service.

2.4.5.11 Flow Control Balancing Valves
Copper alloy or cast iron body, copper alloy or stainless internal working parts, and integral pointer that indicates the degree of valve opening. Valves shall be suitable for 125 psig at 190 degrees F hot water. Valve shall function as a service valve when in fully closed position. Valve body shall have factory-installed tappings for differential pressure meter connections for verification of pressure differential across valve orifice. Meter connections shall have positive check valves or shutoff valves. Each valve shall have metal tag showing the gallons per minute flow for each differential pressure reading.

2.4.5.12 Backflow Prevention Assemblies
Provide reduced pressure principle type backflow prevention assemblies which are approved by and has a current "Certificate of Approval" from the FCCCHR-USC. Listing of the particular make, model/design, and size in the current FCCCHR-USC will be acceptable as the required proof.

2.4.5.13 Refrigerant Valves
ASME/ANSI B31.5, and shall be copper alloy. Provide valves in each system for servicing and for isolating system components in compliance with ASHRAE 15.

2.5 PIPING ACCESSORIES

2.5.1 Pipe Hangers and Supports
Provide MSS SP-58 and MSS SP-69, Type 1 with adjustable type steel support rods, except as specified or indicated otherwise. Attach to steel joists with Type 19 or 23 clamps and retaining straps. Attach to Steel W or S beams with Type 21, 28, 29, or 30 clamps. Attach to steel angles and vertical web steel channels with Type 20 clamp with beam clamp channel adapter. Attach to horizontal web steel channel and wood with drilled hole
on centerline and double nut and washer. Attach to concrete with Type 18 insert or drilled expansion anchor. Provide Type 40 insulation protection shield for insulated piping.

2.5.2 Strainers

Pressure and temperature range shall be for the intended service. Provide blowoff outlet with pipe nipple, gate valve, and discharge pipe nipple. Provide stainless steel strainer element with perforations of 0.047 inch for water, 0.031 inch for steam mixed with condensate, and 0.016 inch for steam. Provide copper alloy or cast-iron body strainers in steam and condensate systems up to 100 psig. Provide steel body strainers in steam and condensate systems 100 psig and greater.

2.5.3 Traps

Provide traps of the types indicated with stainless steel internals. Pressure and temperature range shall be for the intended service. Traps for steam at 100 psig and greater shall be minimum of ASME Class 150.

2.5.4 Pressure Gages

Provide single style pressure gage with 4.5-inch dial, brass or aluminum case, bronze tube, gage cock, pressure snubber, and syphon. Provide scale range for intended service.

2.5.5 Thermometers

Provide bi-metal dial type thermometers with stainless steel case, stem, and fixed thread connection; 3 inch diameter dial with glass face gasketed within the case; and accuracy within 2 percent of scale range. Provide scale range for intended service.

2.5.6 Pipe Sleeves

Provide where piping passes entirely through walls, ceilings, roofs, and floors. Secure sleeves in position and location during construction. Provide sleeves of sufficient length to pass through entire thickness of walls, ceilings, roofs, and floors. Provide one-inch minimum clearance between exterior of piping or pipe insulation, and interior of sleeve or core-drilled hole. Firmly pack space with mineral wool insulation. Seal space at both ends of sleeve or core-drilled hole with plastic waterproof cement which will dry to a firm but pliable mass, or provide a mechanically adjustable segmented elastomeric seal. In fire walls and fire floors, seal both ends of sleeves or core-drilled holes with UL listed fill, void, or cavity material.

2.5.6.1 Sleeves in Masonry and Concrete

Provide steel pipe sleeves or schedule 40 PVC plastic pipe sleeves. Sleeves are not required where drain, waste, and vent (DWV) piping passes through concrete floor slabs located on grade. Core drilling of masonry and concrete may be provided in lieu of pipe sleeves when cavities in the core-drilled hole are completely grouted smooth.

2.5.6.2 Sleeves not in Masonry and Concrete

Provide 26 gage galvanized steel sheet or PVC plastic pipe sleeves.
2.5.7 Flexible Pipe Connectors

Provide flexible bronze or stainless steel piping connectors with single braid where indicated. Connectors shall be suitable for the intended service.

2.5.8 Sight Glass and Refrigerant Drier

AHRI 710. Provide in refrigerant liquid piping.

2.5.9 Expansion and Buffer Tanks

Construct of steel in accordance with ASME BPVC for minimum working pressure of 150 psig. Tank shall have polypropylene or butyl lined diaphragm which keeps the air charge separated from the water.

Expansion Tanks, buffer tanks and other hydronic tanks for chilled water systems exposed to exterior weather and sunlight shall be insulated with 2" closed cell, formaldehyde-free, low-VOC, and fiber-free insulation with a insulation rating of R-8 or greater. Insulation shall be UL listed and have an anti-microbial agent applied at the factory with a built-in vapor retarder. Exterior located tanks shall have a sealed 0.020" or thicker aluminum jacket fully enclosing the insulation.

Chilled Water expansion tanks located inside of mechanical rooms and mechanical outbuildings shall be insulated with 2" closed cell, formaldehyde-free, low-VOC, and fiber-free insulation with a insulation rating of R-8 or greater. Insulation shall be UL listed and have an anti-microbial agent applied at the factory with a built-in vapor retarder.

Heating Hot Water expansion tanks shall be located inside mechanical buildings and shall be provided with a minimum 2" silicone or fiberglass based insulation, factory designed to fit the tank.

2.5.10 Dirt-Air Separators

Provide Coalescent type Dirt-Air separator with internal perforated stainless steel air collector tube to direct released air to automatic air vent, and removing solids of 75 microns and larger with specific gravity of 1.2 and greater. Construct of steel for minimum working pressure of 125 psig. Insulate in accordance with 23 07 00.

2.5.11 Hydraulic Separator

Provide a hydraulic separator for each hydronic system with a primary and secondary loop. The hydraulic separator shall be designed and constructed per ASME BPVC, manufactured of a carbon steel exterior, 304 stainless steel interior baffles, and be minimally rated for a design pressure of 125 psig @ 200 degrees Fahrenheit. Unit shall be factory equipped with a blowdown valve and air vent. The selected unit shall be factory manufactured with flanged or grooved pipe connections to match the diameter of the design pipe size to which it is connected without the use of pipe reducers. Insulate in accordance with 23 07 00.

2.5.12 Escutcheon Plates

Provide one piece or split hinge metal plates for piping entering floors, walls, and ceilings in exposed spaces. Provide polished stainless steel plates or chromium-plated finish on copper alloy plates in finished
spaces. Provide paint finish on metal plates in unfinished spaces.

2.5.13 Flow Meters

Where indicated on the construction drawings, provide a Hershel/classic style venturi flow meter installed in accordance with manufacturer instructions, manufactured of 316 (or higher grade) stainless steel and in a horizontal section of the chilled water/heating hot water pipe with a minimum of five pipe diameters upstream and two pipe diameters downstream of the flow meter flange connections to the main pipe. Install with the sensing lines below the horizontal centerline to prevent gas entrapment in the meter lines. Provide unit with NPT sensing line connections, inlet and outlet connections factory sized to the same pipe size the meter is installed, with a turndown ratio of 10:1, and a maximum pressure loss of 6% of the differential pressure. A factory provided differential pressure cell shall be installed and and connected to the control architecture as shown in the controls schematics.

2.6 HEAT TAPE FOR FREEZE PROTECTION OF PIPING

Provide parallel conduction type that is composed of two copper conductors separated by conductive material and all encased in an insulating jacket. The heat tape shall be self-regulating that decreases heat output as temperature increases at each point along the length of tape. Provide voltage as indicated. Provide heat tape complete with fittings, adapters, and fittings, adapters, and other devices to connect tape to standard rigid steel conduit junction boxes, switches, or other devices as indicated. Provide tape sealants and jumper connectors up to 5-inches in length for connecting multiple runs. Provide a thermostat that activates the heat tape on drop of outside air temperature at 38 F. Thermostat shall have maximum tolerance of plus or minus 5 degrees F and maximum operating differential of 6 degrees F within temperature operating range. Wattage per foot of pipe at 50 F shall be as follows. This wattage may be achieved by spiraling the tape around the pipe.

<table>
<thead>
<tr>
<th>Pipe Diameter (Inches)</th>
<th>1/2</th>
<th>3/4</th>
<th>1</th>
<th>1.25</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watt/Foot</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

2.6.1 Pressure/Temperature Test Ports (Plugs)

Provide solid bras test plugs where indicated. Test plug shall be capable of receiving a pressure or temperature probe 1/8-inch o.d. Dual seal core shall be rated zero leakage from vacuum to 200 psig and 0 F to 220 F. Each plug shall be extended through pipe insulation and be capped. Provide 2 each, pressure gauge adapters with 1/8-inch o.d. probe, 5-inch stem pocket testing thermometers for 0 F to 220 F.

2.7 ACCESS DOORS FOR VALVES

Provide factory-prefabricated and primed flush face steel access doors including steel door frame for with continuous hinges and turn-screw-operated latch. Provide door frame installation in plaster and masonry walls. Furnish doors under this section; install doors under appropriate section of this specification.
2.8 CHEMICAL FEED TANK

Construct of steel for minimum working pressure of 125 psig. Provide chemical pipe, fittings, and valves as specified for water piping. Add borate-nitrite corrosion inhibitors to initial fill water for heating and cooling water systems in concentrations of one-half ounce per gallon of system water.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 HVAC System

Installation of HVAC system including equipment, materials, installation, workmanship, fabrication, assembly, erection, examination, inspection, and testing shall be in accordance with ASME B31.1, ASME/ANSI B31.5, NFPA 70, and in accordance with the manufacturer’s recommendations.

3.1.2 Connections to Existing Systems

Notify the Contracting Officer in writing at least 15 calendar days prior to the date the connections are required. Obtain approval before interrupting service. Furnish materials required to make connections into existing systems and perform excavating, backfilling, compacting, and other incidental labor as required. Furnish labor and tools for making actual connections to existing systems.

3.2 PIPING

Test, inspect, and approve piping before burying, covering, or concealing. Provide fittings for changes in direction of piping and for connections. Make changes in piping sizes through tapered reducing fittings; bushings will not be permitted. Install valves with stems horizontal or above. Provide flanges or unions at valves, traps, strainers, and connections to equipment; unions are not required in copper tubing piping systems.

a. Threaded connections: Provide Teflon pipe thread paste on male threads. Do not thread metal pipe into plastic piping.

b. Pipe hangers and supports: Provide additional pipe hangers and supports at in-line water pumps and flanged valves.

c. Piping to receive insulation: Provide temporary wood spacers between the pipe hangers and supports, and the pipe in order to properly slope the piping and establish final elevations. Provide temporary wood spacers of same thickness as insulation to be provided under Section 23 07 00, INSULATION OF MECHANICAL SYSTEMS. Support plastic piping every 4 feet. Support metal piping as follows.

<table>
<thead>
<tr>
<th>Nominal Pipe Size (inches)</th>
<th>One and under 1.25</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Tubing</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Steel Pipe</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>
d. Cleaning of piping: Keep interior and ends of new piping and existing piping affected by Contractor's operations, cleaned of water and foreign matter during installation by using plugs or other approved methods. When work is not in progress, securely close open ends of pipe and fittings to prevent entry of water and foreign matter. Inspect piping before placing into position.

e. Demolition: Remove materials so as not to damage materials which are to remain. Replace existing work damaged by Contractor's operations with new work of same construction.

f. Tee Joints: Extracted tee joints may be made in copper tube. Make joint with an appropriate tool by drilling a pilot hole and drawing out the tube surface to form a collar having a minimum height of three times the thickness of the tube wall. To prevent the branch tube from being inserted beyond the depth of the extracted joint, provide dimpled depth stops. Notch the branch tube for proper penetration into fitting to assure a free flow joint. Braze extracted joints using a copper phosphorous classification brazing filler metal. Soldered joints shall not be permitted.

3.3 ADJUSTMENTS

Adjust controls and equipment so as to give satisfactory operation. Adjust entire water temperature control system and place in operation so that water quantities circulated are as indicated. Air duct systems shall be adjusted and balanced so that air quantities at outlets are as indicated and so that distribution from supply outlets is free from drafts and has uniform velocity over the face of each outlet.

1. Equipment Start up shall be performed by manufacturer technical start up personnel or service technician.

2. Additional Field Services beyond that required for start-up, shall be provided by manufacturer technical start up personnel or service technician to assist in the functional performance testing by the commissioning authority.

3. Additional Field Services beyond that required for start-up and functional testing shall be provided by manufacturer technical start up personnel or service technician to assist in the Government PVT testing by the Government for both first and second season testing as specified under 23 09 23.13.

4. For Air handling units with factory provided controls which are to be interfaced or monitored by the BAS, provide manufacturer technical start up personnel or service technician for start-up.

3.4 PUMPS

After testing, adjusting, and balancing, trim the impellers on all pumps 10 hp and greater to actual flow conditions plus 10 percent discharge head.
Readjust throttling device to correct flow rate.

3.5 INSTRUCTING OPERATING PERSONNEL

Upon completion of work and at time designated by Contracting Officer, provide services of competent technician for period of not less than one 8-hour working day for instruction of Government operating personnel in proper operation and maintenance of equipment.

3.6 FIELD QUALITY CONTROL

Upon completion and before final acceptance of work, test each system in service to demonstrate compliance with the contract requirements. Adjust controls and balance systems prior to final acceptance of completed systems. Test controls through every cycle of operation. Test safety controls to demonstrate performance of required function. Correct defects in work provided by Contractor and repeat tests. Furnish steam, fuel, water, electricity, instruments, connecting devices, and personnel for tests. Flush and clean piping and boiler before placing in operation. Clean equipment, piping, strainers, ducts, and filters.

3.6.1 Piping Systems Except for Refrigerant Piping

Before insulating, hydrostatically test each new piping system at not less than 188 psig. Maintain pressure for 2 hours with no leakage or reduction in gage pressure. Obtain approval before applying insulation.

3.6.2 Air Ducts

Obtain approval before applying insulation.

3.6.3 Equipment

3.6.3.1 Field Testing

Test each item of equipment in operation for continuous period of not less than 24 hours under every condition of operation in accordance with each equipment manufacturer's recommendation. Verify that the equipment operating parameters are within limits recommended by the manufacturer.

3.6.4 Additional Field Testing

Provide testing, adjusting, and balancing (TAB) of ducts, piping, and equipment under Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

3.6.5 Testing EMCS Equipment

a. All EMCS equipment shall be given an operation test.

b. Items not operating properly shall be repaired or replaced and retested.

-- End of Section --
SECTION 26 00 00

BASIC ELECTRICAL MATERIALS AND METHODS

01/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.147 Control of Hazardous Energy (Lock Out/Tag Out)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Std 100 (1996) Dictionary of Electrical and Electronics Terms (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA C57.12.28 (1999) Pad-Mounted Equipment - Enclosure Integrity

NEMA ICS 6 (1993; R 2011) Enclosures

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

1.2 RELATED REQUIREMENTS

This section applies to certain sections of Division 22, "Plumbing" and Division 23, "Heating, Ventilating, and Air Conditioning". This section applies to all sections of Division 26, "Electrical," of this project specification unless specified otherwise in the individual sections.

1.3 DEFINITIONS

a. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, shall be as defined in IEEE Std 100.
b. The technical sections referred to herein are those specification sections that describe products, installation procedures, and equipment operations and that refer to this section for detailed description of submittal types.

c. The technical paragraphs referred to herein are those paragraphs in PART 2 - PRODUCTS and PART 3 - EXECUTION of the technical sections that describe products, systems, installation procedures, equipment, and test methods.

1.4 ELECTRICAL CHARACTERISTICS

Electrical characteristics for this project shall be 12.47 kV primary, three phase, four wire, 60 Hz, and 208Y/120 and 480/277 volts secondary, three phase, four wire. Final connections to the power distribution system at the existing manhole shall be made by the Contractor as directed by the Contracting Officer.

1.5 SUBMITTALS

Submittals required in the sections which refer to this section shall conform to the requirements of Section 01 33 00, "Submittal Procedures" and to the following additional requirements. Submittals shall include the manufacturer's name, trade name, place of manufacture, catalog model or number, nameplate data, size, layout dimensions, capacity, project specification and technical paragraph reference. Submittals shall also include applicable federal, military, industry, and technical society publication references, and years of satisfactory service, and other information necessary to establish contract compliance of each item to be provided. Photographs of existing installations are unacceptable and will be returned without approval.

1.5.1 Manufacturer's Catalog Data

Submittals for each manufactured item shall be current manufacturer's descriptive literature of cataloged products, equipment drawings, diagrams, performance and characteristic curves, and catalog cuts. Handwritten and typed modifications and other notations not part of the manufacturer's preprinted data will result in the rejection of the submittal. Should manufacturer's data require supplemental information for clarification, the supplemental information shall be submitted as specified for certificates of compliance.

1.5.2 Drawings

Submit drawings a minimum of 14 by 20 inches in size using a minimum scale of 1/8 inch per foot. Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Wiring diagrams shall identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Drawings shall indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices.

1.5.3 Instructions

Where installation procedures or part of the installation procedures are
required to be in accordance with manufacturer's instructions, submit
printed copies of those instructions prior to installation. Installation
of the item shall not proceed until manufacturer's instructions are
received. Failure to submit manufacturer's instructions shall be cause for
rejection of the equipment or material.

1.5.4 Certificates

Submit manufacturer's certifications as required for products, materials,
finishes, and equipment as specified in the technical sections.
Certificates from material suppliers are not acceptable. Preprinted
certifications and copies of previously submitted documents will not be
acceptable. The manufacturer's certifications shall name the appropriate
products, equipment, or materials and the publication specified as
controlling the quality of that item. Certification shall not contain
statements to imply that the item does not meet requirements specified,
such as "as good as"; "achieve the same end use and results as materials
formulated in accordance with the referenced publications"; or "equal or
exceed the service and performance of the specified material."
Certifications shall simply state that the item conforms to the
requirements specified. Certificates shall be printed on the
manufacturer's letterhead and shall be signed by the manufacturer's
official authorized to sign certificates of compliance.

1.5.4.1 Reference Standard Compliance

Where equipment or materials are specified to conform to industry and
technical society reference standards of the organizations such as American
National Standards Institute (ANSI), American Society for Testing and
Materials (ASTM), National Electrical Manufacturers Association (NEMA),
Underwriters Laboratories (UL), and Association of Edison Illuminating
Companies (AEIC), submit proof of such compliance. The label or listing by
the specified organization will be acceptable evidence of compliance.

1.5.4.2 Independent Testing Organization Certificate

In lieu of the label or listing, submit a certificate from an independent
testing organization, competent to perform testing, and approved by the
Contracting Officer. The certificate shall state that the item has been
tested in accordance with the specified organization's test methods and
that the item complies with the specified organization's reference standard.

1.5.5 Operation and Maintenance Manuals

Comply with the requirements of Section 01 78 23, "Operation and
Maintenance Data" and the technical sections.

1.5.5.1 Operating Instructions

Submit text of posted operating instructions for each system and principal
item of equipment as specified in the technical sections.

1.6 QUALITY ASSURANCE

1.6.1 Material and Equipment Qualifications

Provide materials and equipment that are products of manufacturers
regularly engaged in the production of such products which are of equal
material, design and workmanship. Products shall have been in satisfactory
commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in the technical section.

1.6.2 Regulatory Requirements

Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70.

1.6.3 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.6.4 Service Support

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.6.5 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

1.6.6 Modification of References

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer.

1.6.7 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site shall not be used, unless specified otherwise.

1.7 POSTED OPERATING INSTRUCTIONS

Provide for each system and principal item of equipment as specified in the technical sections for use by operation and maintenance personnel. The operating instructions shall include the following:

a. Wiring diagrams, control diagrams, and control sequence for each principal system and item of equipment.

b. Start up, proper adjustment, operating, lubrication, and shutdown procedures.
c. Safety precautions.

d. The procedure in the event of equipment failure.

e. Other items of instruction as recommended by the manufacturer of each system or item of equipment.

Print or engrave operating instructions and frame under glass or in approved laminated plastic. Post instructions where directed. For operating instructions exposed to the weather, provide weather-resistant materials or weatherproof enclosures. Operating instructions shall not fade when exposed to sunlight and shall be secured to prevent easy removal or peeling.

1.8 NAMEPLATES

ASTM D 709. Provide laminated plastic nameplates for each panelboard, equipment enclosure, relay, switch, and device; as specified in the technical sections or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 0.125 inch thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be one by 2.5 inches. Lettering shall be a minimum of 0.25 inch high normal block style.

1.9 WARNING SIGNS

Provide warning signs for the enclosures of electrical equipment including substations, pad-mounted transformers, pad-mounted switches, generators, and switchgear having a nominal rating exceeding 600 volts.

a. When the enclosure integrity of such equipment is specified to be in accordance with NEMA C57.12.28, such as for pad-mounted transformers, provide self-adhesive warning signs on the outside of the high voltage compartment door(s). Sign shall be a decal and shall have nominal dimensions of 7 by 10 inches with the legend "DANGER HIGH VOLTAGE" printed in two lines of nominal 2 inch high letters. The word "DANGER" shall be in white letters on a red background and the words "HIGH VOLTAGE" shall be in black letters on a white background. Decal shall be Panduit No. PPS0710D72 or approved equal.

1.10 CABLE TAGS IN MANHOLES, HANDHOLES, AND VAULTS

Provide tags for each cable or wire located in manholes, handholes, and vaults. Tag new wire and cable provided under this contract and existing wire and cable which are indicated to have splices and terminations provided by this contract. The first position on the tag shall denote the voltage. The second through sixth positions on the tag shall identify the circuit. The next to last position shall denote the phase of the circuit and shall include the Greek "phi" symbol. The last position shall denote the cable size. The tags shall be polyethylene. Do not provide handwritten letters. As an example, a tag could have the following designation: "11.5 NAS 1-8 (Phase A) 500," denoting that the tagged cable is on the 11.5kV system circuit number NAS 1-8, underground, Phase A, sized at
500 kcmil.

1.10.1 Polyethylene Cable Tags

Provide tags of polyethylene that have an average tensile strength of 3250 pounds per square inch; and that are 0.08 inch thick (minimum), non-corrosive non-conductive; resistive to acids, alkalis, organic solvents, and salt water; and distortion resistant to 170 degrees F. Provide 0.05 inch (minimum) thick black polyethylene tag holder. Provide a one-piece nylon, self-locking tie at each end of the cable tag. Ties shall have a minimum loop tensile strength of 175 pounds. The cable tags shall have black block letters, numbers, and symbols one inch high on a yellow background. Letters, numbers, and symbols shall not fall off or change positions regardless of the cable tags' orientation.

1.11 ELECTRICAL REQUIREMENTS

Electrical installations shall conform to IEEE C2, NFPA 70, and requirements specified herein.

1.11.1 Motors and Equipment

Provide motors, controllers, integral disconnects, and contactors with their respective pieces of equipment. Motors, controllers, integral disconnects, and contactors shall conform to Section 26 20 00, "Interior Distribution System". Extended voltage range motors shall not be permitted. Control voltage for controllers and contactors shall not exceed 120 volts nominal. When motors and equipment furnished are larger than sizes indicated, the cost of additional electrical service and related work shall be included under the section that specified that motor or equipment. Where fuse protection is specifically recommended by the equipment manufacturer, provide fused switches in lieu of non-fused switches indicated.

1.11.2 Wiring and Conduit

Provide internal wiring for components of packaged equipment as an integral part of the equipment. Provide power wiring and conduit for field-installed equipment under Section 26 20 00, "Interior Distribution System." Power wiring and conduit shall conform to Section 26 20 00, "Interior Distribution System." Control wiring and conduit shall be provided under, and conform to the requirements of the section specifying the associated equipment.

1.12 INSTRUCTION TO GOVERNMENT PERSONNEL

Where specified in the technical sections, furnish the services of competent instructors to give full instruction to designated Government personnel in the adjustment, operation, and maintenance of the specified systems and equipment, including pertinent safety requirements as required. Instructors shall be thoroughly familiar with all parts of the installation and shall be trained in operating theory as well as practical operation and maintenance work. Instruction shall be given during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished shall be as specified in the individual section.
1.13 LOCKOUT REQUIREMENTS

Provide disconnecting means capable of being locked out for machines and other equipment to prevent unexpected startup or release of stored energy in accordance with 29 CFR 1910.147. Mechanical isolation of machines and other equipment shall be in accordance with requirements of Division 15, "Mechanical."

1.14 EQUIPMENT INVENTORY UPDATE

Submit information for each piece of equipment removed and supplied for use of Camp Lejeune to update the Maximo equipment inventory. For the purposes of this paragraph, inventoried equipment is defined as equipment listed on the Maximo Equipment Inventory Update form.

1.14.1 Requirements

The contractor shall prepare and submit one Maximo Equipment Inventory Update form for each individual item of inventoried equipment that is demolished, removed, replaced, or installed. (ex: three new condensing units would require the submission of three Equipment Inventory Update forms. The replacement of two existing air handling units with two new air handling units would require the submission of two Equipment Inventory Update forms). The contractor shall prepare and submit a VAV/TAB Room Number List for each VAV/Tab model installed in a single building. Only one Maximo Equipment Inventory Update form is required for each model of VAV or TAB in a single building.

1.14.1.1 Demolition of all equipment in a structure or facility

When all the inventoried equipment in a building or structure is demolished or removed, and not replaced, an Equipment Inventory Update form is not required.

1.14.1.2 Standards

The contractor shall provide accurate, complete, and legible information on all required forms. All required forms shall be completed and delivered to the Contracting Officer on or before the Beneficial Occupancy Date. All information on Equipment Inventory Update forms shall be obtained by visual inspection of equipment data plate(s).

1.14.1.3 Form Preparation

Each required Maximo Equipment Inventory Update form shall contain the following information:

(1) The name and telephone number of an individual who can be contacted for clarification or additional information pertaining to the data on the form.

(2) The date of data collection

(3) The building or structure identification number and the specific location of the equipment within the structure (ex: 3d deck mech room)

(4) A check adjacent to the description of the new or replacement item, and a check adjacent to the supplemental description if applicable (ex: circulating pump and HVAC or steam)
(5) The Maximo number or serial number of the demolished or removed item, if applicable

(6) All applicable data from the equipment data plate

Each Room Number List form shall contain the following information:

(1) The name and telephone number of the individual providing the information

(2) The date the form was completed

(3) The building or structure identification number

(4) A check in the box adjacent to each applicable room number

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

3.1 PAINTING OF EQUIPMENT

3.1.1 Factory Applied

Electrical equipment shall have factory-applied painting systems which shall, as a minimum, meet the requirements of NEMA ICS 6 corrosion-resistance test.

3.1.2 Field Applied

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Painting shall be as specified in the section specifying the associated electrical equipment.

3.2 NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.3 WARNING SIGN MOUNTING

Provide the number of signs required to be readable from each accessible side, but space the signs a maximum of 30 feet apart.

3.4 CABLE TAG INSTALLATION

Install cable tags in each manhole, handhole, and vault as specified, including each splice. Install cable tags over the fireproofing, if any, and locate the tags so that they are clearly visible without disturbing any cabling or wiring in the manholes, handholes, and vaults.
MAXIMO EQUIPMENT INVENTORY UPDATE

Employee: ________________ Phone: ___________ Date: ___/___/____

Bldg: ____________ Specific Location: ________________________________

__ AC, Computer Room __ Heat Pump, Indoor Unit
__ AC, Package __ Heat Pump, Outdoor Unit
__ AC, Package Terminal __ Heat Pump, Package
__ Assembly, Trap line __ Heat Pump, Package Terminal
__ Backflow Preventer __ Pump, Circulating, Chilled Water
__ Boiler __ Pump, Circulating, Domestic Water
__ Chiller, Air Cooled Recip __ Pump, Circulating, Dual Temp Water
__ Chiller, Air Cooled Screw __ Pump, Circulating, Heating Water
__ Chiller, Air Cooled Scroll __ Pump, Condensate
__ Chiller, Water Cooled Recip __ Pump, Sump
__ Chiller, Water Cooled Screw __ Regulator, Temperature
__ Compressor, Control Air __ Tank, Hot Water Storage
__ Compressor, Industrial Air __ Tower, Cooling
__ Dryer, Refrigerated Air __ Unit, Air Handling
__ Exchanger, Heat __ Unit, AC Condensing
__ Evaporator, Freezer __ Unit, Freezer Condensing
__ Evaporator, Refrigerator __ Unit, Refrigerator Condensing
__ Fan, Exhaust __ Unit, Fan Coil
__ Generator __ Unit, TAB (Attach Room No. List)
__ Heater, Space __ Unit, VAV (Attach Room No. List)
__ Heater, Unit __ Valve, Pressure Reducing
__ Heat Pump, Geo-Thermal __ Valve, Steam Pilot
__ Water Heater

Demolished/Removed Equipment

Maximo no: __________ or Ser no: ___________________________________

New Equipment

Manufacturer: __

Model no: __

Ser no: __

Type: __Elec __Oil __LP Gas __Nat Gas __Steam __Water __Air

Motor Data: HP____ Volts____ Phase____ RLA____ RPM____ Frame____

Tons____ No. of Motors____ no. of Belts____ Belt size(s)____ CFM____

KW____ Refrig type______ Refrig Qty______ Filter Size(s)________
INSERT EXCEL FORM - VAV/TAB ROOM NUMBER LIST

-- End of Section --
SECTION 26 06 00
GROUNDING AND BONDING

01/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ASTM INTERNATIONAL (ASTM)

ASTM B 8 (1999) Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE 837 (1989) Permanent Connections Used in Substation Grounding

INTERNATIONAL ELECTRICAL TESTING ASSOCIATION (NETA)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

UNDERWRITERS LABORATORIES (UL)

UL 83 (2014) Thermoplastic-Insulated Wires and Cables

UL 467 (2007) Grounding and Bonding Equipment

1.2 SUBMITTALS

Submit the following in accordance with section 01 33 00, "Submittals Procedures."

SD-02 Shop Drawings
Layout and location drawings

SD-03 Product Data

Ground rods

Grounding and bonding connectors

Grounding and bonding conductors

SD-06 Test Reports

Submit report of results of acceptance checks and tests specified by paragraph entitled "Field Quality Control"

Ground resistance tests

1.2.1 Layout and location drawings

Provide shop drawings showing location and size of ground rod.

1.2.2 Ground resistance tests

Upon completion and before final acceptance of the work, submit the measured ground resistance of each ground rod and grounding system, including the location of the rod and grounding system and soil conditions at the time the measurements were taken.

PART 2 PRODUCTS

2.1 GROUND RODS

Provide ground rods made of copper-clad steel conforming to UL 467.
Provide ground rods that are not less than 3/4 inch in diameter and 10 feet in length.

2.2 GROUNDING AND BONDING CONNECTORS

IEEE 837 UL 467, pressure-type connector (bolted, compression, clamp) and exothermic weld. Provide type and size of connectors required for the installation.

2.3 GROUNDING AND BONDING CONDUCTORS

Solid bare copper wire meeting the requirements of ASTM B 1 for sizes No. 8 AWG and smaller and stranded bare copper wire meeting the requirements of ASTM B 8, for sizes No. 6 AWG and larger. Insulated conductors shall have 600-volt, Type TW insulation meeting the requirements of UL 83.

2.3.1 Flexible Jumper Cable

Welding cable, 2/0 AWG. Provide flexible cable in areas where movement or vibration requires a grounding connections.
PART 3 EXECUTION

3.1 INSTALLATION

Grounding installation shall conform to the requirements of NFPA 70 and ANSI C2.

3.1.1 Ground Rod Connections

Connect ground conductor to the upper end of ground rod by exothermic weld or by compression connector. Make exothermic welds strictly in accordance with manufacturer's written recommendations. Welds which have puffed up or which show convex surfaces indicating improper cleaning, are not acceptable. No mechanical connectors are required at exothermic weldments. Compression connectors shall be type that uses a hydraulic compression tool to provide correct pressure. Provide tools and dies recommended by compression connector manufacturer. An embossing die or similar method shall provide visible indication that a connector has been fully compressed on ground wire.

3.1.2 Grounding and Bonding

NFPA 70. Ground noncurrent carrying metal parts of equipment or enclosure, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, and neutral conductor of wiring systems. Make ground connection at main service equipment, and extend grounding conductor to point of entrance of metallic water service. Make connection to water pipe by suitable ground clamp or lug connection to plugged tee. If flange pipes are encountered, make connection with lug bolted to street side of flanged connection. Supplement metallic water service grounding system with additional made electrode in compliance with NFPA 70. Where ground fault protection is employed, ensure that connection of ground and neutral does not interfere with correct operation of fault protection.

3.1.3 Surge Arresters

Connect grounding terminal of each arrester to ground.

3.1.4 Ground Cable Crossing Expansion Joints in Structures and Pavements

Protect from damage by means of approved devices or methods of installation to allow the necessary slack in the cable across the joint to permit movement.

3.1.5 Ground Resistance

Noncurrent-carrying metallic parts associated with electrical equipment shall have a maximum resistance to solid earth ground not exceeding the following values:

 a. Pad-mounted transformers: 5 ohms
b. Ground in manholes, handholes, and vaults: 5 ohms

 c. Grounded secondary distribution system neutral and noncurrent-carrying metal parts associated with distribution systems and grounds not otherwise covered: 5 ohms

When work in addition to that indicated or specified is directed in order to obtain the specified ground resistance, the provisions of the contract covering "changes" shall apply.

3.2 FIELD QUALITY CONTROL

3.2.1 Performance of Acceptance Checks and Tests

Perform in accordance with the manufacturer's recommendations, NETA ATS, and referenced standards specified herein. Include the following visual and mechanical inspections and electrical tests, performed in accordance with NETA ATS.

3.2.2 Grounding System

a. Visual and mechanical inspection

 (1) Inspect ground system for compliance with contract plan and specifications.

b. Electrical tests

 (1) Perform ground-impedance measurements utilizing the three-point method.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D 92 (2002; Rev. A) Flash and Fire Points by Cleveland Open Cup IP Designation: 36/84 (89); AASHTO No.: T 48; DIN 51 376

ASTM D 97 (2002) Pour Point of Petroleum Products IP Designation: 15/95

ASTM D 1535 (1997) Specifying Color by the Munsell System

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

FM GLOBAL (FM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Std 386 (1995; R 2001) Separable Insulated Connection

IEEE C2 (2012; Errata 1 2012; INT 1-4 2012; Errata

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA C12.1 (2001) Electric Meters; Code for Electricity Metering

NEMA C12.10 (1997) Watthour Meters

NEMA C37.47 (2000) High Voltage Current-Limiting Type Distribution Class Fuses and Fuse Disconnecting Switches

NEMA C57.12.22 (1993; R 1998) Transformers - Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers with High-Voltage Bushings, 2500 kVA and Smaller: High Voltage, 34 500 GrdY /19 920 Volts and Below; Low Voltage, 480 Volts and Below

NEMA C57.12.26 (1993) Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers for Use with Separable Insulated High-Voltage Connectors, High-Voltage, 34 500 GrdY/19 920 Volts and Below; 2500 kVA and Smaller

NEMA C57.12.28 (1999) Pad-Mounted Equipment - Enclosure Integrity

NEMA C57.12.29 (1999; Errata 2000) Pad-Mounted Equipment - Enclosure Integrity for Coastal Environments

INTERNATIONAL ELECTRICAL TESTING ASSOCIATION (NETA)

Specifications for Electrical Power Equipment and Systems

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD)

OECD Test 203 (1993) Fish Acute Toxicity Test

UNDERWRITERS LABORATORIES (UL)

UL 467 (2007) Grounding and Bonding Equipment

1.2 RELATED REQUIREMENTS

Section 26 00 00, "Basic Electrical Materials and Methods," applies to this section, with the additions and modifications specified herein.

1.3 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

As an exception to this paragraph, transformers manufactured by ABB in Jefferson City, MO; by Cooper Power Systems in Waukesha, WI; by GE in Shreveport, LA; or by Howard Industries in Laurel, MS need not meet the submittal requirements of this contract. Instead, the following shall be submitted:

a. A certification, from the manufacturer, that the technical requirements of this specification shall be met.

b. An outline drawing of the transformer with devices identified (paragraph entitled "Pad-Mounted Transformer Drawings", item a).

c. ANSI nameplate data of the transformer (paragraph entitled "Pad-Mounted Transformer Drawings", item b).

d. Routine and other tests (in PART 2, see paragraph entitled "Routine and Other Tests"), shall be conducted by the manufacturer and may be witnessed by the government (in Part 2, see paragraph entitled "Source Quality Control"). Provide transformer test schedule required by submittal item "SD-11 Closeout Submittals". Provide certified copies of the tests.

e. Provide acceptance test reports required by submittal item "SD-06 Test Reports".

f. Provide operation and maintenance manuals required by submittal item "SD-10 Operation and Maintenance Data".

SD-02 Shop Drawings

Pad-mounted transformer drawings

SD-03 Product Data
Pad-mounted transformers

SD-06 Test Reports
Acceptance checks and tests

SD-07 Certificates
Transformer losses

SD-09 Manufacturer's Field Reports
Pad-mounted transformer design tests
Pad-mounted transformer routine and other tests

SD-10 Operation and Maintenance Data
Transformer(s), Data Package 5

SD-11 Closeout Submittals
Transformer test schedule

1.4 QUALITY ASSURANCE

1.4.1 Pad-Mounted Transformer Drawings

Drawings shall indicate, but not be limited to the following:

a. An outline drawing, with front, top, and side views.

b. ANSI nameplate data.

c. Elementary diagrams and wiring diagrams with terminals identified of
 watthour meter and current transformers.

d. One-line diagram, including switch(es), current transformers, meters,
 and fuses.

e. Manufacturer's published time-current curves (on full size logarithmic
 paper) of the transformer high side fuses.

1.4.2 Transformer Losses

Submit certification from the manufacturer indicating conformance with the
paragraph entitled "Specified Transformer Losses."

1.4.3 Transformer Product Data

Submittal shall include manufacturer's information for each component,
device, and accessory provided with the transformer.

1.4.4 Test Results

Submit report of test results as specified by paragraph entitled "Field
Quality Control"
1.5 MAINTENANCE

1.5.1 Additions to Operation and Maintenance Data

In addition to requirements of Data Package 5, include the following on the actual transformer(s) provided:

a. An instruction manual with pertinent items and information highlighted
b. An outline drawing, front, top, and side views
c. Prices for spare parts and supply list
d. Routine and field acceptance test reports
e. Fuse curves for primary fuses
f. Information on watthour demand meter, CT's, and fuse block
g. Actual nameplate diagram
h. Date of purchase

1.5.2 Operation and Maintenance Data

Submit operation and maintenance data in accordance with Section 01 78 23, "Operation and Maintenance Data" and as specified herein.

PART 2 PRODUCTS

2.1 PRODUCT COORDINATION

Products and materials not considered to be pad-mounted transformers and related accessories are specified in Section 33 71 02, "Underground Electrical Distribution", and Section 26 20 00, "Interior Distribution System".

2.2 THREE-PHASE PAD-MOUNTED TRANSFORMERS

NEMA C57.12.26, NEMA C57.12.28, NEMA C57.12.29 and as specified herein.

2.2.1 Compartments

The high- and low-voltage compartments shall be separated by steel isolating barriers extending the full height and depth of the compartments. Compartment doors: hinged lift-off type with stop in open position and three-point latching.

2.2.1.1 High Voltage, Dead-Front

High-voltage compartment shall contain the incoming line, insulated high-voltage load-break connectors, bushing well inserts, six high-voltage bushing wells configured for loop feed application, load-break switch handle(s), access to oil-immersed fuses, dead-front surge arresters, tap changer handle, connector parking stands and ground pad.

a. Insulated high-voltage load-break connectors: IEEE Std 386, rated 15 kV, 95 kV BIL. Current rating: 200 amperes rms continuous. Short time rating: 10,000 amperes rms symmetrical for a time duration of
0.17 seconds. Connector shall have a steel reinforced hook-stick eye, grounding eye, test point, and arc-quenching contact material.

b. Bushing well inserts: IEEE Std 386, 200 amperes, 15 kV Class. Provide a bushing well insert for each bushing well unless indicated otherwise.

c. Load-break switch

Loop feed sectionalizer switches: Provide three, two-position, oil-immersed type switches to permit closed transition loop feed and sectionalizing. Each switch shall be rated at 15 kV, 95 kV BIL, with a continuous current rating and load-break rating of 200 amperes, and a make-and-latch rating of 10,000 rms amperes symmetrical. Locate the switch handles in the high-voltage compartment. Operation of switches shall be as follows:

ARRANGE-	DESCRIPTION	SWITCH POSITION			
MENT NO.	OF SWITCH ARRANGEMENT	LINE A SW.	LINE B SW	XFMR. SW	
1	Line A connected to Line B and both lines connected to transformer	X	X	X	X
2	Transformer connected to Line A only	X	X		X
3	Transformer connected to Line B only	X		X	X
4	Transformer open and loop closed	X	X		X
5	Transformer open and loop open	X	X		X

d. Provide bayonet type, oil-immersed, expulsion fuses in series with oil-immersed, partial-range, current-limiting fuses. Bayonet fuse links shall sense both high currents and high oil temperature in order to provide thermal protection to the transformer. Coordinate transformer protection with expulsion fuse clearing low-current faults and current-limiting fuse clearing high-current faults beyond the interrupting rating of the expulsion fuse. In order to eliminate or minimize oil spills, the bayonet fuse assembly shall include an oil retention valve inside the housing which closes when the fuse holder is removed and an external drip shield. Warning shall be conspicuously displayed within the high-voltage compartment cautioning against removing or inserting fuses unless the load-break switch is in the open position and the tank pressure has been released.
Bayonet fuse assembly: 150 kV BIL.

Oil-immersed current-limiting fuses: NEMA C37.47; 50,000 rms amperes symmetrical interrupting rating at the system voltage specified.

2.2.1.2 Low Voltage

Low-voltage compartment shall contain low-voltage bushings with NEMA spade terminals, accessories, metering, stainless steel or laser-etched anodized aluminum diagrammatic transformer nameplate, and ground pad.

a. Accessories shall include drain valve with sampler device, fill plug, pressure relief device, liquid level gauge, pressure-vacuum gauge, and dial type thermometer with maximum temperature indicator.

b. Metering: NEMA C12.10. Provide a socket-mounted electronic programmable outdoor watthour meter, surface mounted flush against the side of the low-voltage compartment as indicated. Meter shall either be programmed at the factory or shall be programmed in the field. When field programming is performed, turn field programming device over to the Contracting Officer at completion of project. Meter shall be coordinated to system requirements.

1. Design: Provide meter designed for use on a 3-phase, 4-wire, 208Y/120 or 480Y/277 volt systems (as indicated on drawings) with 3 current transformers. Include necessary KYZ pulse initiation hardware for Energy Monitoring and Control System (EMCS).

2. Coordination: Provide meter coordinated with ratios of current transformers and transformer secondary voltage.

3. Class: 20; Form: 9S; Accuracy: +/- 1.0 percent; Finish: Class II

4. Cover: Polycarbonate and lockable to prevent tampering and unauthorized removal.

5. Kilowatt-hour Register: 5 digit electronic programmable type

6. Demand Register:

 (a) Provide solid state

 (b) Meter reading multiplier:

 (1) Indicate multiplier on the meter face.

 (c) Demand interval length: shall be programmed for 15 minutes with rolling demand up to six subintervals per interval.

7. Meter fusing: Provide a fuse block mounted in the secondary compartment containing one fuse per phase to protect the voltage input to the watthour meter. Size fuses as recommended by the meter manufacturer.
8. Socket: IEEE C12.7. Provide NEMA Type 3R, box-mounted socket having automatic circuit-closing bypass and having jaws compatible with requirements of the meter. Cover unused hub openings with blank hub plates. Paint box Munsell 7GY3.29/1.5 green to match the pad-mounted transformer to which the box-mounted socket is attached. The Munsell color notation is specified in ASTM D 1535.

9. Current transformers: IEEE C57.13. Provide butyl-molded window type current transformers with 600-volt insulation, 10 kV BIL and mount on the low-voltage bushings. Route current transformer leads in a location as remote as possible from the power transformer secondary cables to permit current measurements to be taken with hook-on-ammeters. Provide three current transformers per power transformer with characteristics listed in the following table.

<table>
<thead>
<tr>
<th>kVA</th>
<th>Sec. Volt</th>
<th>CT Ratio</th>
<th>RF</th>
<th>Meter Acc. Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>208Y/120</td>
<td>1200/5</td>
<td>1.5</td>
<td>0.3 thru B-0.5</td>
</tr>
<tr>
<td>225</td>
<td>480Y/277</td>
<td>200/5</td>
<td>4.0</td>
<td>0.3 thru B-0.1</td>
</tr>
</tbody>
</table>

2.2.2 Transformer

a. Oil-insulated, two winding, 60 hertz, 65 degrees C rise above a 30 degrees C average ambient, self-cooled type.

b. Transformers shall be rated 500 and 225 kVA, 95 kV BIL.

c. Transformer voltage ratings: 12,470 Delta V - 480Y/277 V or 12,470 V Delta - 208Y/120 V (as indicated on drawings).

d. Tap changer shall be externally operated, manual type for changing tap setting when the transformer is de-energized. Provide four 2.5 percent full capacity taps, two above and two below rated primary voltage. Tap changers shall clearly indicate which tap setting is in use.

e. Minimum tested impedance shall not be less than manufacturer's typical design impedances.

f. Audible sound levels shall comply with the following:

<table>
<thead>
<tr>
<th>kVA</th>
<th>DECIBELS (MAX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>55</td>
</tr>
<tr>
<td>500</td>
<td>56</td>
</tr>
</tbody>
</table>

g. Transformer shall include lifting lugs and provisions for jacking under base. The transformer base construction shall be suitable for using rollers or skidding in any direction. Provide transformer top with an access handhole. Transformer shall have its kVA rating conspicuously displayed on its enclosure. The transformer shall have an insulated low-voltage neutral bushing with NEMA spade terminal, and with removable ground strap.

2.2.2.1 Specified Transformer Losses

No-load losses (NLL) shall be 373 and 741 watts at 20 degrees C for 225 and 500 kVA transformers respectively and load losses (LL) shall be 1494 and 3017 watts at 85 degrees C for 225 and 500 kVA transformers respectively.
The values for the specified losses shall be used for comparison with the losses determined during the routine tests. If the routine test values for no-load losses exceed the specified no-load losses by more than 10 percent, or the total losses exceed the specified total losses (sum of no-load and load losses) by more than 6 percent, the transformer is unacceptable.

2.2.3 Insulating Liquid

a. Less-flammable transformer liquids: NFPA 70 and FM P7825 for less-flammable liquids having a fire point not less than 300 degrees C tested per ASTM D 92 and a dielectric strength not less than 33 kV tested per ASTM D 877. Provide identification of transformer as "non-PCB" and "manufacturer's name and type of fluid" on the nameplate.

The fluid shall be a biodegradable electrical insulating and cooling liquid classified by UL and approved by FM as "less flammable" fluids. The fluid shall meet the following fluid properties:

1. Pour point: ASTM D 97, less than -15 degree C
2. Aquatic biodegradation: EPA 712-C-98-075, 100%

2.2.3.1 Liquid-Filled Transformer Nameplates

Power transformers shall be provided with nameplate information in accordance with IEEE C57.12.00 and as modified or supplemented by this section.

2.2.4 Corrosion Protection

Bases and cabinets of transformers shall be corrosion resistant and shall be fabricated of stainless steel conforming to ASTM A 167, Type 304 or 304L. Base shall include any part of pad-mounted transformer that is within 3 inches of concrete pad. Paint bases, cabinets, and tanks Munsell 7GY3.29/1.5 green. Paint coating system shall comply with NEMA C57.12.28 regardless of base, cabinet, and tank material. The Munsell color notation is specified in ASTM D 1535.

2.3 WARNING SIGNS

Provide as specified in Section 26 00 00, "Basic Electrical Materials and Methods."

2.4 GROUNDING AND BONDING

UL 467. Provide grounding and bonding as specified.

2.5 CAST-IN-PLACE CONCRETE

Concrete associated with electrical work for other than encasement of underground ducts shall be 4000 psi minimum 28-day compressive strength unless specified otherwise. All concrete shall conform to the requirements of Section 03 30 50, "Cast-in-Place Concrete."
2.6 SOURCE QUALITY CONTROL

2.6.1 Transformer Test Schedule

The Government reserves the right to witness tests. Provide transformer test schedule for tests to be performed at the manufacturer's test facility. Submit required test schedule and location, and notify the Contracting Officer 30 calendar days before scheduled test date. Notify Contracting Officer 15 calendar days in advance of changes to scheduled date.

a. Test Instrument Calibration

1. The manufacturer shall have a calibration program which assures that all applicable test instruments are maintained within rated accuracy.

2. The accuracy shall be directly traceable to the National Institute of Standards and Technology.

3. Instrument calibration frequency schedule shall not exceed 12 months for both test floor instruments and leased specialty equipment.

4. Dated calibration labels shall be visible on all test equipment.

5. Calibrating standard shall be of higher accuracy than that of the instrument tested.

6. Keep up-to-date records that indicate dates and test results of instruments calibrated or tested. For instruments calibrated by the manufacturer on a routine basis, in lieu of third party calibration, include the following:

 (a) Maintain up-to-date instrument calibration instructions and procedures for each test instrument.

 (b) Identify the third party/laboratory calibrated instrument to verify that calibrating standard is met.

2.6.2 Design Tests

IEEE C57.12.00, and IEEE C57.12.90. Section 5.1.2 in IEEE C57.12.80 states that "design tests are made only on representative apparatus of basically the same design." Submit design test reports (complete with test data, explanations, formulas, and results), in the same submittal package as the catalog data and drawings for each of the specified transformer(s). Design tests shall have been performed prior to the award of this contract.

a. Tests shall be certified and signed by a registered professional engineer.

b. Temperature rise: "Basically the same design" for the temperature rise test means a pad-mounted transformer with the same coil construction (such as wire wound primary and sheet wound secondary), the same kVA, the same cooling type (ONAN), the same temperature rise rating, and the same insulating liquid as the transformer specified.

c. Lightning impulse: "Basically the same design" for the lightning
impulse dielectric test means a pad-mounted transformer with the same BIL, the same coil construction (such as wire wound primary and sheet wound secondary), and a tap changer, if specified. Design lightning impulse tests shall include both the primary and secondary windings of that transformer.

2. State test voltage levels.

3. Provide photographs of oscilloscope display waveforms or plots of digitized waveforms with test report.

d. Lifting and moving devices: "Basically the same design" requirement for the lifting and moving devices test means a test report confirming that the lifting device being used is capable of handling the weight of the specified transformer in accordance with NEMA C57.12.22.

e. Pressure: "Basically the same design" for the pressure test means a pad-mounted transformer with a tank volume within 30 percent of the tank volume of the transformer specified.

2.6.3 Routine and Other Tests

IEEE C57.12.00. Routine and other tests shall be performed by the manufacturer on each of the actual transformer(s) prepared for this project to ensure that the design performance is maintained in production. Submit test reports, by serial number and receive approval before delivery of equipment to the project site. Required tests and testing sequence shall be as follows:

a. Cold resistance measurements (provide reference temperature)

b. Phase relation

c. Ratio

d. No-load losses (NLL) and excitation current

e. Load losses (LL) and impedance voltage

f. Dielectric

1. Impulse

 (a) State test voltage levels

 (b) Provide photographs of oscilloscope display waveforms or plots of digitized waveforms with test reports. As an alternative, photographs of oscilloscope display waveforms or plots of digitized waveforms may be hand-delivered at the factory witness test.

2. Applied voltage

3. Induced voltage

g. Leak
PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations shall conform to IEEE C2, NFPA 70, and to requirements specified herein. Provide new equipment and materials unless indicated or specified otherwise.

3.2 GROUNDING

NFPA 70 and IEEE C2, except that grounding systems shall have a resistance to solid earth ground not exceeding 5 ohms.

3.2.1 Grounding Electrodes

Provide driven ground rods as specified in Section 33 71 02, "Underground Transmission and Distribution". Connect ground conductors to the upper end of ground rods by exothermic weld or compression connector. Provide compression connectors at equipment end of ground conductors.

3.2.2 Pad-Mounted Transformer Grounding

Provide separate copper grounding conductors and connect them to the ground loop as indicated. When work in addition to that indicated or specified is required to obtain the specified ground resistance, the provision of the contract covering "Changes" shall apply.

3.2.3 Connections

Make joints in grounding conductors and loops by exothermic weld or compression connector. Exothermic welds and compression connectors shall be installed as specified.

3.2.4 Grounding and Bonding Equipment

UL 467, except as indicated or specified otherwise.

3.3 TRANSFORMER GROUNDING

Provide a 4/0 bare copper-ground girdle around transformer. Girdle shall be buried one foot deep and placed 3 feet laterally from the transformer enclosure. Connect girdle to enclosure at two opposite places using 4/0 copper. Exothermically weld joints.

3.4 INSTALLATION OF EQUIPMENT AND ASSEMBLIES

Install and connect pad-mounted transformers furnished under this section as indicated on project drawings, the approved shop drawings, and as specified herein.

3.4.1 Meters and Current Transformers

NEMA C12.1.

3.5 FOUNDATION FOR EQUIPMENT AND ASSEMBLIES

Mount transformer on concrete slab. Unless otherwise indicated, the concrete slab shall be precast pad with vault as shown on drawings.
Stub up conduits, with bushings, 2 inches into cable wells in the concrete pad. Coordinate dimensions of cable wells with transformer cable training areas.

3.5.1 Cast-In-Place Concrete

Cast-in-place concrete work shall conform to the requirements of Section 03 30 50, "Cast-In-Place Concrete".

3.5.2 Sealing

When the installation is complete, the Contractor shall seal all conduit and other entries into the equipment enclosure with an approved sealing compound. Seals shall be of sufficient strength and durability to protect all energized live parts of the equipment from rodents, insects, or other foreign matter.

3.6 FIELD QUALITY CONTROL

3.6.1 Performance of Acceptance Checks and Tests

Perform in accordance with the manufacturer's recommendations and include the following visual and mechanical inspections and electrical tests, performed in accordance with NETA ATS.

3.6.1.1 Pad-Mounted Transformers

a. Visual and mechanical inspection

 1. Compare equipment nameplate information with specifications and approved shop drawings.

 2. Inspect physical and mechanical condition. Check for damaged or cracked insulators and leaks.

 3. Inspect all bolted electrical connections for high resistance using low-resistance ohmmeter, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey.

 4. Verify correct liquid level in tanks.

 5. Perform specific inspections and mechanical tests as recommended by manufacturer.

 6. Verify correct equipment grounding.

 7. Verify the presence of transformer surge arresters.

b. Electrical tests

 1. Perform resistance measurements through all bolted connections with low-resistance ohmmeter, if applicable.

 2. Perform insulation-resistance tests.

 3. Perform turns-ratio tests.
4. Perform insulation power-factor/dissipation-factor tests on windings.

5. Sample insulating liquid. Sample shall be tested for:
 (a) Dielectric breakdown voltage
 (b) Acid neutralization number
 (c) Specific gravity
 (d) Interfacial tension
 (e) Color
 (f) Visual condition
 (g) Water in insulating liquid
 (h) Measure dissipation factor or power factor

6. Perform dissolved gas analysis (DGA).

7. Test for presence of PCB.

8. Verify that the tap-changer is set at specified ratio.

9. Verify proper secondary voltage phase-to-phase and phase-to-neutral after energization and prior to loading.

3.6.1.2 Current Transformers

a. Visual and mechanical inspection
 1. Compare equipment nameplate data with specifications and approved shop drawings.
 2. Inspect physical and mechanical condition.
 3. Verify correct connection.
 4. Verify that adequate clearances exist between primary and secondary circuit.
 5. Inspect all bolted electrical connections for high resistance using low-resistance ohmmeter, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey.
 6. Verify that required grounding and shorting connections provide good contact.

b. Electrical tests
 1. Perform resistance measurements through all bolted connections with low-resistance ohmmeter, if applicable.
3. Perform a polarity test.
4. Perform a ratio-verification test.

3.6.1.3 Watthour Meter

a. Visual and mechanical inspection
 1. Compare equipment nameplate data with specifications and approved shop drawings.
 2. Inspect physical and mechanical condition.
 3. Verify tightness of electrical connections.

b. Electrical tests
 1. Calibrate watthour meters according to manufacturer's published data.
 2. Verify that correct multiplier has been placed on face of meter, where applicable.
 3. Verify that current transformer secondary circuits are intact.

3.6.1.4 Grounding System

a. Visual and mechanical inspection
 1. Inspect ground system for compliance with contract plans and specifications.

b. Electrical tests
 1. Perform ground-impedance measurements utilizing the fall-of-potential method. On systems consisting of interconnected ground rods, perform tests after interconnections are complete. On systems consisting of a single ground rod perform tests before any wire is connected. Take measurements in normally dry weather, not less than 48 hours after rainfall. Use a portable ground testing megger in accordance with manufacturer's instructions to test each ground or group of grounds. The instrument shall be equipped with a meter reading directly in ohms or fractions thereof to indicate the ground value of the ground rod or grounding systems under test.

 2. Submit the measured ground resistance of each ground rod and grounding system, indicating the location of the rod and grounding system. Include the test method and test setup (i.e., pin location) used to determine ground resistance and soil conditions at the time the measurements were made.

3.6.2 Follow-Up Verification

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that circuits and devices are in good operating condition and properly performing the intended function. As an exception to requirements stated elsewhere in the contract, the Contracting Officer shall be given 5 working days advance notice of the dates and times of
checking and testing.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM B 8 (1999) Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

INTERNATIONAL ELECTRICAL TESTING ASSOCIATION (NETA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA C80.1 (1994) Rigid Steel Conduit - Zinc Coated
NEMA C80.3 (1994) Electrical Metallic Tubing - Zinc Coated (EMT)
NEMA FU 1 (2002) Low Voltage Cartridge Fuses
NEMA ICS 2 (2000; R 2005; Errata 2008) Standard for Controllers, Contactors, and Overload Relays Rated 600 V
NEMA ICS 6 (1993; R 2011) Enclosures
NEMA RN 1 (2005; R 2013) Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit
NEMA ST 20 (1992; R 1997) Dry-Type Transformers for General Applications

NEMA TC 14 (2002) Filament-Wound Reinforced Thermosetting Resin Conduit (RTRC) and Fittings

NEMA TC 3 (1999) PVC Fittings for Use with Rigid PVC Conduit and Tubing

NEMA WD 1 (1999) General Color Requirements for Wiring Devices

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

UNDERWRITERS LABORATORIES (UL)

UL 1 (2000) Flexible Metal Conduit

UL 1242 (2006; Reprint Mar 2014) Standard for Electrical Intermediate Metal Conduit -- Steel

UL 198E (1988; R 1988) Class R Fuses

UL 467 (2007) Grounding and Bonding Equipment

UL 486C (2000; R 2002) Splicing Wire Connectors

UL 489 (2013; Reprint Mar 2014) Molded-Case Circuit Breakers, Molded-Case Switches, and Circuit-Breaker Enclosures

UL 498 (2001; R 2002) Attachment Plugs and Receptacles
UL 50 (2007; Reprint Apr 2012) Enclosures for Electrical Equipment, Non-environmental Considerations

UL 506 (2008; Reprint Oct 2013) Specialty Transformers

UL 510 (2005; Reprint Jul 2013) Polyvinyl Chloride, Polyethylene and Rubber Insulating Tape

UL 514A (2013) Metallic Outlet Boxes

UL 514B (2012; Reprint Nov 2014) Conduit, Tubing and Cable Fittings

UL 514C (2014; Reprint Dec 2014) Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers

UL 6 (2007; Reprint Nov 2014) Electrical Rigid Metal Conduit-Steel

UL 651 (2011; Reprint May 2014) Standard for Schedule 40 and 80 Rigid PVC Conduit and Fittings

UL 67 (1993; R 2002) Panelboards

UL 797 (2000; Bul. 2002) Electrical Metallic Tubing

UL 83 (2014) Thermoplastic-Insulated Wires and Cables

1.2 RELATED REQUIREMENTS

Section 26 00 00, "Basic Electrical Materials and Methods," applies to this section with additions and modifications specified herein.

1.3 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

 SD-02 Shop Drawings

 Panelboards
Transformers
SD-03 Product Data
Receptacles
Circuit breakers
Switches
Transformers
Enclosed circuit breakers
Motor controllers
Manual motor starters
SD-06 Test Reports
 600-volt wiring test
 Grounding system test
 Transformer tests
 Ground-fault receptacle test
SD-07 Certificates
Fuses
SD-09 Manufacturer's Field Reports
 Transformer factory tests
SD-10 Operation and Maintenance Data
 Electrical Systems, Data Package 5

Submit operation and maintenance data in accordance with Section 01 78 23, "Operation and Maintenance Data" and as specified herein.

1.4 QUALITY ASSURANCE

1.4.1 Fuses

Submit coordination data as specified in article entitled, "FUSES" of this section.

1.5 MAINTENANCE

1.5.1 Electrical Systems

Submit operation and maintenance manuals for electrical systems that provide basic data relating to the design, operation, and maintenance of the electrical distribution system for the building. This shall include:
a. Single line diagram of the "as-built" building electrical system.

b. Schematic diagram of electrical control system (other than HVAC, covered elsewhere).

c. Manufacturers' operating and maintenance manuals on active electrical equipment.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Materials, equipment, and devices shall, as a minimum, meet requirements of UL, where UL standards are established for those items, and requirements of NFPA 70.

2.2 CONDUIT AND FITTINGS

Shall conform to the following:

2.2.1 Rigid Metallic Conduit

2.2.1.1 Rigid, Threaded Zinc-Coated Steel Conduit

NEMA C80.1, UL 6.

2.2.2 Rigid Nonmetallic Conduit

PVC Type EPC-40, in accordance with NEMA TC 2, UL 651, or fiberglass conduit, in accordance with NEMA TC 14.

2.2.3 Intermediate Metal Conduit (IMC)

UL 1242, zinc-coated steel only.

2.2.4 Electrical, Zinc-Coated Steel Metallic Tubing (EMT)

UL 797, NEMA C80.3.

2.2.5 Plastic-Coated Rigid Steel and IMC Conduit

NEMA RN 1, Type 40 (40 mils thick).

2.2.6 Flexible Metal Conduit

UL 1.

2.2.6.1 Liquid-Tight Flexible Metal Conduit, Steel

UL 360.

2.2.7 Fittings for Metal Conduit, EMT, and Flexible Metal Conduit

UL 514B. Ferrous fittings shall be cadmium- or zinc-coated in accordance with UL 514B.
2.2.7.1 Fittings for Rigid Metal Conduit and IMC
Threaded-type. Split couplings unacceptable.

2.2.7.2 Fittings for EMT
Steel compression type.

2.2.8 Fittings for Rigid Nonmetallic Conduit
NEMA TC 3, UL 514B.

2.3 OUTLET BOXES AND COVERS
UL 514A, cadmium- or zinc-coated, if ferrous metal. UL 514C, if nonmetallic.

2.4 WIRES AND CABLES
Wires and cables shall meet applicable requirements of NFPA 70 and UL for type of insulation, jacket, and conductor specified or indicated. Wires and cables manufactured more than 12 months prior to date of delivery to site shall not be used.

2.4.1 Conductors
Conductors No. 8 AWG and larger diameter shall be stranded. Conductors No. 10 AWG and smaller diameter shall be solid, except that conductors for remote control, alarm, and signal circuits, classes 1, 2, and 3, shall be stranded unless specifically indicated otherwise. Conductor sizes and ampacities shown are based on copper, unless indicated otherwise.

2.4.1.1 Minimum Conductor Sizes
Minimum size for branch circuits shall be No. 12 AWG; for Class 1 remote-control and signal circuits, No. 14 AWG; for Class 2 low-energy, remote-control and signal circuits, No. 16 AWG; and for Class 3 low-energy, remote-control, alarm and signal circuits, No. 22 AWG.

2.4.2 Color Coding
Provide for service, feeder, branch, control, and signaling circuit conductors. Color shall be green for grounding conductors and white for neutrals; except where neutrals of more than one system are installed in same raceway or box, other neutral shall be white with colored (not green) stripe. Color of ungrounded conductors in different voltage systems shall be as follows:

a. 208/120 volt, three-phase
 (1) Phase A - black
 (2) Phase B - red
 (3) Phase C - blue
b. 480/277 volt, three-phase
 (1) Phase A - brown
(2) Phase B - orange
(3) Phase C - yellow

2.4.3 Insulation

Unless specified or indicated otherwise or required by NFPA 70, power and lighting wires shall be 600-volt, Type THWN/THHN conforming to UL 83, except that grounding wire may be type TW conforming to UL 83; remote-control and signal circuits shall be Type TW or TF, conforming to UL 83. Where lighting fixtures require 90-degree Centigrade (C) conductors, provide only conductors with 90-degree C insulation or better.

2.4.4 Bonding Conductors

ASTM B 1, solid bare copper wire for sizes No. 8 AWG and smaller diameter; ASTM B 8, Class B, stranded bare copper wire for sizes No. 6 AWG and larger diameter.

2.5 SPLICES AND TERMINATION COMPONENTS

UL 486A and UL 486B, as applicable, for wire connectors and UL 510 for insulating tapes. Connectors for No. 10 AWG and smaller diameter wires shall be insulated, pressure-type in accordance with UL 486A or UL 486C (twist-on splicing connector). Provide solderless terminal lugs on stranded conductors.

2.6 DEVICE PLATES

Provide UL listed, one-piece device plates for outlets to suit the devices installed. For metal outlet boxes, plates on unfinished walls shall be of zinc-coated sheet steel or cast metal having round or beveled edges. For nonmetallic boxes and fittings, other suitable plates may be provided. Plates on finished walls shall be nylon or lexan, minimum 0.03 inch wall thickness. Plates shall be same color as receptacle or toggle switch with which they are mounted. Screws shall be machine-type with countersunk heads in color to match finish of plate. Sectional type device plates will not be permitted. Plates installed in wet locations shall be gasketed and UL listed for "wet locations."

2.7 SWITCHES

2.7.1 Toggle Switches

NEMA WD 1, UL 20, single polethree-way, and , totally enclosed with bodies of thermoplastic and/or thermoset plastic and mounting strap with grounding screw. Handles shall be white thermoplastic. Wiring terminals shall be screw-type, side-wired. Contacts shall be silver-cadmium and contact arm shall be one-piece copper alloy. Switches shall be rated quiet-type ac only, 120/277 volts, with current rating and number of poles indicated.

2.7.2 Disconnect Switches

NEMA KS 1. Provide heavy duty-type switches. Fused switches shall utilize Class R fuseholders and fuses, unless indicated otherwise. Switches serving as motor-disconnect means shall be horsepower rated. Provide
switches in NEMA enclosure as indicated per NEMA ICS 6.

2.8 RECEPTACLES

UL 498, hard use, heavy-duty, grounding-type. Ratings and configurations shall be as indicated. Bodies shall be of white as per NEMA WD 1. Face and body shall be thermoplastic supported on a metal mounting strap. Dimensional requirements shall be per NEMA WD 6. Provide screw-type, side-wired wiring terminals. Connect grounding pole to mounting strap. The receptacle shall contain triple-wipe power contacts and double or triple-wipe ground contacts.

2.8.1 Weatherproof Receptacles

Provide in cast metal box with gasketed, weatherproof, cast-metal cover plate and gasketed cap over each receptacle opening. Provide caps with a spring-hinged flap. Receptacle shall be UL listed for use in "wet locations with plug in use."

2.8.2 Ground-Fault Circuit Interrupter Receptacles

UL 943, duplex type for mounting in standard outlet box. Device shall be capable of detecting current leak of 6 milliamperes or greater and tripping per requirements of UL 943 for Class A GFI devices. Provide screw-type, side-wired wiring terminals or pre-wired (pigtail) leads.

2.8.3 Dryer Receptacles

NEMA 14-30 configuration, rated 30 amperes, 125/250 volts.

2.9 PANELBOARDS

UL 67 and UL 50 having a short-circuit current rating as indicated. Panelboards for use as service disconnecting means shall additionally conform to UL 869A. Panelboards shall be circuit breaker-equipped. Design shall be such that individual breakers can be removed without disturbing adjacent units or without loosening or removing supplemental insulation supplied as means of obtaining clearances as required by UL. "Specific breaker placement" is required in panelboards to match the breaker placement indicated in the panelboard schedule on the drawings. Use of "Subfeed Breakers" is not acceptable unless specifically indicated otherwise. Main breaker shall be "separately" mounted "above" branch breakers. Where "space only" is indicated, make provisions for future installation of breakers. Panelboard locks shall be keyed same. Directories shall indicate load served by each circuit in panelboard. Directories shall also indicate source of service to panelboard (e.g., Panel PA served from Panel MDP). Type directories and mount in holder behind transparent protective covering. Panelboards shall be listed and labeled for their intended use.

2.9.1 Panelboard Buses

Support bus bars on bases independent of circuit breakers. Main buses and back pans shall be designed so that breakers may be changed without machining, drilling, or tapping. Provide isolated neutral bus in each panel for connection of circuit neutral conductors. Provide separate ground bus identified as equipment grounding bus per UL 67 for connecting grounding conductors; bond to steel cabinet. Buses are to be constructed of hard drawn copper of 98 percent conductivity.
2.9.2 Circuit Breakers

UL 489, thermal magnetic-type having a minimum short-circuit current rating equal to the short-circuit current rating of the panelboard in which the circuit breaker shall be mounted. Breaker terminals shall be UL listed as suitable for type of conductor provided. Series rated circuit breakers and plug-in circuit breakers are unacceptable.

2.9.2.1 Multipole Breakers

Provide common trip-type with single operating handle. Breaker design shall be such that overload in one pole automatically causes all poles to open. Maintain phase sequence throughout each panel so that any three adjacent breaker poles are connected to Phases A, B, and C, respectively.

2.9.2.2 Circuit Breakers for HVAC Equipment

Circuit breakers for HVAC equipment having motors (group or individual) shall be marked for use with HACR type and UL listed as HACR type.

2.9.2.3 Arc-Fault Circuit-Interrupters

UL 489, UL 1699 and NFPA 70. Molded case circuit breaker shall be rated as indicated. Provide with "push-to-test" button.

2.10 ENCLOSED CIRCUIT BREAKERS

UL 489. Individual molded case circuit breakers with voltage and continuous current ratings, number of poles, overload trip setting, and short circuit current interrupting rating as indicated. Enclosure type as indicated.

2.11 FUSES

NEMA FU 1. Provide complete set of fuses for each fusible switch. Time-current characteristics curves of fuses serving motors or connected in series with circuit breakers shall be coordinated for proper operation. Submit coordination data for approval. Fuses shall have voltage rating not less than circuit voltage.

2.11.1 Cartridge Fuses, Current Limiting Type (Class R)

UL 198E, Class RK-5time-delay type. Associated fuseholders shall be Class R only.

2.12 TRANSFORMERS

NEMA ST 20, general purpose, dry-type, self-cooled, ventilated. Provide transformers in NEMA 1 enclosure. Transformer shall have 220 degrees C insulation system for transformers 15 kVA and greater with temperature rise not exceeding 80 degrees C under full-rated load in maximum ambient of 40 degrees C. Transformer of 80 degrees C temperature rise shall be capable of carrying continuously 130 percent of nameplate kVA without exceeding insulation rating.

2.13 MOTOR CONTROLLERS

UL 508, NEMA ICS 1, and NEMA ICS 2. Controllers shall have thermal
overload protection in each phase and shall have one spare normally open and one spare normally closed auxiliary contact. Magnetic-type motor controllers shall have undervoltage protection when used with momentary-contact pushbutton stations or switches and shall have undervoltage release when used with maintained-contact pushbutton stations or switches. When used with pressure, float, or similar automatic-type or maintained-contact switch, controller shall have hand/off/automatic selector switch. Connections to selector switch shall be such that only normal automatic regulatory control devices are bypassed when switch is in "hand" position. Safety control devices, such as low and high pressure cutouts, high temperature cutouts, and motor overload protective devices, shall be connected in motor control circuit in "hand" and "automatic" positions. Control circuit connections to hand/off/automatic selector switch or to more than one automatic regulatory control device shall be made in accordance with indicated or manufacturer's approved wiring diagram. For each motor not in sight of controller or where controller disconnecting means is not in sight of motor location and driven machinery location, controller disconnecting means shall be capable of being locked in open position. As an alternative, provide a manually operated, lockable, nonfused switch which disconnects motor from supply source within sight of motor. Overload protective devices shall provide adequate protection to motor windings; be thermal inverse-time-limit type; and include manual reset-type pushbutton on outside of motor controller case. Cover of combination motor controller and manual switch or circuit breaker shall be interlocked with operating handle of switch or circuit breaker so that cover cannot be opened unless handle of switch or circuit breaker is in "off" position.

2.13.1 Control Circuits

Control circuits shall have maximum voltage of 120 volts derived from control transformer in same enclosure. Transformers shall conform to UL 506, as applicable. Transformers, other than transformers in bridge circuits, shall have primaries wound for voltage available and secondaries wound for correct control circuit voltage. Size transformers so that 80 percent of rated capacity equals connected load. Provide disconnect switch on primary side. Provide fuses in each ungrounded primary feeder. One secondary lead shall be fused; other shall be grounded.

2.13.2 Enclosures for Motor Controllers

NEMA ICS 6.

2.13.3 Terminal Blocks

NEMA ICS 4.

2.14 MANUAL MOTOR STARTERS (MOTOR RATED SWITCHES)

Singlepole designed for surface mounting with overload protection.

2.15 GROUNDING AND BONDING EQUIPMENT

UL 467. Ground rods shall be copper-clad steel, with minimum diameter of 3/4 in and minimum length of 10 ft.

2.16 NAMEPLATES

Provide as specified in Section 26 00 00, "Basic Electrical Materials and
2.17 FIRESTOPPING MATERIALS

Provide firestopping around electrical penetrations.

2.18 SOURCE QUALITY CONTROL

2.18.1 Transformer Factory Tests

Submittal shall include routine NEMA ST 20 transformer test results on each transformer and also contain the results of NEMA "design" and "prototype" tests that were made on transformers electrically and mechanically equal to those specified.

PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations shall conform to requirements of NFPA 70 and to requirements specified herein.

3.1.1 Underground Service

Underground service conductors and associated conduit shall be continuous from service entrance equipment to outdoor power system connection.

3.1.2 Service Entrance Identification

Service entrance disconnect devices, switches, and enclosures shall be labeled and identified as such.

3.1.2.1 Labels

Wherever work results in service entrance disconnect devices in more than one enclosure, as permitted by NFPA 70, each enclosure, new and existing, shall be labeled as one of several enclosures containing service entrance disconnect devices. Label, at minimum, shall indicate number of service disconnect devices housed by enclosure and shall indicate total number of enclosures that contain service disconnect devices. Provide laminated plastic labels conforming to paragraph entitled "Nameplates." Use lettering of at least 0.25 in in height, and engrave on black-on-white matte finish. Service entrance disconnect devices in more than one enclosure, shall be provided only as permitted by NFPA 70.

3.1.3 Wiring Methods

Provide insulated conductors installed in rigid steel conduit, IMC, rigid nonmetallic conduit, or EMT, except where specifically indicated or specified otherwise or required by NFPA 70 to be installed otherwise. Grounding conductor shall be separate from electrical system neutral conductor. Provide insulated green equipment grounding conductor for circuit(s) installed in conduit and raceways. Minimum conduit size shall be 1/2 in in diameter for low voltage lighting and power circuits. Conduit which penetrates fire-rated walls, fire-rated partitions, or fire-rated floors shall be firestopped.
3.1.3.1 Restrictions Applicable to EMT
 a. Do not install underground.
 b. Do not encase in concrete, mortar, grout, or other cementitious materials.
 c. Do not use in areas subject to severe physical damage including but not limited to equipment rooms where moving or replacing equipment could physically damage the EMT.
 d. Do not use in hazardous areas.
 e. Do not use outdoors.
 f. Do not use in fire pump rooms.

3.1.3.2 Restrictions Applicable to Nonmetallic Conduit
 a. PVC Schedule 40 and PVC Schedule 80
 (1) Do not use in areas where subject to severe physical damage, including but not limited to, mechanical equipment rooms, electrical equipment rooms, hospitals, power plants, missile magazines, and other such areas.
 (2) Do not use in penetrating fire-rated walls or partitions, or fire-rated floors.
 (3) Do not use above grade, except where allowed in this section for rising through floor slab or indicated otherwise.

3.1.3.3 Restrictions Applicable to Flexible Conduit
 Use only as specified in paragraph entitled "Flexible Connections."

3.1.3.4 Service Entrance Conduit, Underground
 PVC, Type-EPC 40. Underground portion shall be encased in minimum of 3 in of concrete and shall be installed minimum 18 in below slab or grade.

3.1.3.5 Underground Conduit Other Than Service Entrance
 Type EPC-40.

3.1.4 Conduit Installation
 Unless indicated otherwise, conceal conduit under floor slabs and within finished walls, ceilings, and floors. Keep conduit minimum 6 in away from parallel runs of flues and steam or hot water pipes. Install conduit parallel with or at right angles to ceilings, walls, and structural members where located above accessible ceilings and where conduit will be visible after completion of project.

3.1.4.1 Conduit Support
 Support conduit by pipe straps, wall brackets, hangers, or ceiling trapeze. Fasten by wood screws to wood; by toggle bolts on hollow masonry units; by
concrete inserts or expansion bolts on concrete or brick; and by machine screws, welded threaded studs, or spring-tension clamps on steel work. Threaded C-clamps may be used on rigid steel conduit only. Do not weld conduits or pipe straps to steel structures. Load applied to fasteners shall not exceed one-fourth proof test load. Fasteners attached to concrete ceiling shall be vibration resistant and shock-resistant. Holes cut to depth of more than 1 1/2 in in reinforced concrete beams or to depth of more than 3/4 in in concrete joints shall not cut main reinforcing bars. Fill unused holes. In partitions of light steel construction, use sheet metal screws. In suspended-ceiling construction, run conduit above ceiling. Do not support conduit by ceiling support system. Installation shall be coordinated with above-ceiling mechanical systems to assure maximum accessibility to all systems. Spring-steel fasteners may be used for lighting branch circuit conduit supports in suspended ceilings in dry locations.

3.1.4.2 Directional Changes in Conduit Runs

Make changes in direction of runs with symmetrical bends or cast-metal fittings. Make field-made bends and offsets with hickey or conduit-bending machine. Do not install crushed or deformed conduits. Avoid trapped conduits. Prevent plaster, dirt, or trash from lodging in conduits, boxes, fittings, and equipment during construction. Free clogged conduits of obstructions.

3.1.4.3 Pull Wire

Install pull wires in empty conduits. Pull wire shall be plastic having minimum 200-lb tensile strength. Leave minimum 36 in of slack at each end of pull wire.

3.1.4.4 Locknuts and Bushings

Fasten conduits to sheet metal boxes and cabinets with two locknuts where required by NFPA 70, where insulated bushings are used, and where bushings cannot be brought into firm contact with the box; otherwise, use at least minimum single locknut and bushing. Locknuts shall have sharp edges for digging into wall of metal enclosures. Install bushings on ends of conduits, and provide insulating type where required by NFPA 70.

3.1.4.5 Flexible Connections

Provide flexible steel conduit between 3 and 6 ft in length for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for motors. Install flexible conduit to allow 20 percent slack. Minimum flexible steel conduit size shall be 1/2 in diameter. Provide liquidtight flexible conduit in wet and damp locations for equipment subject to vibration, noise transmission, movement or motors. Provide separate ground conductor across flexible connections.

3.1.5 Cable Tray Installation

Install and ground per NFPA 70, Article 318. Install cable trays parallel with or at right angles to ceilings, walls, and structural members. Support in accordance with manufacturer recommendations but at not more than 6 ft intervals. Adjacent cable tray sections shall be bonded together by connector plates of an identical type as the cable tray sections. For grounding of cable tray system provide No. 2 AWG bare copper wire throughout cable tray system, and bond to each section. Terminate cable
trays 10 in from both sides of smoke and fire partitions. Conductors run through smoke and fire partitions shall be installed in 4 in rigid steel conduits with grounding bushings, extending 12 in beyond each side of partitions. Seal conduit on both ends to maintain smoke and fire ratings of partitions. Penetrations shall be firestopped. Provide supports to resist forces of 0.5 times the equipment weight in any direction and 1.5 times the equipment weight in the downward direction.

3.1.6 Boxes, Outlets, and Supports

Provide boxes in wiring and raceway systems wherever required for pulling of wires, making connections, and mounting of devices or fixtures. Boxes for metallic raceways shall be cast-metal, hub-type when located in wet locations, when surface mounted on outside of exterior surfaces, and when specifically indicated. Boxes in other locations shall be sheet steel. Each box shall have volume required by NFPA 70 for number of conductors enclosed in box. Boxes for mounting lighting fixtures shall be minimum 4 in square, or octagonal, except that smaller boxes may be installed as required by fixture configurations, as approved. Provide gaskets for cast-metal boxes installed in wet locations and boxes installed flush with outside of exterior surfaces. Provide separate boxes for flush or recessed fixtures when required by fixture terminal operating temperature; fixtures shall be readily removable for access to boxes unless ceiling access panels are provided. Support boxes and pendants for surface-mounted fixtures on suspended ceilings independently of ceiling supports. Fasten boxes and supports with wood screws on wood, with bolts and expansion shields on concrete or brick, with toggle bolts on hollow masonry units, and with machine screws or welded studs on steel. Threaded studs driven in by powder charge and provided with lockwashers and nuts may be used in lieu of wood screws, expansion shields, or machine screws. In open overhead spaces, cast boxes threaded to raceways need not be separately supported except where used for fixture support; support sheet metal boxes directly from building structure or by bar hangers.

3.1.6.1 Boxes

Boxes for use with raceway systems shall be minimum 1 1/2 in deep, except where shallower boxes required by structural conditions are approved. Boxes for other than lighting fixture outlets shall be minimum 4 in square, except that 4 by 2 in boxes may be used where only one raceway enters outlet.

3.1.6.2 Extension Rings

Extension rings are not permitted for new construction. Use only on existing boxes in concealed conduit systems where wall is furred out for new finish.

3.1.7 Mounting Heights

Mount panelboards, enclosed circuit breakers, motor controller and disconnecting switches so height of operating handle at its highest position is maximum 78 in above floor. Mount lighting switches 48 in above finished floor, receptacles 18 in above finished floor unless otherwise indicated, and other devices as indicated.

3.1.8 Conductor Identification

Provide conductor identification within each enclosure where tap, splice,
or termination is made. For conductors No. 6 AWG and smaller diameter, color coding shall be by factory-applied, color-impregnated insulation. For conductors No. 4 AWG and larger diameter, color coding shall be by plastic-coated, self-sticking markers; colored nylon cable ties and plates; or heat shrink-type sleeves.

3.1.9 Splices

Make splices in accessible locations. Make splices in conductors No. 10 AWG and smaller diameter with insulated, pressure-type connector. Make splices in conductors No. 8 AWG and larger diameter with solderless connector, and cover with insulation material equivalent to conductor insulation.

3.1.10 Covers and Device Plates

Install with edges in continuous contact with finished wall surfaces without use of mats or similar devices. Plaster fillings are not permitted. Install plates with alignment tolerance of 1/16 in. Use of sectional-type device plates are not permitted. Provide gasket for plates installed in wet locations.

3.1.11 Electrical Penetrations

Seal openings around electrical penetrations through fire resistance-rated walls, partitions, floors, or ceilings.

3.1.12 Grounding and Bonding

In accordance with NFPA 70. Ground exposed, non-current-carrying metallic parts of electrical equipment, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, and neutral conductor of wiring systems.

3.1.12.1 Resistance

Maximum resistance-to-ground of grounding system shall not exceed 5 ohms under dry conditions. Where resistance obtained exceeds 5 ohms, contact Contracting Officer for further instructions.

3.1.13 Equipment Connections

Provide power wiring for the connection of motors and control equipment under this section of the specification. Except as otherwise specifically noted or specified, automatic control wiring, control devices, and protective devices within the control circuitry are not included in this section of the specifications but shall be provided under the section specifying the associated equipment.

3.1.14 Repair of Existing Work

Repair of existing work, demolition, and modification of existing electrical distribution systems shall be performed as follows:

3.1.14.1 Workmanship

Lay out work in advance. Exercise care where cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings, or other surfaces is necessary for proper installation, support, or anchorage of conduit,
raceways, or other electrical work. Repair damage to buildings, piping, and equipment using skilled craftsmen of trades involved.

3.1.14.2 Existing Concealed Wiring to be Removed

Existing concealed wiring to be removed shall be disconnected from its source. Remove conductors; cut conduit flush with floor, underside of floor, and through walls; and seal openings.

3.1.14.3 Removal of Existing Electrical Distribution System

Removal of existing electrical distribution system equipment shall include equipment's associated wiring, including conductors, cables, exposed conduit, surface metal raceways, boxes, and fittings, back to equipment's power source as indicated.

3.2 FIELD QUALITY CONTROL

Furnish test equipment and personnel and submit written copies of test results. Give Contracting Officer 5 working days notice prior to each test.

3.2.1 Devices Subject to Manual Operation

Each device subject to manual operation shall be operated at least five times, demonstrating satisfactory operation each time.

3.2.2 600-Volt Wiring Test

Test wiring rated 600 volt and less to verify that no short circuits or accidental grounds exist. Perform insulation resistance tests on wiring No. 6 AWG and larger diameter using instrument which applies voltage of approximately 500 volts to provide direct reading of resistance. Minimum resistance shall be 250,000 ohms.

3.2.3 Transformer Tests

Perform the standard, not optional, tests in accordance with the Inspection and Test Procedures for transformers, dry type, air-cooled, 600 volt and below; as specified in NETA ATS. Measure primary and secondary voltages for proper tap settings. Tests need not be performed by a recognized independent testing firm or independent electrical consulting firm.

3.2.4 Ground-Fault Receptacle Test

Test ground-fault receptacles with a "load" (such as a plug in light) to verify that the "line" and "load" leads are not reversed.

3.2.5 Grounding System Test

Test grounding system to ensure continuity, and that resistance to ground is not excessive. Test each ground rod for resistance to ground before making connections to rod; tie grounding system together and test for resistance to ground. Make resistance measurements in dry weather, not earlier than 48 hours after rainfall. Submit written results of each test to Contracting Officer, and indicate location of rods as well as resistance and soil conditions at time measurements were made.

-- End of Section --
This Page is Intentionally Left Blank
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE 519 (2014) Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA ICS 6 (1993; R 2011) Enclosures

NEMA ICS 7 (2014) Adjustable-Speed Drives

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-STD-461 (2015; Rev G) Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

47 CFR 15 Radio Frequency Devices
1.2 RELATED REQUIREMENTS

Section 26 00 00 BASIC ELECTRICAL MATERIALS AND METHODS, and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM apply to this section with additions and modifications specified herein.

1.3 SYSTEM DESCRIPTION

1.3.1 Performance Requirements

1.3.1.1 Electromagnetic Interference Suppression

Computing devices, as defined by 47 CFR 15, MIL-STD-461 rules and regulations, shall be certified to comply with the requirements for class A computing devices and labeled as set forth in part 15.

1.3.1.2 Electromechanical and Electrical Components

Electrical and electromechanical components of the Variable Frequency Drive (VFD) shall not cause electromagnetic interference to adjacent electrical or electromechanical equipment while in operation.

1.3.2 Electrical Requirements

1.3.2.1 Power Line Surge Protection

IEEE C62.41.1 and IEEE C62.41.2, IEEE 519 Control panel shall have surge protection, included within the panel to protect the unit from damaging transient voltage surges. Surge arrester shall be mounted near the incoming power source and properly wired to all three phases and ground. Fuses shall not be used for surge protection.

1.3.2.2 Sensor and Control Wiring Surge Protection

I/O functions as specified shall be protected against surges induced on control and sensor wiring installed outdoors and as shown. The inputs and outputs shall be tested in both normal mode and common mode using the following two waveforms:

a. A 10 microsecond by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 microsecond by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.

1.4 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
SD-02 Shop Drawings
Schematic diagrams
Interconnecting diagrams
Installation drawings
Submit drawings for government approval prior to equipment construction or integration. Modifications to original drawings made during installation shall be immediately recorded for inclusion into the as-built drawings.

SD-03 Product Data
Variable frequency drives
Wires and cables
Equipment schedule
Include data indicating compatibility with motors being driven.

SD-06 Test Reports
VFD Test
Performance Verification Tests
Endurance Test

SD-08 Manufacturer's Instructions
Installation instructions

SD-09 Manufacturer's Field Reports
VFD Factory Test Plan
Factory test results

SD-10 Operation and Maintenance Data
Variable frequency drives, Data Package 4
Submit in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA. Provide service and maintenance information including preventive maintenance, assembly, and disassembly procedures. Include electrical drawings from electrical general sections. Submit additional information necessary to provide complete operation, repair, and maintenance information, detailed to the smallest replaceable unit. Include copies of as-built submittals. Provide routine preventative maintenance instructions, and equipment required. Provide instructions on how to modify program settings, and modify the control program. Provide instructions on drive adjustment, trouble-shooting, and configuration. Provide instructions on process tuning and system calibration.
1.5 QUALITY ASSURANCE

1.5.1 Schematic Diagrams

Show circuits and device elements for each replaceable module. Schematic diagrams of printed circuit boards are permitted to group functional assemblies as devices, provided that sufficient information is provided for government maintenance personnel to verify proper operation of the functional assemblies.

1.5.2 Interconnecting Diagrams

Show interconnections between equipment assemblies, and external interfaces, including power and signal conductors. Include for enclosures and external devices.

1.5.3 Installation Drawings

Show floor plan of each site, with V.F.D.'s and motors indicated. Indicate ventilation requirements, adequate clearances, and cable routes.

1.5.4 Equipment Schedule

Provide schedule of equipment supplied. Schedule shall provide a cross reference between manufacturer data and identifiers indicated in shop drawings. Schedule shall include the total quantity of each item of equipment supplied. For complete assemblies, such as VFD's, provide the serial numbers of each assembly, and a sub-schedule of components within the assembly. Provide recommended spare parts listing for each assembly or component.

1.5.5 Installation instructions

Provide installation instructions issued by the manufacturer of the equipment, including notes and recommendations, prior to shipment to the site. Provide operation instructions prior to acceptance testing.

1.5.6 Factory Test Results

Document test results and submit to government within 7 working days after completion of test.

1.6 DELIVERY AND STORAGE

Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants.

1.7 WARRANTY

The complete system shall be warranted by the manufacturer for a period of one year, or the contracted period of any extended warrantee agreed upon by the contractor and the Government, after successful completion of the acceptance test. Any component failing to perform its function as specified and documented shall be repaired or replaced by the contractor at no additional cost to the Government. Items repaired or replaced shall be warranted for an additional period of at least one year from the date that it becomes functional again, as specified in the FAR CLAUSE 52.246-21.
1.8 MAINTENANCE

1.8.1 Spare Parts

Manufacturers provide spare parts in accordance with recommended spare parts list.

1.8.2 Maintenance Support

During the warranty period, the Contractor shall provide on-site, on-call maintenance services by Contractor's personnel on the following basis: The service shall be on a per-call basis with 36 hour response. Contractor shall support the maintenance of all hardware and software of the system. Various personnel of different expertise shall be sent on-site depending on the nature of the maintenance service required. Costs shall include travel, local transportation, living expenses, and labor rates of the service personnel while responding to the service request. The provisions of this Section are not in lieu of, nor relieve the Contractor of, warranty responsibilities covered in this specification. Should the result of the service request be the uncovering of a system defect covered under the warranty provisions, all costs for the call, including the labor necessary to identify the defect, shall be borne by the Contractor.

PART 2 PRODUCTS

2.1 VARIABLE FREQUENCY DRIVES (VFD)

Provide frequency drive to control the speed of induction motor(s). The VFD shall include the following minimum functions, features and ratings.

a. Input circuit breaker per UL 489 with a minimum of 10,000 amps symmetrical interrupting capacity and door interlocked external operator.

b. A converter stage per UL 508C shall change fixed voltage, fixed frequency, ac line power to a fixed dc voltage. The converter shall utilize a full wave bridge design incorporating diode rectifiers. Silicon Controlled Rectifiers (SCR) are not acceptable. The converter shall be insensitive to three phase rotation of the ac line and shall not cause displacement power factor of less than .95 lagging under any speed and load condition.

c. An inverter stage shall change fixed dc voltage to variable frequency, variable voltage, ac for application to a standard NEMA design B squirrel cage motor. The inverter shall be switched in a manner to produce a sine coded pulse width modulated (PWM) output waveform.

d. The VFD shall be capable of supplying 120 percent of rated full load current for one minute at maximum ambient temperature.

e. The VFD shall be designed to operate from a 208 volt, plus or minus 10 percent, three phase, 60 Hz supply, and control motors with a corresponding voltage rating.

f. Acceleration and deceleration time shall be independently adjustable from one second to 60 seconds.

g. Adjustable full-time current limiting shall limit the current to a preset value which shall not exceed 120 percent of the controller rated
The current limiting action shall maintain the V/Hz ratio constant so that variable torque can be maintained. Short time starting override shall allow starting current to reach 175 percent of controller rated current to maximum starting torque.

h. The controllers shall be capable of producing an output frequency over the range of 3 Hz to 60 Hz (20 to one speed range), without low speed cogging. Over frequency protection shall be included such that a failure in the controller electronic circuitry shall not cause frequency to exceed 110 percent of the maximum controller output frequency selected.

i. Minimum and maximum output frequency shall be adjustable over the following ranges: 1) Minimum frequency 3 Hz to 50 percent of maximum selected frequency; 2) Maximum frequency 40 Hz to 60 Hz.

j. The controller efficiency at any speed shall not be less than 96 percent.

k. The controllers shall be capable of being restarted into a motor coasting in the forward direction without tripping.

l. Protection of power semiconductor components shall be accomplished without the use of fast acting semiconductor output fuses. Subjecting the controllers to any of the following conditions shall not result in component failure or the need for fuse replacement:

1. Short circuit at controller output
2. Ground fault at controller output
3. Open circuit at controller output
4. Input undervoltage
5. Input overvoltage
6. Loss of input phase
7. AC line switching transients
8. Instantaneous overload
9. Sustained overload exceeding 115 percent of controller rated current
10. Over temperature
11. Phase reversal

m. Solid state motor overload protection shall be included such that current exceeding an adjustable threshold shall activate a 60 second timing circuit. Should current remain above the threshold continuously for the timing period, the controller will automatically shut down.

n. A slip compensation circuit shall be included which will sense changing motor load conditions and adjust output frequency to provide speed regulation of NEMA B motors to within plus or minus 0.5 percent of maximum speed without the necessity of a tachometer generator.
o. The VFD shall be factory set for manual restart after the first protective circuit trip for malfunction (overcurrent, undervoltage, overvoltage or overtemperature) or an interruption of power. The VFD shall be capable of being set for automatic restart after a selected time delay. If the drive faults again within a specified time period (adjustable 0-60 seconds), a manual restart will be required.

p. The VFD shall include external fault reset capability. All the necessary logic to accept an external fault reset contact shall be included.

q. Provide critical speed lockout circuitry to prevent operating at frequencies with critical harmonics that cause resonant vibrations. The VFD shall have a minimum of three user selectable bandwidths.

r. Provide the following operator control and monitoring devices mounted on the front panel of the VFD:
 4. Drive run power light.
 5. Local display.

s. Provide properly sized NEMA rated by-pass and isolation contactors to enable operation of motor in the event of VFD failure. Mechanical and electrical interlocks shall be installed between the by-pass and isolation contactors. Provide a selector switch and transfer delay timer.

2.2 ENCLOSURES

Provide equipment enclosures conforming to NEMA 250, NEMA ICS 7, NEMA ICS 6.

2.3 WIRES AND CABLES

All wires and cables shall conform to NEMA 250, NEMA ICS 7, NFPA 70.

2.4 NAMEPLATES

Nameplates external to NEMA enclosures shall conform with the requirements of Section 26 00 00 BASIC ELECTRICAL MATERIALS AND METHODS. Nameplates internal to enclosures shall be manufacturer's standard, with the exception that they must be permanent.

2.5 SOURCE QUALITY CONTROL

2.5.1 VFD Factory Test Plan

To ensure quality, each VFD shall be subject to a series of in-plant quality control inspections before approval for shipment from the manufacturer's facilities. Provide test plans and test reports.
PART 3 EXECUTION

3.1 INSTALLATION

Per NEMA ICS 3.1, install equipment in accordance with the approved manufacturer's printed installation drawings, instructions, wiring diagrams, and as indicated on project drawings and the approved shop drawings. A field representative of the drive manufacturer shall supervise the installation of all equipment, and wiring.

3.2 FIELD QUALITY CONTROL

Specified products shall be tested as a system for conformance to specification requirements prior to scheduling the acceptance tests. Contractor shall conduct performance verification tests in the presence of Government representative, observing and documenting complete compliance of the system to the specifications. Contractor shall submit a signed copy of the test results, certifying proper system operation before scheduling tests.

3.2.1 VFD Test

A proposed test plan shall be submitted to the contracting officer at least 28 calendar days prior to proposed testing for approval. The tests shall conform to NEMA ICS 1, NEMA ICS 7, and all manufacturer's safety regulations. The Government reserves the right to witness all tests and review any documentation. The contractor shall inform the Government at least 14 working days prior to the dates of testing. Contractor shall provide video tapes, if available, of all training provided to the Government for subsequent use in training new personnel. All training aids, texts, and expendable support material for a self-sufficient presentation shall be provided, the amount of which to be determined by the contracting officer.

3.2.2 Performance Verification Tests

"Performance Verification Test" plan shall provide the step by step procedure required to establish formal verification of the performance of the VFD. Compliance with the specification requirements shall be verified by inspections, review of critical data, demonstrations, and tests. The Government reserves the right to witness all tests, review data, and request other such additional inspections and repeat tests as necessary to ensure that the system and provided services conform to the stated requirements. The contractor shall inform the Government 14 calendar days prior to the date the test is to be conducted.

3.2.3 Endurance Test

Immediately upon completion of the performance verification test, the endurance test shall commence. The system shall be operated at varying rates for not less than 192 consecutive hours, at an average effectiveness level of .9998, to demonstrate proper functioning of the complete PCS. Continue the test on a day-to-day basis until performance standard is met. During the endurance test, the contractor shall not be allowed in the building. The system shall respond as designed.
3.3 DEMONSTRATION

3.3.1 Training

Coordinate training requirements with the Contracting Officer.

3.3.1.1 Instructions to Government Personnel

Provide the services of competent instructors who will give full instruction to designated personnel in operation, maintenance, calibration, configuration, and programming of the complete control system. Orient the training specifically to the system installed. Instructors shall be thoroughly familiar with the subject matter they are to teach. The Government personnel designated to attend the training will have a high school education or equivalent. The number of training days of instruction furnished shall be as specified. A training day is defined as eight hours of instruction, including two 15-minute breaks and excluding lunch time; Monday through Friday. Provide a training manual for each student at each training phase which describes in detail the material included in each training program. Provide one additional copy for archiving. Provide equipment and materials required for classroom training. Provide a list of additional related courses, and offers, noting any courses recommended. List each training course individually by name, including duration, approximate cost per person, and location of course. Unused copies of training manuals shall be turned over to the Government at the end of last training session.

3.3.1.2 Operating Personnel Training Program

Provide one 2 hour training session at the site at a time and place mutually agreeable between the Contractor and the Government. Provide session to train 4 operation personnel in the functional operations of the system and the procedures that personnel will follow in system operation. This training shall include:

a. System overview
b. General theory of operation
c. System operation
d. Alarm formats
e. Failure recovery procedures
f. Troubleshooting

3.3.1.3 Engineering/Maintenance Personnel Training

Accomplish the training program as specified. Training shall be conducted on site at a location designated by the Government. Provide a one day training session to train 4 engineering personnel in the functional operations of the system. This training shall include:

a. System overview
b. General theory of operation
c. System operation
d. System configuration

e. Alarm formats

f. Failure recovery procedures
g. Troubleshooting and repair

h. Maintenance and calibration

i. System programming and configuration

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A 641/A 641M (1998) Zinc-Coated (Galvanized) Carbon Steel Wire

ILLUMINATING ENGINEERING SOCIETY OF NORTH AMERICA (IES)

IES HB-10 (2011) IES Lighting Handbook

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA C78.81 (2001) Electric Lamps - Double-capped Fluorescent Lamps
NEMA C78.901 (2001) Electric Lamps - Single Base Fluorescent Lamps
NEMA C82.11 (2002) High-Frequency Fluorescent Lamp Ballasts
NEMA ICS 2 (2000; R 2005; Errata 2008) Standard for Controllers, Contactors, and Overload Relays Rated 600 V
NEMA ICS 6 (1993; R 2011) Enclosures
NEMA LL 1 (1997; R 2002) Procedures for Linear Fluorescent Lamp Sample Preparation and the TCLP

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code
UNDERWRITERS LABORATORIES (UL)

UL 773A (1995; R 1999) Nonindustrial Photoelectric Switches for Lighting Control

UL 935 (2001; Bul. 2001) Fluorescent-Lamp Ballasts

1.2 RELATED REQUIREMENTS

Section 26 00 00, "Basic Electrical Materials and Methods," applies to this section, with the additions and modifications specified herein. Materials not considered to be lighting equipment or lighting fixture accessories are specified in Section 26 51 00, "Interior Distribution System." Lighting fixtures and accessories mounted on exterior surfaces of buildings are specified in this section.

1.3 DEFINITIONS

1.3.1 Average Life

Time after which 50 percent will have failed and 50 percent will have survived under normal conditions.

1.3.2 Total Harmonic Distortion (THD)

The root mean square (RMS) of all the harmonic components divided by the total fundamental current.

1.4 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

Data, drawings, and reports shall employ the terminology, classifications, and methods prescribed by the IES HB-10, as applicable, for the lighting system specified.

SD-03 Product Data
 Fluorescent lighting fixtures
 Fluorescent electronic ballasts
 Fluorescent lamps
 Lighting contactor
 Time switch
 Photocell switch
Exit signs
Emergency lighting equipment
Occupancy sensors

SD-06 Test Reports
Operating test
Submit test results as stated in paragraph entitled "Field Quality Control."

SD-10 Operation and Maintenance Data
Lighting Control System, Data Package 5
Submit operation and maintenance data in accordance with Section 01 78 23, "Operation and Maintenance Data" and as specified herein, showing all control modules, control zones, occupancy sensors, light fixtures, and all interconnecting control wire, conduit, and associated hardware.

Electronic Ballast Warranty

1.5 QUALITY ASSURANCE

1.5.1 Fluorescent Electronic Ballasts
Submit ballast catalog data as required in the paragraph entitled "Fluorescent Lamp Electronic Ballasts" contained herein. As an option, submit the fluorescent fixture manufacturer's electronic ballast specification information in lieu of the actual ballast manufacturer's catalog data. This information shall include published specifications and sketches, which covers the information required by the paragraph entitled "Fluorescent Lamp Electronic Ballasts" herein. This information may be supplemented by catalog data if required, and shall contain a list of vendors with vendor part numbers.

1.5.2 Lighting Control System
Submit operation and maintenance manuals for lighting control systems that provide basic data relating to the design, operation, and maintenance of the lighting control system for the building. This shall include:

a. Schematic diagram of the lighting control system.

b. Manufacturers' operating and maintenance manuals on active lighting control equipment. Lighting control equipment shall include, if indicated: occupancy sensors, power packs, dimming ballasts, and light level sensors.

1.6 ELECTRONIC BALLAST WARRANTY
Furnish the electronic ballast manufacturer's warranty. The warranty period shall not be less than 5 years from the date of manufacture of the electronic ballast. Ballast assembly in the lighting fixture, transportation, and on-site storage shall not exceed 12 months, thereby
permitting 4 years of the ballast 5 year warranty to be in service and energized. The warranty shall state that the malfunctioning ballast shall be exchanged by the manufacturer and promptly shipped to the using Government facility. The replacement ballast shall be identical to, or an improvement upon, the original design of the malfunctioning ballast.

PART 2 PRODUCTS

2.1 FLUORESCENT LIGHTING FIXTURES

UL 1598. Fluorescent fixtures shall have electronic ballasts unless specifically indicated otherwise.

2.1.1 Fluorescent Lamp Electronic Ballasts

The electronic ballast shall as a minimum meet the following characteristics:

a. Ballast shall comply with UL 935, NEMA C82.11, and NFPA 70 unless specified otherwise. Ballast shall provide transient immunity as recommended by IEEE C62.41. Ballast shall be designed for the wattage of the lamps used in the indicated application. Ballasts shall be designed to operate on the voltage system to which they are connected.

b. Power factor shall be 0.95 (minimum).

c. Ballast shall operate at a frequency of 20,000 Hertz (minimum). Ballast shall be compatible with and not cause interference with the operation of occupancy sensors or other infrared control systems. Provide ballasts operating at or above 40,000 Hertz where available.

d. Ballast shall have light regulation of plus or minus 10 percent lumen output with a plus or minus 10 percent input voltage regulation. Ballast shall have 10 percent flicker (maximum) using any compatible lamp.

e. Ballast shall be UL listed Class P with a sound rating of "A."

f. Ballast shall have circuit diagrams and lamp connections displayed on the ballast.

g. Ballasts shall be instant start unless otherwise indicated. Ballasts shall be programmed start where indicated. Instant start ballasts shall operate lamps in a parallel circuit configuration that permits the operation of remaining lamps if one or more lamps fail or are removed. Programmed start ballasts may operate lamps in a series circuit configuration. Provide series/parallel wiring for programmed start ballasts where available.

h. Ballasts for compact fluorescent fixtures shall be programmed start.

i. Ballasts for T-5 and smaller lamps shall have end-of-life protection circuits as required by NEMA C78.81 and NEMA C78.901 as applicable.

j. Ballast shall be capable of starting and maintaining operation at a minimum of 0 degrees F unless otherwise indicated.

k. Electronic ballast shall have a full replacement warranty of 5 years from date of manufacture as specified in paragraph entitled "Electronic
Ballast Warranty" herein.

2.1.1.1 T-8 Lamp Ballast
 a. Total harmonic distortion (THD): Shall be 20 percent (maximum).
 b. Input wattage.
 1. 62 watts (maximum) when operating two F32T8 lamps
 2. 92 watts (maximum) when operating three F32T8 lamp

2.1.1.2 F17T8 Lamp Ballast
 a. Total harmonic distortion (THD): Shall be 25 percent (maximum).
 b. Input wattage:
 1. 34 watts (maximum) when operating two F17T8 lamps.

2.1.1.3 T-5 Long Twin Tube Lamp Ballast
 a. Total harmonic distortion (THD): Shall not be greater than 25 percent
 when operating one lamp, 15 percent when operating two lamps, and 20
 percent when operating three lamps.
 b. Input wattage:
 1. 45 watts (maximum) when operating one F40 T-5 lamp
 2. 74 watts (maximum) when operating two F40 T-5 lamps
 3. 105 watts (maximum) when operating three F40 T-5 lamps

2.1.2 Fluorescent Lamps
 a. T-8 rapid start low mercury lamps shall be rated 32 watts (maximum),
 2800 initial lumens (minimum), CRI of 75 (minimum), color temperature
 of 3500 K, and an average rated life of 20,000 hours. Low mercury
 lamps shall have passed the EPA Toxicity Characteristic Leachate
 Procedure (TCLP) for mercury by using the lamp sample preparation
 procedure described in NEMA LL 1.
 b. T-8 rapid start lamp, 17 watt (maximum), nominal length of 24 inches,
 1300 initial lumens, CRI of 75 (minimum), color temperature of 3500 K,
 and an average rated life of 20,000 hours.
 c. Compact fluorescent lamps shall be: CRI 80, minimum, 3500 K, 10,000
 hours average rated life, and as follows:
 1. T-4, twin tube, rated as indicated.
 2. T-4, double twin tube, rated as indicated.

Average rated life is based on 3 hours operating per start.
2.1.3 Compact Fluorescent Fixtures

Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballasts integral to the fixture. Providing assemblies designed to retrofit incandescent fixtures is prohibited except when specifically indicated for renovation of existing fixtures. Fixtures shall use lamps as indicated.

2.2 LIGHTING CONTACTOR

NEMA ICS 2, mechanically held contactor. Contacts shall be rated 120 volts, 20 amperes, and 2 poles. Coils shall be rated 120 volts. Provide in NEMA 1 enclosure conforming to NEMA ICS 6. Contactor shall have silver alloy double-break contacts. Provide contactor with hand-off-automatic selector switch.

2.3 TIME SWITCH

Astronomic dial type or electronic type, arranged to turn "ON" at sunset and turn "OFF" at predetermined time between 8:30 p.m. and 2:30 a.m. or sunrise, automatically changing the settings each day in accordance with seasonal changes of sunset and sunrise. Provide switch rated 120 volts, having automatically wound spring mechanism or capacitor, to maintain accurate time for a minimum of 15 hours following power failure. Provide time switch with a manual on-off bypass switch. Housing for the time switch shall be surface-mounted, NEMA 1 enclosure conforming to NEMA ICS 6.

2.4 PHOTOCCELL SWITCH

UL 773 or UL 773A, hermetically sealed cadmium-sulfide or silicon diode type cell rated 120 volts ac, 60 Hz with single pole double-throw (SPDT) contacts for control of mechanically held contactors, rated 1000W. Switch shall turn on at or below 3 footcandles and off at 2 to 10 footcandles. A time delay shall prevent accidental switching from transient light sources. Provide switch:

a. In a cast weatherproof aluminum housing with adjustable window slide, rated 1800 VA, minimum.

2.5 EXIT SIGNS

UL 924, NFPA 70, and NFPA 101. Exit signs shall be self-powered type.

2.5.1 Self-Powered LED Type Exit Signs (Battery Backup)

Provide with automatic power failure device, test switch, pilot light, integral self-testing module and fully automatic high/low trickle charger in a self-contained power pack. Battery shall be sealed electrolyte type, shall operate unattended, and require no maintenance, including no additional water, for a period of not less than 5 years. LED exit sign shall have emergency run time of 1 1/2 hours (minimum). The light emitting diodes shall have rated lamp life of 70,000 hours (minimum).

2.5.2 Remote-Powered Exit Signs

Provide remote ac/dc exit signs with provisions for wiring to external ac and dc power sources. Provide signs with a minimum of two ac lamps for normal illumination and a minimum of two dc lamps for emergency lighting.
2.6 EMERGENCY LIGHTING EQUIPMENT

UL 924, NFPA 70, and NFPA 101. Provide lamps in wattage indicated.

2.6.1 Emergency Lighting Unit

Provide as indicated. 2.7 OCCUPANCY SENSORS

UL listed. Occupancy sensors and power packs shall be designed to operate on the voltage indicated. Sensors and power packs shall have circuitry that only allows load switching at or near zero current crossing of supply voltage. Occupancy sensor mounting as indicated. Sensor shall have an LED occupant detection indicator. Sensor shall have adjustable sensitivity and adjustable delayed-off time range of 5 minutes to 15 minutes, minimum. Wall mounted sensors shall be white. Ceiling mounted sensors shall have 360 degree coverage unless otherwise indicated.

a. Ultrasonic/Infrared Combination Sensor

Occupancy detection to turn lights on requires both ultrasonic and infrared sensor detection. Lights shall remain on if either the ultrasonic or infrared sensor detects movement. Infrared sensor shall have lens selected for indicated usage and daylight filter to prevent short wavelength infrared interference. Ultrasonic sensor frequency shall be crystal controlled.

2.8 SUPPORT HANGERS FOR LIGHTING FIXTURES IN SUSPENDED CEILINGS

2.8.1 Wires

ASTM A 641/A 641M, galvanized regular coating, soft temper, 0.1055 inches in diameter (12 gage).

2.8.2 Wires, for Humid Spaces

ASTM A 580/A 580M, composition 302 or 304, annealed stainless steel 0.1055 inches in diameter (12 gage).

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Lamps

Lamps of the type, wattage, and voltage rating indicated shall be delivered to the project in the original cartons and installed just prior to project completion. Lamps installed and used for working light during construction shall be replaced prior to turnover to the Government if more than 15 percent of their rated life has been used. Lamps shall be tested for proper operation prior to turn-over and shall be replaced if necessary with new lamps from the original manufacturer. Provide 10 percent spare lamps of each type from the original manufacturer.

3.1.2 Lighting Fixtures

Set lighting fixtures plumb, square, and level with ceiling and walls, in alignment with adjacent lighting fixtures, and secure in accordance with manufacturers' directions and approved drawings. Installation shall meet
requirements of NFPA 70. Mounting heights specified or indicated shall be to the bottom of fixture for ceiling-mounted fixtures and to center of fixture for wall-mounted fixtures. Obtain approval of the exact mounting for lighting fixtures on the job before commencing installation and, where applicable, after coordinating with the type, style, and pattern of the ceiling being installed. Recessed and semi-recessed fixtures shall be independently supported from the building structure by a minimum of four wires per fixture and located near each corner of each fixture. Ceiling grid clips are not allowed as an alternative to independently supported light fixtures. Round fixtures or fixtures smaller in size than the ceiling grid shall be independently supported from the building structure by a minimum of four wires per fixture spaced approximately equidistant around the fixture. Do not support fixtures by ceiling acoustical panels. Where fixtures of sizes less than the ceiling grid are indicated to be centered in the acoustical panel, support such fixtures independently and provide at least two 3/4 inch metal channels spanning, and secured to, the ceiling tees for centering and aligning the fixture. Provide wires for lighting fixture support in this section. Lighting fixtures installed in suspended ceilings shall also comply with the requirements of Section 09 51 00, "Acoustical Ceilings."

3.1.3 Exit Signs and Emergency Lighting Units

Wire exit signs and emergency lighting units ahead of the switch to the normal lighting circuit located in the same room or area.

3.1.4 Photocell Switch Aiming

Aim switch according to manufacturer's recommendations.

3.1.5 Occupancy Sensor

Provide quantity of sensor units indicated as a minimum. Provide additional units to give full coverage over controlled area. Full coverage shall provide hand and arm motion detection for office and administration type areas and walking motion for industrial areas, warehouses, storage rooms and hallways. Locate the sensor(s) as indicated and in accordance with the manufacturer's recommendations to maximize energy savings and to avoid nuisance activation and deactivation due to sudden temperature or airflow changes and usage. Set sensor "on" duration to 15 minutes.

3.2 FIELD QUALITY CONTROL

Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.

3.2.1 Occupancy Sensor

Test sensors for proper operation. Observe for light control over entire area being covered.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D709 (2013) Laminated Thermosetting Materials

ELECTRONIC COMPONENTS ASSOCIATION (ECA)

ECA EIA/ECA 310 (2005) Cabinets, Racks, Panels, and Associated Equipment

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INSULATED CABLE ENGINEERS ASSOCIATION (ICEA)

ICEA S-83-596 (2011) Indoor Optical Fiber Cables
ICEA S-90-661 (2012) Category 3, 5, & 5e Individually Unshielded Twisted Pair Indoor Cables for Use in General Purpose and LAN Communications Wiring Systems Technical Requirements

NATIONAL ELECTRICAL CONTRACTORS ASSOCIATION (NECA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA WC 66 (2013) Performance Standard for Category 6 and Category 7 100 Ohm Shielded and Unshielded Twisted Pairs

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIA-1152</td>
<td>(2009) Requirements for Field Test Instruments and Measurements for Balanced Twisted-Pair Cabling</td>
</tr>
<tr>
<td>TIA-455-21</td>
<td>(1988a; R 2012) FOTP-21 - Mating Durability of Fiber Optic Interconnecting Devices</td>
</tr>
<tr>
<td>TIA-492AAAA</td>
<td>(2009b) 62.5-um Core Diameter/125-um Cladding Diameter Class 1a Graded-Index Multimode Optical Fibers</td>
</tr>
<tr>
<td>TIA-526-14</td>
<td>(2010b) OFSTP-14A Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant</td>
</tr>
<tr>
<td>TIA-568-C.0</td>
<td>(2009; Add 1 2010; Add 2 2012) Generic Telecommunications Cabling for Customer Premises</td>
</tr>
<tr>
<td>TIA-568-C.1</td>
<td>(2009; Add 2 2011; Add 1 2012) Commercial Building Telecommunications Cabling Standard</td>
</tr>
<tr>
<td>TIA-568-C.2</td>
<td>(2009; Errata 2010) Balanced Twisted-Pair Telecommunications Cabling and Components Standards</td>
</tr>
<tr>
<td>TIA-568-C.3</td>
<td>(2008; Add 1 2011) Optical Fiber Cabling Components Standard</td>
</tr>
<tr>
<td>TIA-569</td>
<td>(2012c; Addendum 1 2013; Errata 2013) Commercial Building Standard for Telecommunications Pathways and Spaces</td>
</tr>
<tr>
<td>TIA-570</td>
<td>(2012c) Residential Telecommunications Infrastructure Standard</td>
</tr>
<tr>
<td>TIA-606</td>
<td>(2012b) Administration Standard for the Telecommunications Infrastructure</td>
</tr>
<tr>
<td>TIA-607</td>
<td>(2011b) Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises</td>
</tr>
<tr>
<td>TIA/EIA-598</td>
<td>(2005c) Optical Fiber Cable Color Coding</td>
</tr>
<tr>
<td>TIA/EIA-604-2</td>
<td>(2004b; R 2014) FOCIS 2 Fiber Optic Connector Intermateability Standard</td>
</tr>
</tbody>
</table>

U.S. FEDERAL COMMUNICATIONS COMMISSION (FCC)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
</table>
| FCC Part 68 | Connection of Terminal Equipment to the }
Telephone Network (47 CFR 68)

UNDERWRITERS LABORATORIES (UL)

UL 1286 (2008; Reprint Sep 2013) Office Furnishings
UL 1666 (2007; Reprint Jun 2012) Test for Flame Propagation Height of Electrical and Optical-Fiber Cables Installed Vertically in Shafts
UL 1863 (2004; Reprint Nov 2012) Communication Circuit Accessories
UL 444 (2008; Reprint Apr 2010) Communications Cables
UL 467 (2007) Grounding and Bonding Equipment
UL 50 (2007; Reprint Apr 2012) Enclosures for Electrical Equipment, Non-environmental Considerations
UL 514C (2014; Reprint Dec 2014) Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers
UL 969 (1995; Reprint Sep 2014) Standard for Marking and Labeling Systems

1.2 RELATED REQUIREMENTS

Section 01 33 00 SUBMITTAL PROCEDURES; Section QUALITY CONTROL; Section 26 00 00, BASIC ELECTRICAL MATERIALS AND METHODS; Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM; and Section 33 82 00 TELECOMMUNICATIONS, OUTSIDE PLANT (OSP), apply to this section with additions and modifications specified herein.

Contact Camp Lejeune Base Telephone for special requirements on classified service, unofficial service, under slab cabling, using water block, and any item not covered in this document.

Buildings with Special Network Requirements such as Secured Internet Protocol, Classified networks, American Warrior Network, Charter cable, MCCS.org, Boingo, and Naval Blue Network may require additional guidance outside this specification. Secured areas or secured networks in non-secured areas may require Protected Distribution System which is also outside this specification. Classified networks may require shielded twisted pair and has separation requirements outside this specification. In these cases contact Telecommunications Support Division G-6 MCIEAST-MCB CAMLEJ for guidance at (910) 451-9439 or (910) 451-4760.

Contact AHJ for special requirements on classified service, unofficial service, under slab cabling, using water block, and any item not covered in this document.
1.3 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in this specification shall be as defined in TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-569, TIA-606 and IEEE 100 and herein.

1.3.1 Main Distribution Frame (MDF)

A physical structure at a central location for terminating permanent backbone cables to interconnect with service provider (SP) equipment at the activity minimum point of presence. The MDF generally includes vendor specific components to support voice and data circuits, building surge protector assemblies, main cross connect blocks, equipment support frames, and fire rated plywood backboard. Depending upon local site conditions, the MDF and BDF may be the same space.

1.3.2 Building Distribution Frame (BDF)

A structure with terminations for connecting backbone, campus, and horizontal cabling. The BDF generally includes a cross connect, equipment support frame or lockable terminal cabinet, cable supports, and fire rated plywood backboard. The BDF shall include building protector assemblies when used for campus backbone or SP cabling.

1.3.3 Intermediate Distribution Frame (IDF)

An intermediate termination point for horizontal wiring and crossconnections within telecommunications rooms. Shall be connected to MDF with both fiber and copper. Secure Internet Protocol (SIPR) vault or cabinet is considered an IDF.

1.3.4 Communications Room

An enclosed space for communications equipment, terminations, and crossconnect wiring for horizontal cabling.

1.3.5 Campus Distributor (CD)

A distributor from which the campus backbone cabling emanates. (International expression for main cross-connect (MC) also known as central office or Area Distribution Node.)

1.3.6 Building Distributor (BD)

A distributor in which the building backbone (customer owned outside plant) cables terminate and at which connections to the campus backbone cables may be made. (International expression for intermediate cross-connect (IC).)

1.3.7 Floor Distributor (FD)

A distributor used to connect horizontal cable and cabling subsystems or equipment. (International expression for horizontal cross-connect (HC).)

1.3.8 Entrance Facility (EF) (can be same as communications room)

An entrance to the building for both private and public network service cables (including wireless) including the entrance point at the building
wall and continuing to the communications room.

1.3.9 Equipment Room (ER) (can be same as communications room)

An environmentally controlled centralized space for telecommunications equipment that serves the occupants of a building. Equipment housed therein is considered distinct from a telecommunications room because of the nature of its complexity.

1.3.10 Open Cable

Cabling that is not run enclosed in a raceway as defined by NFPA 70. This refers to cabling that is "open" to the space in which the cable has been installed and is therefore exposed to the environmental conditions associated with that space, such as wire basket tray, cable tray, J-hooks, D-rings, or bridal rings.

1.3.11 Open Office

A floor space division provided by furniture, moveable partitions, or other means instead of by building walls, normally over 100 square feet.

1.3.12 Pathway

A physical infrastructure utilized for the placement and routing of communications cabling.

1.4 SYSTEM DESCRIPTION

The building telecommunications cabling and pathway system shall include permanently installed backbone and horizontal cabling, horizontal and backbone pathways, service entrance facilities, work area pathways, telecommunications outlet assemblies, conduit, raceway, and hardware for splicing, terminating, and interconnecting cabling necessary to transport telephone data, and other communications systems (including LAN A/V, intercom, PA, CATV, CCTV, and WiFi) between equipment items in a building. The horizontal system shall be wired in a star topology from the communications work area to the floor distributor/IDF or building distributor/MDF or campus distributor or communications room at the center or hub of the star. The backbone cabling and pathway system includes intrabuilding and interbuilding interconnecting cabling, pathway, and terminal hardware. The intrabuilding backbone provides connectivity from the floor distributors to the building distributors or to the campus distributor and from the building distributors to the campus distributor as required. The backbone system shall be wired in a star topology with the campus distributor (Area Distribution Node) at the center or hub of the star. The interbuilding backbone system provides connectivity between the campus distributors and is specified in Section 33 82 00 TELECOMMUNICATIONS OUTSIDE PLANT (OSP). Provide telecommunications pathway systems referenced herein as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. The telecommunications contractor must coordinate with MCB CL Base Telephone concerning access to and configuration of telecommunications spaces. The telecommunications contractor may be required to coordinate work effort within the telecommunications spaces with MCB CL Base Telephone.

1.5 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
SD-02 Shop Drawings

Telecommunications drawings

Telecommunications Space Drawings

In addition to Section 01 33 00 SUBMITTAL PROCEDURES, provide shop drawings in accordance with paragraph SHOP DRAWINGS.

SD-03 Product Data

Communications cabling (backbone and horizontal)

Patch panels

Telecommunications outlet/connector assemblies

Equipment support frame

Connector blocks

Building Protector Assemblies

Submittals shall include the manufacturer's name, trade name, place of manufacture, and catalog model or number. Include performance and characteristic curves. Submittals shall also include applicable federal, military, industry, and technical society publication references. Should manufacturer's data require supplemental information for clarification, the supplemental information shall be submitted as specified in paragraph REGULATORY REQUIREMENTS and as required in Section 01 33 00 SUBMITTAL PROCEDURES.

SD-06 Test Reports

Communications cabling testing

SD-07 Certificates

Communications Contractor Qualifications

Key Personnel Qualifications

Manufacturer Qualifications

Test plan

SD-09 Manufacturer's Field Reports

Factory reel tests

SD-10 Operation and Maintenance Data

Communications cabling and pathway system Data Package 5

SD-11 Closeout Submittals

Record Documentation
1.5.1 ADDITIONAL SUBMITTAL REQUIREMENTS

All submittals of material, equipment and design must be approved by the Telecommunications Support Division (TSD) prior to installing any telecommunications wiring and equipment.

1.6 QUALITY ASSURANCE

1.6.1 Shop Drawings

In exception to Section 01 33 00 SUBMITTAL PROCEDURES, submitted plan drawings shall be a minimum of 11 by 17 inches in size using a minimum scale of 1/8 inch per foot. Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Wiring diagrams shall identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Drawings shall indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices. Submittals shall include the nameplate data, size, and capacity. Submittals shall also include applicable federal, military, industry, and technical society publication references.

1.6.1.1 Telecommunications Drawings

Provide registered communications distribution designer (RCDD) approved, drawings in accordance with TIA-606. The identifier for each termination and cable shall appear on the drawings. Drawings shall depict final communications installed wiring system infrastructure in accordance with TIA-606. The drawings should provide details required to prove that the distribution system shall properly support connectivity from the EF communications and ER communications, CD's, BD's, and FD's to the communications work area outlets. Provide a plastic laminated schematic of the as-installed communications cable system showing cabling, CD's, BD's, FD's, and the EF and ER for communications keyed to floor plans by room number. Mount the laminated schematic in the EF communications space as directed by the Contracting Officer. The following drawings shall be provided as a minimum:

a. T1 - Layout of complete building per floor - Building Area/Serving Zone Boundaries, Backbone Systems, and Horizontal Pathways. Layout of complete building per floor. The drawing indicates location of building areas, serving zones, vertical backbone diagrams, communications rooms, access points, pathways, grounding system, and other systems that need to be viewed from the complete building perspective.

b. T2 - Serving Zones/Building Area Drawings - Drop Locations and Cable Identification (ID’S). Shows a building area or serving zone. These drawings show drop locations, communications rooms, access points and detail call outs for common equipment rooms and other congested areas.

c. T4 - Typical Detail Drawings - Faceplate Labeling, Firestopping, Americans with Disabilities Act (ADA), Safety, Department of Transportation (DOT). Detailed drawings of symbols and typicals such as faceplate labeling, faceplate types, faceplate population installation procedures, detail racking, and raceways.
1.6.1.2 Telecommunications Space Drawings

Provide T3 drawings in accordance with TIA-606 that include telecommunications rooms plan views, pathway layout (cable tray, racks, ladder-racks, etc.), mechanical/electrical layout, and cabinet, rack, backboard, and wall elevations. Drawings shall show layout of applicable equipment including incoming cable stub or connector blocks, building protector assembly, outgoing cable connector blocks, patch panels and equipment spaces and cabinet/racks. Drawings shall include a complete list of equipment and material, equipment rack details, proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearance for maintenance and operation. Drawings may also be an enlargement of a congested area of T1 or T2 drawings.

1.6.2 Communications Contractor Qualifications

Work under this section shall be performed by and the equipment shall be provided by the approved communications contractor and key personnel. Qualifications shall be provided for: the communications system contractor, the communications system installer, and the supervisor (if different from the installer). A minimum of 30 days prior to installation, submit documentation of the experience of the communications contractor and of the key personnel.

1.6.2.1 Communications Contractor

The communications contractor shall be a firm which is regularly and professionally engaged in the business of the applications, installation, and testing of the specified communications systems and equipment. The communications contractor shall demonstrate experience in providing successful communications systems within the past 3 years of similar scope and size. Submit documentation for a minimum of three and a maximum of five successful communication system installations for the communications contractor. Also IAW Section on QC Specialists; a Telecommunications Systems QC Specialists may be required on site, full time with 10 years minimum experience in telecom installation and experience, specialist shall be very familiar with Division 27, 28, 33 concerning communications systems work and installation.

1.6.2.2 Key Personnel

Provide key personnel who are regularly and professionally engaged in the business of the application, installation and testing of the specified communications systems and equipment. There may be one key person or more key persons proposed for this solicitation depending upon how many of the key roles each has successfully provided. Each of the key personnel shall demonstrate experience in providing successful communications systems within the past 3 years.

Supervisors and installers assigned to the installation of this system or any of its components shall be Building Industry Consulting Services International (BICSI) Registered Cabling Installers, Technician Level. Submit documentation of current BICSI certification for each of the key personnel.

In lieu of BICSI certification, supervisors and installers assigned to the installation of this system or any of its components shall have a minimum of 3 years experience in the installation of the specified copper and fiber
optic cable and components. They shall have factory or factory approved certification from each equipment manufacturer indicating that they are qualified to install and test the provided products. Submit documentation for a minimum of three and a maximum of five successful communication system installations for each of the key personnel. Documentation for each key person shall include at least two successful system installations provided that are equivalent in system size and in construction complexity to the communications system proposed for this solicitation. Include specific experience in installing and testing communications systems and provide the names and locations of at least two project installations successfully completed using optical fiber and copper communications cabling systems. All of the existing communications system installations offered by the key persons as successful experience shall have been in successful full-time service for at least 18 months prior to the issuance date for this solicitation. Provide the name and role of the key person, the title, location, and completed installation date of the referenced project, the referenced project owner point of contact information including name, organization, title, and telephone number, and generally, the referenced project description including system size and construction complexity.

Indicate that all key persons are currently employed by the communications contractor, or have a commitment to the communications contractor to work on this project. All key persons shall be employed by the communications contractor at the date of issuance of this solicitation, or if not, have a commitment to the communications contractor to work on this project by the date that the bid was due to the Contracting Officer.

Note that only the key personnel approved by the Contracting Officer in the successful proposal shall do work on this solicitation's communications system. Key personnel shall function in the same roles in this contract, as they functioned in the offered successful experience. Any substitutions for the communications contractor's key personnel requires approval from the Contracting Officer.

1.6.2.3 Minimum Manufacturer Qualifications

Cabling, equipment and hardware manufacturers shall have a minimum of 3 years experience in the manufacturing, assembly, and factory testing of components which comply with TIA-568-C.1, TIA-568-C.2 and TIA-568-C.3.

1.6.3 Test Plan

Provide a complete and detailed test plan for the communications cabling system including a complete list of test equipment for the components and accessories for each cable type specified, 60 days prior to the proposed test date. Include procedures for certification, validation, sample report, and testing.

1.6.4 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.
1.6.5 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.6.5.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.6.5.2 Material and Equipment Manufacturing Date

Products manufactured more than 1 year prior to date of delivery to site shall not be used, unless specified otherwise.

1.7 DELIVERY AND STORAGE

Provide protection from weather, moisture, extreme heat and cold, dirt, dust, and other contaminants for communications cabling and equipment placed in storage.

1.8 ENVIRONMENTAL REQUIREMENTS

Connecting hardware shall be rated for operation under ambient conditions of 32 to 140 degrees F and in the range of 0 to 95 percent relative humidity, noncondensing.

Provide HVAC tied into building system or separate that will maintain continuous cooling environmental control (24 hours per day, 365 days per year). If emergency power is available, it shall be connecting to the dedicated power and considered on the HVAC system.

1.9 WARRANTY

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.10 MAINTENANCE

1.10.1 Operation and Maintenance Manuals

Commercial off the shelf manuals shall be furnished for operation, installation, configuration, and maintenance of products provided as a part of the communications cabling and pathway system, Data Package 5. Submit operations and maintenance data in accordance with Section 01 78 23.
OPERATION AND MAINTENANCE DATA and as specified herein not later than 2 months prior to the date of beneficial occupancy. In addition to requirements of Data Package 5, include the requirements of paragraphs TELECOMMUNICATIONS DRAWINGS, TELECOMMUNICATIONS SPACE DRAWINGS, and RECORD DOCUMENTATION. Ensure that these drawings and documents depict the as-built configuration.

1.10.2 Record Documentation

Provide T5 drawings including documentation on cables and termination hardware in accordance with TIA-606. T5 drawings shall include schedules to show information for cut-overs and cable plant management, patch panel layouts and cover plate assignments, cross-connect information and connecting terminal layout as a minimum. T5 drawings shall be provided in hard copy and soft copy (PDF) and AutoCAD 2012 format on CD/CDRW. Provide the following T5 drawing documentation as a minimum:

a. Cables - A record of installed cable shall be provided in accordance with TIA-606. The cable records shall include the required data fields for each cable and complete end-to-end circuit report for each complete circuit from the assigned outlet to the entry facility in accordance with TIA-606. Include manufacture date of cable with submittal.

b. Termination Hardware - A record of installed patch panels, cross-connect points, distribution frames, terminating block arrangements and type, and outlets shall be provided in accordance with TIA-606. Documentation shall include the required data fields as a minimum in accordance with TIA-606.

PART 2 PRODUCTS

2.1 COMPONENTS

Components shall be UL or third party certified. Where equipment or materials are specified to conform to industry and technical society reference standards of the organizations, submit proof of such compliance. The label or listing by the specified organization will be acceptable evidence of compliance. In lieu of the label or listing, submit a certificate from an independent testing organization, competent to perform testing, and approved by the Contracting Officer. The certificate shall state that the item has been tested in accordance with the specified organization's test methods and that the item complies with the specified organization's reference standard. Provide a complete system of telecommunications cabling and pathway components using star topology. Provide support structures and pathways, complete with outlets, cables, connecting hardware and telecommunications cabinets/racks. Cabling and interconnecting hardware and components for telecommunications systems shall be UL listed or third party independent testing laboratory certified, and shall comply with NFPA 70 and conform to the requirements specified herein.

2.2 COMMUNICATIONS PATHWAY

Provide telecommunications pathways in accordance with TIA-569 and as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide system furniture pathways in accordance with UL 1286.
2.2.1 Pathways Aboard Camp Lejeune Greater Area, Including MCAS New River

Pathways shall be conduit, cable tray, or modular access flooring that provides protection for cabling. Under floor duct, free laying and wire way shall not be used. Cantilever-type center hung tray or Poke-Thru devices shall not be used. J-hooks/ D-rings / bridging rings and other open face type cable pathways are not authorized except in minor renovations or to continue like existing system. Provide grounding and bonding as required by TIA J-STD-607-A. Cable tray wiring shall comply with NFPA 70. All conduits entering the communications room should be grouped and consolidated, conduits can be “Home Run” or stubbed to cable tray, all shall have bonding bushing / plastic insert, and shall extend down from the ceiling 3 to 4 inches to ladder rack or onto the backboard, and will be bonded to the TMGB or TGB by a minimum number 6 green sheathed stranded conductors. All penetrations will be sealed in accordance with code (fire-stopping). A minimum of two 3 inch conduits overhead will be installed between the main communications room and other communication rooms (IDFs).

2.2.2 Work area Pathways

Comply with TIA-569, except minimum 1 1/4 inch diameter conduit will be used. System furniture pathways shall comply with UL 1286. Horizontal cabling for open offices shall comply with TIA TSB-75. In system furniture that blocks access to or is distant from the communications wall outlets: each system furniture desk/cubical shall be equipped with system furniture communications outlets that are plugged into the communications wall outlets. All ports should be extended into the furniture.

2.2.3 Pull Boxes

Construct of galvanized sheet steel with screw-fastened covers. Minimum size of boxes shall be not less than 5 inches wide by 5 inches in length by 2 7/8 inches deep for individual 1 1/4 inch diameter conduit; minimum size of boxes shall be not less than 12"W x 48"L x 5"D for 3" conduit, 15"W x 60"L x 8"D for 4" conduit per TIA-569. Provide pull boxes where length of conduit exceeds 100 feet or where there are more than two 90 degree bends, or equivalent. Align conduit ends on opposite sides of pull boxes as in a pull through, do not turn or change direction in pull boxes. Provide pull boxes in straight lengths of conduit. Electrical pull points, LC, LB, conduits are not authorized.

2.3 COMMUNICATIONS OUTLET BOXES

Communications outlet boxes should be placed in all work areas and any area that can be converted to work areas; so any furniture package configuration will have a connection with a 6’ base cord. Good practice is 6” to the left or right of the out side edge of electrical outlet box in workable office areas or any area that could be converted into workable office area such as a large storage closet; also any conference room should have one floor and one ceiling box. Boxes shall be standard type 5 inches square by 2 7/8 inches deep for CAT6 with 1 1/4 inch diameter side knock-outs, with a single gang plaster ring. Mount flush in finished walls at height indicated by drawings. Outlet boxes for wall-mounted telephones shall be 2 by 4 by 2 1/8 inches deep with 1 CAT6 cable terminated in a standard CAT6 wall phone plate; mounted at ADA required height. Outlet boxes for work counter area shall be mounted at a height 48 inches above finished floor. Outlet boxes installed for CCTV and CATV should also contain 2 CAT 6 cables. Outlet boxes installed in floor for classrooms or open spaces shall be
communications floor boxes large enough to support a surge of users with proper cable protection and ports that are not parallel to the floor. Floor boxes and under slab cabling should not be used on the first floor in wet areas. Tele electric poles or furniture managed pathways fed from above the wet area should be used. Multi-user Telecommunications Outlet Assembly i.e. Multimedia Outlet Assemblies (MUTOA) should be placed where best suited for the furniture used in open office spaces.

2.4 COMMUNICATIONS CABLEING

Cabling shall be UL listed for the application and shall comply with TIA-568-C.0, TIA-568-C.1, TIA-568-C.2, TIA-568-C.3 and NFPA 70. Provide a labeling system in accordance with the manufacture and local AHJ guidance for cabling as required by TIA-606 and UL 969. Confirm labeling is compatible with Base Telephone requirements. Ship cable on reels or in boxes bearing manufacture date for for unshielded/shielded twisted pair (UTP/STP) in accordance with ICEA S-90-661 and optical fiber cables in accordance with ICEA S-83-596 for all cable used on this project. Cabling manufactured more than 12 months prior to date of installation shall not be used.

2.4.1 Backbone Cabling

2.4.1.1 Backbone Copper

Copper backbone cable shall be solid conductor, 24 AWG, 100 ohm, 25 to 100-pair, Category 3, UTP, in accordance with ICEA S-90-661, TIA-568-C.1, TIA-568-C.2 and UL 444, formed into 25 pair binder groups covered with a gray thermoplastic jacket and overall metallic shield if required for additional protection. A minimum of two conductor twists per foot is required. Cable shall be imprinted with manufacturers name or identifier, flammability rating, gauge of conductor, transmission performance rating (category designation) at regular length marking intervals in accordance with ICEA S-90-661. Sufficient pair count CAT 3/5 riser (25, 50, 100, 200..) and two 4 pair 24 AWG Category 6 riser (CMR) rated cable will be installed between the MDF and each of the IDF's. Provide plenum (CMP), riser (CMR), or general purpose (CM or CMG) communications rated cabling in accordance with NFPA 70. Voice riser shall be terminated on suitable insulation displacement contact cross connect blocks and two CAT6 in the patch panels last position. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. Any backbone copper run in under slab conduit shall be rated for outdoor use in accordance with AHJ and have lightning protection at both ends.

2.4.1.2 Backbone Optical Fiber

Provide in accordance with ICEA S-83-596, TIA-568-C.3, UL 1666 and NFPA 70. Cable shall be imprinted with fiber count, fiber type and aggregate length at regular intervals not to exceed 40 inches.

Provide the number of strands indicated, (but not less than 12 strands of each single and multi mode between the main telecommunication room and each of the other communication rooms or secure racks), of single-mode (OS1), tight buffered fiber optic cable.

Provide the number of strands indicated, (but not less than 12 strands between the main communication room and each of the other communications rooms and secure racks), of tight buffered fiber optic multimode,
62.5/125-um diameter (OM1) cable, conforming to TIA-492AAAA.

Provide plenum (OFNP), riser (OFNR), or general purpose (OFN or OFNG) rated non-conductive, fiber optic cable in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. The cable cordage jacket, fiber, unit, and group color shall be in accordance with TIA/EIA-598.

2.4.2 Horizontal Cabling

Provide horizontal cable in compliance with NFPA 70 and performance characteristics in accordance with TIA-568-C.1.

2.4.2.1 Horizontal Copper

Provide a minimum of four horizontal copper cables to each work area outlet (faceplate), UTP, 100 ohm in accordance with TIA-568-C.2, UL 444, ANSI/NEMA WC 66, ICEA S-90-661. Provide four each individually twisted pair, minimum size 24 AWG conductors, Category 6 or 6A, with a green thermoplastic jacket for odd ports and a green thermoplastic jacket for even ports (unclassified service as color and cable type will be different for classified services). Cable shall be imprinted with manufacturers name or identifier, flammability rating, gauge of conductor, transmission performance rating (category designation) and length marking at regular intervals in accordance with ICEA S-90-661. Provide plenum (CMP), riser (CMR), or general purpose (CM or CMG) communications rated cabling in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. Cables installed in conduit within and under slabs are not recommended but can be used if approved by local AHJ and shall be UL listed and labeled for wet locations in accordance with NFPA 70. Contact AHJ for special requirements on classified service, unofficial service, under slab cabling, using water block, and any item not covered in this document.

2.4.2.2 Horizontal Optical Fiber

Provide optical fiber horizontal cable in accordance with ICEA S-83-596 and TIA-568-C.3. Cable shall be tight buffered, multimode, 62.5/125-um diameter, OM1, single-mode, 8/125-um diameter, OS1. Cable shall be imprinted with manufacturer, flammability rating and fiber count at regular intervals not to exceed 40 inches.

Provide plenum (OFNP), riser (OFNR), or general purpose (OFN or OFNG) rated non-conductive, fiber optic cable in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. Cables installed in conduit within and under slabs shall be UL listed and labeled for wet locations in accordance with NFPA 70. The cable jacket shall be of single jacket construction with color coding of cordage jacket, fiber, unit, and group in accordance with TIA/EIA-598.

2.4.3 Work Area Cabling

2.4.3.1 Work Area Copper

Provide work area copper cable in accordance with TIA-568-C.2, with a green on odd numbered and green on even numbered thermoplastic jacket.

Communications CAT6 twisted pair shall have a minimum of 6 inch slack cable loosely coiled into the communications outlet boxes. Minimum
manufacturer's bend radius for each type of cable shall not be exceeded. All communications work area outlet boxes should have 4 cables to a double gang box (no rough in or future use allowed).

2.4.3.2 Work Area Optical Fiber

Provide optical work area cable in accordance with TIA-568-C.3.

2.5 TELECOMMUNICATIONS SPACES

Provide connecting hardware and termination equipment in the communications entrance facility and communication equipment rooms to facilitate installation as shown on design drawings for terminating and cross-connecting permanent cabling. Space shall be a minimum 8' x 10' unless a local waiver is provided by the AHJ (authority having jurisdiction) which is the Telecommunications Support Division (TSD) aboard Camp Lejeune. Communications room could be much larger depending on building size, usable square footage served, and customer requirements. Communications rooms shall be centrally located unless multiple rooms are used. Access to Rooms shall be from a common area such as a hallway / open office door and door shall swing out. Additional/ Multiple communications rooms are required if the usable floor space to be served exceeds 10,000 square feet, or the cable length between the horizontal cross-connect and the communications outlet, including slack and vertical distance, exceeds 295 feet. Multiple communications rooms and IDF's shall be connected by a minimum of two 3 inch conduits overhead, if under slab it is considered Outside Plant 3 way 4" shall be used per see 33 82 00. The minimum clear height in the room shall be 2.4 m (8 ft) without obstructions. The height between the finished floor and the lowest point of the ceiling should be a minimum of 3 m (10 ft) to accommodate overhead pathways. The flooring shall be sealed concrete to reduce dust and static electricity; no carpet or tile. Two separate dedicated 20 amp electrical outlet will be installed for each communications equipment rack needed. Dedicated outlets and conduits shall be installed on the longest farthest wall from the door, same wall as the communications backboard. There should not be an electrical panel within the communications room unless it serves only the room. The room requires a lockable door keyed or key padded to restrict access to MCIEAST-MCB G-6 personnel only. Room shall not have any windows or skylights. At least one wall, where the point of presence is, should be covered with fire rated plywood backboard for mounting equipment; additional boards may be needed for mounting additional equipment. Light, as measured within the communications room, should be a minimum of 500 lx (50 foot-candles). Lighting design should seek to minimize shadows within the telecommunications room (minimum two light fixtures). Equipment not related to the support of the communications room (e.g., piping, ductwork, pneumatic tubing) shall not be installed in, pass through, or enter the telecommunications room. Provide telecommunications interconnecting hardware color coding in accordance with TIA-606.

2.5.1 Backboards

Provide void-free, interior grade A-C plywood 3/4 inch thick 4 feet wide by 8 feet high as indicated. Backboards shall be fire rated by manufacturing process. Fire stamp shall be clearly visible. Backboards shall be provided on a minimum of two adjacent walls and anywhere mounting is needed in the telecommunication spaces.
2.5.2 Equipment Support Frame

Provide in accordance with ECA EIA/ECA 310 and UL 50. Steel construction shall be treated to resist corrosion.

a. Bracket, wall mounted, (for buildings with very low jack/pair count and no secured electronic equipment requirement), 8 gauge aluminum. Provide hinged bracket compatible with 19 inches panel mounting and must be in a secured communications room.

b. Racks, wall or floor mounted modular type, 16 gauge steel construction, minimum, treated to resist corrosion. Provide rack with vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug and a surge protected power strip with 6 duplex 20 amp receptacles. Racks shall be enough to support all telephone / data equipment required plus 25 percent spare and shall have a maximum of 7’ height. Rack shall be compatible with 19 inches panel mounting and must be in a secured communications room. Recommend SIEMON’s RS3-07-S or equivalent approved by AHJ.

c. Cabinets, freestanding modular type, 16 gauge steel or 11 gauge aluminum construction, minimum, treated to resist corrosion. Cabinet shall have removable and lockable side panels, front and rear doors, and have adjustable feet for leveling. All cabinets shall be keyed to current TSD key and large enough to support all telephone / data equipment required in the building plus 25% for future expansion. Recommend CPI or equivalent approved by AHJ. Dedicated electrical outlets should be installed within the cabinet. A backboard for mounting equipment is still needed when a cabinet is installed. Cabinet shall be vented in the roof and rear door. Cabinet shall have cable access in the roof and base and be compatible with 19 inches panel mounting. Provide cabinet with grounding bar, mounted 550 CFM fan with filter and a surge protected power strip with 6 duplex 20 amp receptacles.

d. Cabinets, wall-mounted modular type, 16 gauge steel or 11 gauge aluminum construction, minimum, treated to resist corrosion. Cabinet shall have lockable front and rear doors, louvered side panels, 250 CFM mounted fan, ground lug, and top and bottom cable access. Cabinets shall be no smaller than 24"W X 48"H X 30"D shall be keyed to current TSD key and large enough to support all telephone / data equipment required in the building plus 25% for future expansion. Recommend CPI or equivalent approved by AHJ. Dedicated electrical outlets should be installed within the cabinet. A backboard for mounting equipment is still needed when a cabinet is installed. Cabinet shall be compatible with 19 inches panel mounting. All cabinets shall be keyed alike. A surge protected power strip with 6 duplex 20 amp receptacles shall be provided within the cabinet.

2.5.3 Connector Blocks

Provide insulation displacement connector (IDC) Type 110 for Category 6 systems. Provide blocks for the number of horizontal and backbone cables terminated on the block plus 25 percent spare. For Camp Lejeune greater area; Recommend Krone blocks' 6652-1-880-10 or equivalent approved by AHJ, for Category 5 and higher systems. Provide blocks for the number of backbone cables terminated on the block plus 25 percent spare. Also provide sufficient blocks for cross connects for all IDFs. Blocks shall be mounted on an 89D style bracket on rack or in cabinet.
2.5.4 Building Protector Assemblies

Building protector assembly are required on all OSP cables and shall have 710 type connector blocks for connection to the exterior cable at full capacity. M150-66 type IDC for connection to the voice cross connect blocks. 110 type IDC is not approved on building protector assembly. For Central office a R399 type central office protector shall be used.

2.5.5 Cable Guides

Provide cable guides specifically manufactured for the purpose of routing cables, wires and patch cords horizontally and vertically on 19 inches equipment racks, cabinets, and telecommunications backboards. Cable guides of ring or bracket type devices mounted on rack, cabinet, panels, and backboard for horizontal cable management and individually mounted for vertical cable management. Mount cable guides with screws and/or nuts and lock washers, cable guides are not to be used outside of the communications room.

2.5.6 Patch Panels

Provide ports for the number of horizontal and backbone cables terminated on the panel plus 25 percent spare. Provide pre-connectorized ST type optical fiber and CAT 6 copper patch cords for patch panels. Provide patch cords, as complete assemblies, with matching connectors as specified. Provide fiber optic patch cables with crossover orientation in accordance with TIA-568-C.3. Patch cords shall meet minimum performance requirements specified in TIA-568-C.1, TIA-568-C.2 and TIA-568-C.3 for cables, cable length and hardware specified.

2.5.6.1 Modular to 110 Block Patch Panel

Provide in accordance with TIA-568-C.1 and TIA-568-C.2. Panels shall be third party verified and shall comply with EIA/TIACategory 6/6A requirements. Panel shall be constructed of 0.09 inches minimum aluminum and shall be cabinet/ rack mounted and compatible with an ECA EIA/ECA 310 19 inches equipment rack. Panel shall provide 48 non-keyed, 8-pin dualmodular (8P8C) ports, wired to T568A. Patch panels shall terminate the building cabling on Type 110 IDCs and shall utilize a printed circuit board interface. C6-C6—Recommend Siemon's CT Couplers, CT-F-XX or equivalent approved by AHJ. The rear of each panel shall have incoming cable strain-relief and routing guides; DO NOT USE ZIP TIES. Panels shall have each port factory numbered and be equipped with laminated plastic nameplates above each port.

2.5.6.2 Fiber Optic Patch Panel

Provide panel for maintenance and cross-connecting of optical fiber cables. Panel shall be constructed of 16 or 18 gauge steel or 11 gauge aluminum minimum and shall be cabinet/ rack mounted and compatible with a ECA EIA/ECA 310 19 inches equipment rack. Each panel shall provide multimode / single-mode adapters as required in ST format (majority of Camp Lejeune is ST type) in accordance with TIA/EIA-604-2 with metallic alignment sleeves. Provide dust cover for unused adapters. The rear of each panel shall have a cable management tray a minimum of 8 inches deep with removable cover, incoming cable strain-relief and routing guides. Panels shall have each adapter factory numbered and be equipped with laminated plastic nameplates above each adapter.
2.5.7 Optical Fiber Distribution Panel

Cabinet/ Rack mounted optical fiber distribution panel (OFDP) shall be constructed in accordance with ECA EIA/ECA 310 utilizing 16 or 18 gauge steel or 11 gauge aluminum minimum. Panel shall be divided into two sections, distribution and user. Distribution section shall have strain relief, routing guides, splice tray and shall be lockable, user section shall have a cover for patch cord protection. Each panel shall provide multimode and single-mode adapters as required. Provide adapters as ST with metallic is the standard for Camp Lejeune alignment sleeves. Provide dust covers for adapters. Provide patch cords as specified in the paragraph PATCH PANELS.

2.6 TELECOMMUNICATIONS OUTLET/CONNECTOR ASSEMBLIES

2.6.1 Outlet/Connector Copper

Outlet/connectors shall comply with FCC Part 68, TIA-568-C.1, and TIA-568-C.2. UTP outlet/connectors shall be UL 1863 listed, non-keyed, 8-pin modular, dual molded 8P8C, constructed of high impact rated thermoplastic housing and shall be third party verified and shall comply with TIA-568-C.2 Category 6 requirements. Recommend SIEMON's CT couplers, CT-F-C6-C6-xx or equivalent approved by AHJ, of indicated color (normally ivory or white at work area and black in communications room) should match electrical face plate color and type. Outlet/connectors provided for UTP cabling shall meet or exceed the requirements for the cable provided. Outlet/connectors shall be terminated using a Type 110 IDC PC board connector, color-coded for both T568A and T568B wiring. Each outlet/connector shall be wired T568A. UTP outlet/connectors shall comply with TIA-568-C.2 for 750 mating cycles. UTP outlet/connectors installed in outdoor or marine environments shall be jell-filled type containing an anti-corrosive, memory retaining compound.

2.6.2 Optical Fiber Adapters (Couplers)

Provide optical fiber adapters suitable for ST in accordance with TIA/EIA-604-2 with metallic alignment sleeves as indicated. Provide dust cover for adapters. Optical fiber adapters shall comply with TIA-455-21 for 500 mating cycles.

2.6.3 Optical Fiber Connectors

Provide in accordance with TIA-455-21. Optical fiber connectors shall be ST in accordance with TIA/EIA-604-2 with metallic ferrule, epoxy less crimp style compatible with 62.5/125 multimode and 8/125 single-mode fiber. The connectors shall provide a maximum attenuation of 0.3 dB at 850/ 1300 and 1310/ 1550 nm with less than a 0.2 dB change after 500 mating cycles.

2.6.4 Cover Plates

Telecommunications cover plates shall comply with UL 514C, and TIA-568-C.1, TIA-568-C.2, TIA-568-C.3; flush or oversized design constructed of high impact thermoplastic material ivory, white in color to match color of receptacle switch cover plates specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM, color may be different for classified networks Red and Grey. Provide labeling in accordance with the paragraph LABELING in this section. Additionally, it shall be labeled as to its function with a green
computer icon on all even ports and a green phone icon on all the odd ports.

2.7 MULTI-USER TELECOMMUNICATIONS OUTLET ASSEMBLY (MUTOA)

Provide MUTOA(s) in accordance with TIA-568-C.1.

2.8 TERMINAL CABINETS

Construct of zinc-coated sheet steel, 36 by 24 by 6 inches deep, as indicated. Trim shall be fitted with hinged door and locking latch. Doors shall be maximum size openings to box interiors. Boxes shall be provided with 5/8 inch backboard with two-coat varnish finish. Match trim, hardware, doors, and finishes with panelboards. Provide label and identification systems for telecommunications wiring and components consistent with TIA-606.

2.9 GROUNDING AND BONDING PRODUCTS

Provide in accordance with UL 467, TIA-607, and NFPA 70. Components shall be identified as required by TIA-606. Provide ground rods, bonding conductors, and grounding busbars as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. The preferred ground for the Telephone Main Grounding Bus (TMGB) bar will be to the Main electrical Distribution Panel (MDP) bus bar and building steel. In most cases; a #6 AWG bonding conductor is recommended for telecommunications. All grounding and bonding conductors within the Telecommunications room will be green sheathed copper conductor, stranded, and labeled as suitable for use as such and tagged "DO NOT REMOVE". All grounding and bonding conductors running out of or side of the Telecommunications room should be protected in conduit or attached to the outside of the cable tray and sized according to references. The minimum size of the TMGB shall be no smaller than 4" by 10" by 1/4 inch thick; bus bar should be factory made and factory drilled-not fabricated or drilled onsite. All bonding and grounding terminations shall be irreversible and secured with a double hole crimp termination. Do not exceed minimum bend radius on bonding and grounding conductors.

2.10 FIRESTOPPING MATERIAL

Provide as specified in Section 07 84 00 FIRESTOPPING.

2.11 MANUFACTURER'S NAMEPLATE

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.12 FIELD FABRICATED NAMEPLATES

ASTM D709. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 0.125 inches thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be one by 2.5 inches. Lettering shall be a minimum of 0.25 inches high normal block style.
2.13 TESTS, INSPECTIONS, AND VERIFICATIONS

2.13.1 Factory Reel Tests

Provide documentation of the testing and verification actions taken by manufacturer to confirm compliance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-526-7 for single mode optical fiber, and TIA-526-14 for multimode optical fiber cables.

PART 3 EXECUTION

3.1 INSTALLATION

Install communications cabling and pathway systems, including the horizontal and backbone cable, pathway systems, communications outlet/connector assemblies, and associated hardware in accordance with NECA/BICSI 568, TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-569, NFPA 70, manufacture instructions, current industry best practices, and UL standards as applicable. Provide cabling in a star topology network. Provide residential cabling in a star wiring architecture from the distribution device as required by TIA-570. Pathways and outlet boxes shall be installed as specified in this document and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Standard type 5” x 5” x 2 7/8” square box with a single gang plaster ring shall be used except in concrete or concrete masonry units where a standard 4” and 11/16” square or a floor box will be used. Mount flush in finished walls at height indicated by drawings. Depth of boxes shall be large enough to allow manufacturer's recommended conductor bend radii normally 2 7/8”. Install communications cabling with copper media in accordance with the following criteria to avoid potential electromagnetic interference between power and communications equipment. The interference ceiling shall not exceed 3.0 volts per meter measured over the usable bandwidth of the communications cabling (normal minimum clearance distances of 4 feet from motors, generators, frequency converters, transformers, x-ray equipment or uninterrupted power system, 300 mm (12 in) from power conduits and cable systems, 125 mm (5 inches) from fluorescent or high frequency lighting system fixtures. Cabling shall be run with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

3.1.1 Cabling

Install UTP/STP, and optical fiber telecommunications cabling system as detailed in TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, and TIA-570 for residential cabling. Screw terminals shall not be used except where specifically indicated on plans. Use an approved insulation displacement connection (IDC) tool kit for copper cable terminations. Do not untwist Category 6 UTP cables more than ¼” (12 mm) from the point of termination to maintain cable geometry. Provide service loop on each end of the cable, minimum 10’ (3 meters) in the telecommunications room, 6” (150mm) in or close to the work area outlet for UTP. Do not exceed manufacturers' cable pull tensions for copper and optical fiber cables. Provide a device to monitor cable pull tensions. Do not exceed 25 pounds pull tension for four pair copper cables. Do not chafe or damage outer jacket materials. Use only lubricants approved by cable manufacturer. Do not over cinch cables, or crush cables with staples. Only hook and loop fasteners are allowed on Category 6 / 6A cable and optical fiber cable. DO NOT USE ZIP TIES. For UTP cable, bend radii shall not be less than four times the cable diameter. Cables shall be terminated; no cable shall contain unterminated
elements (See NEC abandoned cabling). Cables shall not be spliced. Label cabling in accordance with paragraph LABELING in this section.

3.1.1.1 Open Cable

Use only where specifically indicated on plans for use in cable trays, or below raised floors in approved pathway (cable free laid on floor is not authorized). Install in accordance with TIA-568-C.1, TIA-568-C.2, and TIA-568-C.3. Do not exceed cable pull tensions recommended by the manufacturer. Copper cable not in a wire way or pathway shall be suspended a minimum of 8 inches above ceilings by cable supports no greater than 60 inches apart. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items. Placement of cable parallel to power conductors shall be avoided, if possible; a minimum separation of 12 inches shall be maintained when such placement cannot be avoided.

Plenum cable shall be used where open cables are routed through plenum areas. Cable routed exposed under raised floors shall be plenum rated. Plenum cables shall comply with flammability plenum requirements of NFPA 70. Install cabling after the flooring system has been installed in raised floor areas. Cable 6 feet long shall be neatly coiled not less than 12 inches in diameter below each feed point in raised floor areas.

3.1.1.2 Backbone Cable

a. Copper Backbone Cable. Install intrabuilding backbone copper cable, in minimum 2-way 3 inch conduit or larger indicated pathways, between the campus distributor, located in the communications entrance facility or room, the building distributors and the floor distributors located in communications rooms and communications equipment rooms as indicated on drawings.

b. Optical fiber Backbone Cable. Install intrabuilding backbone optical fiber in indicated pathways (normal in in one of multiple interducts installed in conduit so as to maximize pathways). Do not exceed manufacturer's recommended bending radii and pull tension. Prepare cable for pulling by cutting outer jacket 10 inches leaving strength members exposed for approximately 10 inches. Twist strength members together and attach to pulling eye. Vertical cable support intervals shall be in accordance with manufacturer's recommendations.

3.1.1.3 Horizontal Cabling

Install horizontal cabling as indicated in the spec and on drawings. Do not untwist Category 6 UTP cables more than one half inch from the point of termination to maintain cable geometry. Provide slack cable in the form of a figure eight or large service loop on each end of the cable (prevent inductance caused by small coils), 10 feet in the telecommunications room, and 6 inches in the work area outlet.

3.1.2 Pathway Installations

Provide in accordance with TIA-569 and NFPA 70, except that 1 1/4 inch diameter conduit from cable tray or telecommunication room backboard to each work area outlet is required. Provide building pathway as specified in the spec and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

Conceal conduit within finished walls, ceilings, and floors (not in wet
areas). Keep conduit minimum 12 inches away from parallel runs of electrical power equipment, flues, steam, light ballast, and hot water pipes. Install conduit parallel with or at right angles to ceilings, walls, and structural members where located above accessible ceilings and where conduit is visible after completion of project. Run conduits in crawl spaces as if exposed. Install no more than two 90 degree bends for a single horizontal cable run. All bends/turns in conduits will be in straight runs of conduit; a pull box shall be installed after every 180 degrees of bends or 100’; in no case will a turn be made within a pull box. The minimum size for a pull box for a single 1¼” conduit will be 5” long by 5” wide by 2 7/8” deep, and for a 3” conduit 30”W x 54”L x 9”D. All conduits should contain a bushing at the end to protect the cable from damage and required bonding. Pull points, LC, LB, condo lets, and consolidation points are not authorized.

Under floor cabling, under floor duct, and conduit under floor slabs should be avoided in the Camp Lejeune Greater area due to wet area close to coastal waters.

3.1.3 Service Entrance Conduit, Overhead

Provide service entrance overhead as specified in this spec and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEMS.

Ensure entrance fitting or weather head is sized to ensure min bend radius for largest cable is maintained.

3.1.4 Service Entrance Conduit, Underground

Provide service entrance underground as specified in this spec and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

Underground portion shall be encased in minimum of 3 inches of concrete extending from the building entrance to OSP demarcation point and shall be a minimum of 18 inches below slab or grade. Location of entrance conduit in communications room should be to the left of the longest furthest wall from the door.

3.1.5 Cable Tray Installation

Install cable tray as specified in this spec and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Only CMP and OFNP type cable shall be installed in a plenum.

A continuous stranded bonding conductor shall be run on the outside along the tray tapped to each section to ensure bonding. Remove all sharps from cable tray and pathways. Ensure bonding is on the pathway so as not to obstruct horizontal cabling.

3.1.6 Work Area Outlets

3.1.6.1 Terminations

Terminate UTP cable in accordance with TIA-568-C.1, TIA-568-C.2 and wiring configuration as specified. Terminate fiber optic cables in accordance with TIA-568-C.3

All work areas will contain a minimum of two communications face plates. Any work area larger than 80 sq feet will require additional face plates to
service any work location in the room within 6 feet of a faceplate. This also applies to any area that could be converted to work space in the future. Recommend a communications outlet box be placed 6” to the left or right of every electrical outlet box in workable office areas or any area that could be converted into workable office area such as a storage closet; All work area face plates will contain four category 6 jacks terminated with T568A configuration unless otherwise approved by AHJ.

3.1.6.2 Cover Plates

As a minimum, each outlet/connector shall be labeled as to its function and a unique number to identify cable link in accordance with the paragraph LABELING in this section. (For secured networks contact AHJ as shielded twisted pair and color coded face plates may be necessary).

3.1.6.3 Cables

Unshielded/shielded twisted pair and fiber optic cables shall have a minimum of 6 inches of slack cable loosely coiled into the communications outlet boxes or in cable tray as close as possible to outlet box. Minimum manufacturer's bend radius for each type of cable shall not be exceeded.

3.1.6.4 Pull Cords

Pull cords shall be installed in conduit serving communications outlets that do not have cable installed (this is not normal as all outlets should be cabled).

3.1.6.5 Multi-User Telecommunications Outlet Assembly (MUTOA)

Run horizontal cable in the ceiling and terminate each cable on a MUTOA in each individual zone. MUTOAs shall not be located in ceiling spaces, or any obstructed area. MUTOAs shall not be installed in furniture unless that unit of furniture is permanently secured to the building structure. MUTOAs shall be located in an open work area so that each furniture cluster is served by at least one MUTOA. The MUTOA shall be limited to serving a maximum of six work areas. Maximum work area cable length requirements shall also be taken into account. MUTOAs must be labeled to include the maximum length of work area cables. MUTOA labeling is in addition to the labeling described in TIA-606, or other applicable cabling administration standards. Work area cables extending from the MUTOA to the work area device must also be uniquely identified and labeled.

3.1.7 Communications Space Termination

Install termination hardware required for Category 6 and optical fiber system. An manufacture approved insulation displacement tool shall be used for terminating copper cable to insulation displacement connectors.

3.1.7.1 Connector Blocks

Connector blocks shall be cabinet/rack mounted, as approved by the AHJ, in orderly rows and columns. Adequate vertical and horizontal wire routing areas shall be provided between groups of blocks. Install in accordance with industry standard wire routing guides in accordance with TIA-569.

3.1.7.2 Patch Panels

Patch panels shall be mounted in equipment cabinets/racks with sufficient
ports to accommodate the installed cable plant plus 25 percent spares.

a. Copper cable entering a patch panel shall be secured to the panel with hook and loop ties and as recommended by the manufacturer to prevent movement of the cable.

b. Fiber Optic Patch Panel. Fiber optic cable loop shall be 3 feet in length provided as recommended by the manufacturer. The outer jacket of each cable entering a patch panel shall be secured to the panel to prevent movement of the fibers within the panel, using clamps or brackets specifically manufactured for that purpose.

3.1.7.3 Equipment Support Frames

Install in accordance with TIA-569:

a. Bracket, wall mounted. Mount bracket to plywood backboard in accordance with manufacturer's recommendations. Mount so height of highest panel does not exceed 78 inches above floor. Mount so there is sufficient space remaining on backboard to mount lightning protection, bonding, and cable managers or install additional backboards.

b. Racks, floor mounted modular type. Permanently anchor rack to the floor in accordance with manufacturer's recommendations. Install sections of ladder rack anchored to telephone rack/ cabinet and at least two walls.

c. Cabinets, freestanding modular type. Permanently anchor to the floor in accordance with manufacturer's recommendations. When cabinets are connected together, remove adjoining side panels for cable routing between cabinets. Mount rack mounted fan in cabinet. Install sections of ladder rack anchored to telephone rack/ cabinet and at least two walls.

d. Cabinets, wall-mounted modular type. Mount cabinet to plywood backboard in accordance with manufacturer's recommendations. Mount cabinet so height of highest panel does not exceed 78 inches above floor. Mount so there is sufficient space remaining on backboard to mount lightning protection, bonding, and cable managers or install additional backboards.

3.1.8 Electrical Penetrations

Seal openings around electrical penetrations through fire resistance-rated wall, partitions, floors, or ceilings as specified in Section 07 84 00 FIRESTOPPING.

3.1.9 Grounding and Bonding

Provide in accordance with TIA-607, NFPA 70 and as specified in this spec and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM except only two hole compression lugs will be accepted.

3.2 LABELING

3.2.1 Labels

Provide labeling in accordance with TIA-606 except jacks will be numbered in a logical, sequential, clockwise numbering system from 1 to X with a
closet designator. Example would be 145 C 146, would be the 145th & 146th jacks from the C comm. room. All labels shall be numbered with manufacture's labeling system (not fabricated) and be equipped with laminated plastic cover. All terminations that are not to work area outlets should be in the last patch panel locations and labeled accordingly i.e. DDC, FACP, Elevator, Wall phones, or Wireless access points.

3.2.2 Cable

Cables shall be labeled using color labels on both ends with identifiers in accordance with TIA-606.

3.2.3 Termination Hardware

Workstation outlets and patch panel connections shall be labeled using manufacturing labeling system, color coded labels with identifiers in accordance with this spec and TIA-606. Coordinate with Base Telephone.

3.3 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.3.1 Painting Backboards

Camp Lejeune no longer paints backboards as fire rated plywood is available manufactured fire retardant backboard shall be used, so as not to increase flame spread and smoke density and must be appropriately labeled. Label and fire rating stamp must be visible.

3.4 FIELD FABRICATED NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.5 TESTING

3.5.1 Communications Cabling Testing

Perform communications cabling inspection, verification, and performance tests in accordance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3 and AHJ local. Test equipment shall conform to TIA-1152. Perform optical fiber field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.

3.5.1.1 Inspection

Visually inspect all communications cabling jacket materials for UL or third party certification markings. Inspect cabling terminations in communications rooms and at workstations to confirm color code for T568A pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, and TIA-570 for residential cabling. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, cable physical damage, and patch panels.
3.5.1.2 Verification Tests

Backbone copper cabling shall be tested for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has overall shield. Test operation of shorting bars in connection blocks. Test cables after all terminations are complete but prior to being cross-connected.

For multimode optical fiber, perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-14 using Method A with power meter and light source for optical fiber validate / troubleshoot failures with Method B. For single-mode optical fiber of sufficient distance (normally OSP), perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-7 using Method B, OTDR for single-mode optical fiber. Perform verification acceptance tests.

3.5.1.3 Performance Tests

Provide summary in .pdf (hard and soft copy) detailed tester results in test format .flw (soft copy only), and fiber power meter/OTDR reports (summary hard copy and detailed soft copy). All Test reports should have a building or project number on it. The final QC and certification of installation will be performed by TSD after the contractor has provided passing and acceptable results on all test and as-built drawings showing all communications outlets telecommunications outlets and their numbers to include any empty conduit or ports coiled in overhead for future use and all building automated system ports such as DDC, Elevator, FACP, or WAPs. Test results that are a marginal may not be accepted. Also fiber tests that pass the link budget but exceed tolerance on any connector or splice are considered a failure. All discrepancies need to be repaired and retested.

Perform testing for each outlet and MUTOA as follows:

a. Perform Category 6 link tests in accordance with TIA-568-C.1 and TIA-568-C.2. Tests shall include wire map, length, insertion loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, return loss, propagation delay, and delay skew.

b. Optical fiber Links. Perform optical fiber end-to-end link tests in accordance with TIA-568-C.3.

3.5.1.4 Final Verification Tests

Perform verification tests for all copper and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.

a. Voice Tests. These tests assume that dial tone service has been installed (normally only done for FACP, Elevator, or emergency phones). Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and DSN telephone call.

b. Data Tests. These tests assume the Information Technology Staff has a network installed and are available to assist with testing (normally this is only done for VTC, CCTV). Connect to the network interface device at the demarcation point. Log onto the network to ensure proper
connection to the network.

-- End of Section --
On Backboard – PROTECTOR / BUILDING ENTRANCE (BEP), TMGB, Proper Bonding & Grounding, Cable Management and Slack on Ladder Rack. Ladder rack should be anchored from comm. rack to at least two walls.

Rack or Cabinet if in unsecure area

FIBER Distribution

ST connectors

CABLE MANAGER

COPPER

Connecting BLOCKS

Number of telecommunications work outlets in building determine number of patch panels and need for additional racks

If 2 racks are used backbone fiber and copper cable terminations are in the left rack. 3 or more racks are used: place the fiber and copper cable terminations in center racking to reduce patch cord length

Work Area Outlet Icons should match cable color

TELECOMMUNICATIONS INFRASTRUCTURE STANDARDS MARINE CORPS BASE CAMP LEJEUNE

SECTION 27 10 00
Encl A
RACK ELEVATION EXAMPLE
Telephone backboard - 4'x8' Provide min 2 void-free, interior grade plywood 19 mm (3/4 inch) thick as indicated. Backboards shall be fire rated with the fire stamp visible. Boards should be installed 4' Width x 8' Height securely fastened to the wall anywhere equipment is to be mounted.

General notes
-all metallic conduit and equipment must be bonded to the TMGB and building ground per TIA J-STD-607-A with min #6AWG stranded green sheath conductor.
-all conduits need to be securely mounted, fire stopped, and over lap the back board by 3-6".
-2 dedicated 20 amp dual power is required per comm. rack/cabinet.

-If wired by base telephone; contractor should install all except the below and add pull strings in conduits.

-if wired by contractor; install four CAT6 cables in each 1¼" conduit to typical work area outlet; also install all ladder racks, patch panels, cabinets, building protectors, OSP PE-39 cable, fiber optic cable, riser cable, and equipment IAW Base Tele 27 10 00 .
Basket tray or home run conduit

Ladder rack around whole room and to free standing racks (some not shown so other systems can be seen)

Telephone backboard is always the long wall farthest from door

Sleeves to 2nd floor comm. room

BEP

OSP conduits

TMGB

CATV, Security, Un official providers backboard

Light fixture

Door always swings out

..HVAC over door

NOT to Scale for reference only
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL CABLE AND TELECOMMUNICATIONS ASSOCIATION (NCTA)

NCTA RP (2003) NCTA Recommended Practices for Measurements on Cable Television Systems

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

47 CFR 76.605 Technical Standards

UNDERWRITERS LABORATORIES (UL)

UL 1581 (2001; Reprint Jun 2015) Electrical Wires, Cables, and Flexible Cords

UL 1666 (2007; Reprint Jun 2012) Test for Flame Propagation Height of Electrical and Optical-Fiber Cables Installed Vertically in Shafts

UL 969 (1995; Reprint Sep 2014) Standard for Marking and Labeling Systems

1.2 RELATED REQUIREMENTS

Section 26 00 00 BASIC ELECTRICAL MATERIALS AND METHODS, applies to this section with the additions and modifications specified herein.
1.3 DEFINITIONS

1.3.1 CATV

Community antenna television (CATV) system, commonly referred to as cable television, is a network of cables, headend, electronic and passive components that process and amplify television (TV) signals for distribution from the headend equipment to the individual television outlets.

1.3.2 Headend

The connection point between CATV system equipment and equipment provided by the local CATV company.

1.3.3 Distribution System

Distribution system transports and delivers adequate signals to each receiver. Provides distortion-free signal to TV sets by isolating each receiver from the system and by providing proper amount of signal to each set.

1.3.4 Cable

Trunk and feeder cables are low-loss cables used to transport the desired signal from the headend equipment to the communications closet in the area to be served. These cables are used to transport signal from the communications closet into close proximity to a number of user locations in excess of 200 feet from the headend equipment. Drop cables are used to transport the desired signal used from the communications closet to the wall outlet.

1.4 SYSTEM DESCRIPTION

1.4.1 Headend

Contractor shall provide interior equipment up to headend and including the main amplifier located at the interior CATV backboard or cabinet.

1.4.2 Distribution System

Distribution system shall be star topology with each outlet connected to a communications closet with a feeder cable or a drop cable and each communications closet connected to the headend equipment with a trunk cable.

1.4.3 Cable

Provide feeder cables to transport signal from the communications closet to user locations in excess of 200 feet from the headend equipment. Provide drop cables to transport the desired signal from the communications closet to the outlet.

1.4.4 System Components

System shall provide high quality TV signals to all outlets with a return path for interactive television and cable modem access. Provide any combination of items specified herein to achieve required performance, subject to approvals, limitations, acceptance test, and other requirements specified herein. System shall include amplifiers, splitters, combiners,
line taps, cables, outlets, tilt compensators and all other parts, components, and equipment necessary to provide a complete and usable system.

1.4.4.1 System Bandwidth

a. Downstream: 50-750 MHz minimum.

b. Upstream 5-40 MHz minimum.

1.4.5 System Performance

System shall be in compliance with 47 CFR 76.605.

1.4.5.1 Receiver Termination Signal Level

Each termination for a TV receiver must have a minimum signal level of 0 decibel millivolts (dBmV) (1000 microvolts) at 55 MHz and of 0 dBmV (1000 microvolts) at 750 MHz and a maximum signal of 15 dBmV or a level not to overload the receiver for the entire system bandwidth.

1.4.5.2 Distribution System

a. Modulation distortion at power frequencies: 4 percent or less hum distortion;

b. Composite third order distortion for:

 (1) CW carriers: 53 dB.

 (2) Modulated carriers: 59 dB.

c. Subscriber terminal isolation: 18 dB or greater.

d. Carrier to second order beat ratio: 60 dB.

e. Amplitude characteristic shall be within a range of plus or minus 2 decibels from 0.75 MHz to 5.0 MHz above the lower boundary frequency of the cable television channel, referenced to the average of the highest and lowest amplitudes within these frequency boundaries.

f. Visual, aural carrier level, 24-hour variation: 47 CFR 76.605, subpart (a), rules (4), (5), and (6).

g. Frequency determination: 47 CFR 76.605, subpart (a), rules (1), (2), and (3).

1.4.5.3 All New System Tolerance

The system shall not show a serious loss of carrier to noise when the system levels are lowered 3 dB below normal or a significant distortion when the levels are increased 3 dB above normal, as observed on a TV set located at the far end extremities of the system.

1.5 SUBMITTALS

Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

 SD-02 Shop Drawings
CATV system wiring diagrams and installation details

CATV system components

SD-03 Product Data

Attenuators
Amplifiers, including headend, trunk, bridging, and distribution
Cables, including trunk, feeder, and drop
Terminators
Splitters/combiners
Line Taps
Outlets
Connectors
Tilt compensator
Grounding block

Submittals for each manufactured item shall be the current manufacturer's descriptive literature of catalog products, equipment drawings, diagrams, performance and characteristics curves, and catalog cuts.

SD-05 Design Data

CATV System Loss Calculations

SD-06 Test Reports

Operational test plan
Operational test procedures
System pretest
Acceptance tests

SD-08 Manufacturer's Instructions

Connector Installation

1.5.1 ADDITIONAL SUBMITTAL REQUIREMENTS

All submittals of material, equipment and design must be approved by the Base Telephone Office via the Contracting Officer prior to installing any telecommunications wiring and equipment.
1.6 QUALITY ASSURANCE

1.6.1 Wiring Diagrams and Installation Details

Illustrate how each item of equipment functions in the system and include an overall system schematic indicating the relationship of CATV units on one diagram. Drawings shall include wiring diagrams and installation details of equipment indicating proposed locations, layout and arrangements, and other items that must be shown to ensure coordinated installation.

1.6.2 CATV System Loss Calculations

Calculations shall verify that the system does not exceed the loss values specified in dBmV at the input of all active devices and the receiver terminations. Provide a drawing displaying all distribution network calculations. The drawing should accurately show taps, splitters, outlets, and the type and length of all drop cables. The drawing shall show how many taps, splitters, or outlets are served by each tap or splitter.

1.6.3 Operational Test Plan

Test plan shall define tests required to ensure that the system meets technical, operational, and performance specifications. Test plan shall be based on NCTA RP and be in accordance with FCC proof of performance requirements. Test plan shall include plan for testing for signal leakage. Provide test requirements and guidelines.

1.6.4 Operational Test Procedures

Use test plan and design documents to develop test procedures. Procedures shall consist of detailed instructions for a test setup, execution, and evaluation of test results.

1.6.5 Connector Installation

Provide manufacturer's instructions for installing connectors.

PART 2 PRODUCTS

2.1 ELECTRONIC EQUIPMENT

Electronic components of similar type shall be produced and designed by the same manufacturer as major components of the equipment and shall have the manufacturer's name and model permanently attached. Equipment shall function properly as a complete integrated system. Equipment shall be shielded. The system shall be designed to operate within 5 to 1000 MHz bandwidth using 1000 MHz passive devices and a minimum of 750 MHz active devices.

2.2 HEADEND EQUIPMENT

2.2.1 Headend Amplifiers

Provide broadband distribution amplifiers. Amplifiers shall amplify broadband signals from 40 to 750 MHz and provide an amplified return path for signals from 5 to 40 MHz for 75 ohms impedance. Amplifiers shall be bidirectional with variable slope and gain control.
2.2.2 Attenuators

Provide attenuators to equalize signal levels, when required. Variable attenuators are not permitted.

2.2.3 Power Supplies

Power supplies shall contain a current limiter circuit to protect against short circuits on the radio frequency (RF) line. Provide overvoltage protection to protect solid state equipment from line surges and induced voltages, in accordance with IEEE C62.41.1 and IEEE C62.41.2.

2.3 DISTRIBUTION EQUIPMENT

2.3.1 Distribution Amplifiers

Distribution amplifiers shall be equipped for 75 ohms input and output impedance. Electronic equipment exposed to weather shall be equipped with weatherproof housings. Amplifiers shall be bidirectional with variable slope and gain control and shall amplify broadband signals from 50 to 750 MHz and provide an amplified return path for signals from 5 to 40 MHz for 75 ohms impedance.

2.3.1.1 Trunk Amplifiers

Trunk amplifiers shall have automatic level and slope control features.

2.3.1.2 Bridging Amplifiers

Bridging amplifiers shall be used to connect feeder cables to trunk cables.

2.3.2 Cables and Associated Hardware

Cabling shall be UL listed for the application and shall comply with NFPA 70. Provide a labeling system for cabling as required by UL 969. Cabling manufactured more than 12 months prior to date of installation shall not be used.

2.3.2.1 Trunk Cable

UL 1666. Provide trunk cable with an NFPA 70 rating of CATVR.

a. Provide RG-11 coaxial cable with the following characteristics:

 (1) #14 AWG copper-clad steel center conductor.

 (2) Gas injected foam polyethylene dielectric with nominal 0.28 inches outer diameter.

 (3) Bonded foil inner-shield and 60 percent aluminum braid or quad shield.

 (4) 75 ohms impedance.

 (5) 82 to 85 percent nominal velocity of propagation.

 (6) Black PVC jacket

 (7) Maximum attenuation characteristics:
b. Provide 625 Series cable with an NFPA 70 rating of CATVR and the following characteristics:

 (1) Copper-clad aluminum center conductor
 (2) Seamless aluminum tubing shield
 (3) Expanded polyethylene dielectric
 (4) 75 ohms impedance
 (5) Nominal diameter over outer conductor: 0.625 inches.
 (6) Maximum attenuation at 20 degrees C and 1000 MHz: 2.07 dB/100 feet
 (7) Black medium density polyethylene jacket
 (8) Nominal 87 percent velocity of propagation

2.3.2.2 Feeder Cable

UL 1581, provide RG-11 coaxial trunk cable with an NFPA 70 rating of CATV and the following characteristics:

a. #14 AWG copper-clad steel center conductor.

b. Foam FEP dielectric with .28 inches nominal outer diameter.

c. Bonded foil inner-shield and a minimum of 60 percent aluminum braid or quad shield.

d. 75 ohms impedance.

e. 81 to 84 percent nominal velocity of propagation.
f. PVC low smoke polymer or FEP jacket.

g. Maximum attenuation characteristics:

<table>
<thead>
<tr>
<th>CATV</th>
<th>MHz</th>
<th>DB/100 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>.95</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>4.8</td>
</tr>
</tbody>
</table>

2.3.2.3 Drop Cable

UL 1581. Provide RG 6 coaxial cable with an NFPA 70 rating of CATV and with the following characteristics:

a. No. 18 AWG copper-clad steel center conductor.

b. Bonded foil inner-shield and 90 percent aluminum braid.

c. Characteristic impedance of 75 ohms.

d. Foam FEP dielectric

e. Nominal capacitance, conductor to shield, of 16.2 pf per 100 ft.

f. Maximum operating voltage of 350 V RMS.

g. Maximum attenuation:

<table>
<thead>
<tr>
<th>CATV</th>
<th>MHz</th>
<th>DB/100 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>4.0</td>
</tr>
</tbody>
</table>
2.3.3 Terminators

Terminators shall be rated for 75 ohms and 1/4 watt.

2.3.4 Splitters/Combiners

Use splitters/combiners with characteristics equal to or exceeding the characteristics listed in this paragraph over the entire operating band. All unused outlets must be terminated with 75-ohm terminators.

a. Peak to Valley: Not to exceed 1 dB across bandwidth of device.

b. Return loss: 18 dB minimum.

c. Bandwidth: 5-1000 MHz

2.3.5 Line Taps

Line taps shall have 18 dB minimum isolation from each tap to the thru-line. Pressure tapoffs are not permitted. Taps shall be rated from 5 to 1000 MHz and shall have a peak to valley not to exceed 1 dB to 1 GHz.

2.3.6 Outlets

Provide flush mounted, 75-ohm, F-type connector outlets rated from 5 to 1000 MHz in standard electrical outlet boxes with isolation barrier.

2.3.7 Connectors

Provide one piece connectors. Trunk and feeder cable connectors shall be pin type. Drop cable connectors shall be feed thru type.

2.3.8 Tilt Compensator

Provide tilt compensators as required.

2.4 GROUNDING AND BONDING

Provide ground rods and connections in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.4.1 Grounding Block

Provide corrosion-resistant grounding block suitable for indoor installation.
2.5 BACKBOARDS

Provide void-free, fire rated interior grade plywood, 3/4 inch thick, 4 by 8 feet. Backboards shall be painted with a gray, nonconductive fire-resistant overcoat. Do not cover the fire stamp on the backboard.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Distribution System

Distribution system shall conform to requirements specified herein. Installation shall be in accordance with IEEE C2 and NFPA 70.

3.1.1.1 Raceway

Provide cable installed in raceways such as conduit and cable trays in compliance with NFPA 70. Raceway shall comply with Section 26 20 00, INTERIOR DISTRIBUTION SYSTEM. Provide 3 inch, minimum, PVC from interior headend location to exterior CATV company connection location. Coordinate location and requirements with the local cable television company.

3.1.1.2 Grounding System

Provide the grounding block at the main CATV backboard. Ground this device according to the requirements of IEEE C2 and NFPA 70.

3.1.1.3 Trunk, Feeder, and Drop Cable

Provide cable to grounding blocks, to line taps, and to outlets.

3.2 FIELD QUALITY CONTROL

3.2.1 System Pretest

Upon completing installation of the CATV system, the Contractor shall align and balance the system and shall perform complete pretesting. During the system pretest, Contractor, utilizing the approved spectrum analyzer or signal level meter, shall verify that the system is fully operational and meets all the system performance requirements of the specification. Contractor shall test the signal loss in dBmV at 55 and 750 MHz. The signal levels shall be 0 dBmV (1000 microvolts), minimum. The signal shall not exceed 15 dBmV over the entire system bandwidth. Any deficiencies found shall be corrected and revalidated by follow up testing. Contractor shall measure and record the video and audio carrier levels at each of the frequency levels specified at each of the following points in the system:

a. Furthest outlet from each communication closet.

b. A random sampling of 25 percent of the outlets from each communication closet.

c. Headend and Distribution amplifier inputs and outputs.

3.2.2 Acceptance Tests

Contractor shall notify the Contracting Officer of system readiness 10
days prior to the date of acceptance testing. Contractor shall also coordinate with the local CATV provider and allow them to attend witness tests. CATV system shall be tested in accordance with the approved test plan in the presence of the Contracting Officer's representative to certify acceptable performance. System test shall verify that the total system meets all the requirements of the specification and complies with the specified standards. Contractor shall verify that no signal leakage exists in conformance with NCTA RP and 47 CFR 76.605. System leakage shall also be tested at the headend location with signal applied to system. Deficiencies revealed by the testing shall be corrected on the outlets sampled as well as on the outlets not sampled and revalidated by follow-up testing. Contractor shall conduct testing at each of the following points in the system:

a. Furthest outlet from each communication closet.

b. A random sampling of 25 percent of the outlets from each communication closet as designated by the Contracting Officer.

d. Headend and Distribution amplifier inputs and outputs.

-- End of Section --
SECTION 28 31 76
INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM
08/11

PART 1 GENERAL

1.1 RELATED SECTIONS

Section 26 00 00 BASIC ELECTRICAL MATERIALS AND METHODS, applies to this section, with the additions and modifications specified herein. In addition, refer to the following sections for related work and coordination:

Section 21 13 13.00 20 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION
Section 07 84 00 FIRESTOPPING for additional work related to firestopping.

1.2 SUMMARY

1.2.1 Scope

a. This work includes completion of design and providing a new, complete, fire alarm and mass notification system as described herein and on the contract drawings for the HP145. Include in the system wiring, raceways, pull boxes, terminal cabinets, outlet and mounting boxes, control equipment, alarm, and supervisory signal initiating devices, alarm notification appliances, supervising station fire alarm system transmitter, and other accessories and miscellaneous items required for a complete operating system even though each item is not specifically mentioned or described. Provide system complete and ready for operation.

b. Provide equipment, materials, installation, workmanship, inspection, and testing in strict accordance with the required provisions of NFPA 72, ISO 7240-16, IEC 60268-16, except as modified herein. The system layout on the drawings show the intent of coverage and are shown in suggested locations. Submit plan view drawing showing device locations, terminal cabinet locations, junction boxes, other related equipment, conduit routing, wire counts, circuit identification in each conduit, and circuit layouts for all floors. Drawings shall comply with the requirements of NFPA 170. Final quantity, system layout, and coordination are the responsibility of the Contractor.

c. A lockout code shall not be installed in the hardware, firmware or software of any fire protection system; in addition, the installer and operator codes shall remain as factory default setting.

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ACOUSTICAL SOCIETY OF AMERICA (ASA)

ASA S3.2 (2009; R 2014) Method for Measuring the Intelligibility of Speech Over
Communication Systems (ASA 85)

FM GLOBAL (FM)

FM APP GUIDE (updated on-line) Approval Guide
http://www.approvalguide.com/

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

IEC 60268-16 (2003; ED 4.0) Sound System Equipment - Part 16: Objective Rating Of Speech Intelligibility By Speech Transmission Index

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. DEPARTMENT OF DEFENSE (DOD)

UNDERWRITERS LABORATORIES (UL)

1.4 DEFINITIONS

Wherever mentioned in this specification or on the drawings, the equipment, devices, and functions shall be defined as follows:

1.4.1 Interface Device

An addressable device that interconnects hard wired systems or devices to an analog/addressable system.

1.4.2 Remote Fire Alarm and Mass Notification Control Unit

A control panel, electronically remote from the fire alarm and mass notification control panel, that receives inputs from automatic and manual fire alarm devices; may supply power to detection devices and interface devices; may provide transfer of power to the notification appliances; may provide transfer of condition to relays or devices connected to the control unit; and reports to and receives signals from the fire alarm control panel.

1.4.3 Fire Alarm Control Unit and Mass Notification Autonomous Control Unit (FMCP)

A master control panel having the features of a fire alarm and mass notification control unit and fire alarm and mass notification control units are interconnected. The panel has central processing, memory, input and output terminals.

1.4.4 Terminal Cabinet

A steel cabinet with locking, hinge-mounted door that terminal strips are securely mounted.
1.4.4.1 Documentation Cabinet

A steel cabinet with locking, hinge-mounted door that As-Built drawings, NFPA 72 Record of Completion and CD/DVD (in jewel case) of site specific software are stored. Documentation cabinet shall be located next to the FACP.

1.4.4.2 Spare Parts Box

A steel cabinet with locking, hinge-mounted door in which spare fire alarm/mass notification parts are stored. Spare parts box shall be located near the FACP.

1.5 SUBMITTALS

The contractor shall engage with a Qualified Fire Protection Engineer (QFPE) as defined in UFC 3-600-01 for review of all submittals. The QFPE must review the shop drawings, calculations and material submittals. The shop drawings must bear the Review Stamp of the QFPE prior to submitting the fire alarm system shop drawings to the Camp LeJeune FPE and NAVFAC FPE. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

 Nameplates
 Instructions
 Wiring Diagrams
 System Layout
 System Operation
 Notification Appliances
 Amplifiers

Annotated catalog date, in table format shall be included on the drawings indicating the manufacturer's name, model, voltage, and catalog numbers for equipment and components. Minimum sheet size for shop drawings shall be 24" X 36".

SD-03 Product Data

 Technical Data And Computer Software
 Fire Alarm Control Unit and Mass Notification Control Unit (FMCP)
 Terminal Cabinets
 Manual Stations
 Transmitters (including housing)
 Batteries
 Battery Chargers
Smoke Sensors
Notification Appliances
Addressable Interface Devices
Amplifiers
Digitalized Voice Generators
Digital Alarm Communicator Transmitter (DACT)

SD-05 Design Data
Battery Power
Battery Chargers
SD-06 Test Reports
Field Quality Control
Testing Procedures
Smoke Sensor Testing Procedures
SD-07 Certificates
Installer
Formal Inspection and Tests
Final Testing
SD-09 Manufacturer's Field Reports
System Operation
Fire Alarm/Mass Notification System
SD-10 Operation and Maintenance Data
Operation and Maintenance (O&M) Instructions and Programming
Instruction of Government Employees
SD-11 Closeout Submittals
As-Built Drawings

1.6 TECHNICAL DATA AND COMPUTER SOFTWARE

Technical data and computer software (meaning technical data that relates to computer software) that are specifically identified in this project, and may be defined/required in other specifications, shall be delivered, strictly in accordance with the CONTRACT CLAUSES. Identify data delivered by reference to the particular specification paragraph against which it is furnished. Data to be submitted shall include complete system, equipment,
and software descriptions. Descriptions shall show how the equipment will operate as a system to meet the performance requirements of this contract. The data package shall also include the following:

a. Identification of programmable portions of system equipment and capabilities.

b. Description of system revision and expansion capabilities and methods of implementation detailing both equipment and software requirements.

c. Provision of operational software data on all modes of programmable portions of the fire alarm and detection system.

d. Description of Fire Alarm and Mass Notification Control Panel equipment operation.

e. Description of auxiliary and remote equipment operations.

f. Library of application software.

g. Operation and maintenance manuals.

1.7 QUALITY ASSURANCE

Equipment and devices shall be compatible and operable with existing station fire alarm system and shall not impair reliability or operational functions of existing supervising station fire alarm system. The supervising equipment is existing and consists of a Sur-Gard System III multi-platform digital telephone receiver which receives signals via contact ID protocol.

a. Interpret reference to "authority having jurisdiction" to mean the Camp LeJeune Fire Protection Engineer.

b. The recommended practices stated in the manufacturer's literature or documentation shall be considered as mandatory requirements.

c. Devices and equipment for fire alarm service must be listed by UL Fire Prot Dir or approved by FM APP GUIDE.

1.7.1 Qualifications

1.7.1.1 Design Services

Installations requiring completion of installation drawings and specification or modifications of fire detection, fire alarm, mass notification system, fire suppression systems or mass notification systems shall require the services and review of a qualified fire protection engineer (QFPE). For the purposes of meeting this requirement, a qualified engineer is defined as an individual meeting one of the following conditions:

a. A registered professional engineer having a Bachelor of Science or Masters of Science Degree in Fire Protection Engineering from an accredited university engineering program, plus a minimum of four years work experience in fire protection engineering.

b. A registered professional engineer (P.E.) in fire protection engineering.
1.7.1.2 Supervisor

NICET Fire Alarm Technicians to perform the installation of the system. A NICET Level 4 Fire Alarm Technician shall supervise the installation of the fire alarm system/mass notification system. The Fire Alarm technicians supervising the installation of equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.3 Technician

NICET Level II Fire Alarm Technicians with a minimum of four years of experience utilized to install and terminate fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians installing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.4 Installer

NICET Level I Fire Alarm installer with a minimum of two years of experience utilized to assist in the installation of fire alarm/mass notification devices, cabinets and panels. An electrician shall be allowed to install wire, cable, conduit and backboxes for the fire alarm system/mass notification system. The Fire Alarm installer shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.5 Test Personnel

Fire Alarm Technicians with a minimum of eight years of experience (NICET Level IV) utilized to test and certify the installation of the fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians testing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.6 Manufacturer's Representative

The fire alarm and mass notification equipment manufacturer's representative shall be present for the connection of wiring to the control panel. The Manufacturer's Representative shall be an employee of the manufacturer with necessary technical training (NICET Level IV) on the system being installed.

1.7.1.7 Manufacturer

Components shall be of current design and shall be in regular and recurrent production at the time of installation. Provide design, materials, and devices for a protected premises fire alarm/mass notification system, complete, conforming to NFPA 72, except as otherwise or additionally specified herein.
1.7.2 Regulatory Requirements

1.7.2.1 Requirements for Fire Protection Service

Equipment and material shall have been tested by UL and listed in UL Fire Prot Dir or approved by FM and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, they shall mean listed in UL Fire Prot Dir or FM APP GUIDE. The omission of these terms under the description of any item of equipment described shall not be construed as waiving this requirement. All listings or approval by testing laboratories shall be from an existing ANSI or UL published standard.

1.7.2.2 Fire Alarm/Mass Notification System

Furnish equipment that is compatible and is UL listed, FM approved, or listed by a nationally recognized testing laboratory for the intended use. All listings by testing laboratories shall be from an existing ANSI or UL published standard. Submit a unique identifier for each device, including the control panel and initiating and indicating devices, with an indication of test results, and signature of the factory-trained technician of the control panel manufacturer and equipment installer. With reports on preliminary tests. Include the NFPA 72 Record of Completion and NFPA 72 Inspection and Testing Form, with the appropriate test reports.

1.7.2.3 Fire Alarm Testing Services or Laboratories

Construct and install fire alarm and fire detection equipment in accordance with UL Fire Prot Dir, UL Electrical Constructn, or FM APP GUIDE.

1.8 DELIVERY, STORAGE, AND HANDLING

Protect equipment delivered and placed in storage from the weather, humidity, and temperature variation, dirt and dust, and other contaminants.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Submit annotated catalog data as required in the paragraph SUBMITTAL, in table format on the drawings, showing manufacturer's name, model, voltage, and catalog numbers for equipment and components. Submitted shop drawings shall not be smaller than 24" X 36" detail drawings. Also provide UL or FM listing cards for equipment provided.

2.1.1 Standard Products

Provide materials, equipment, and devices that have been tested by a nationally recognized testing laboratory, such as UL or FM Approvals, LLC (FM), and listed or approved for fire protection service when so required by NFPA 72 or this specification. Select material from one manufacturer, where possible, and not a combination of manufacturers, for any particular classification of materials. Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least two years prior to bid opening.

2.1.2 Nameplates

Major components of equipment shall have the manufacturer's name, address, type or style, model or serial number, catalog number, date of
installation, installing Contractor's name and address, and the contract number provided on a new plate permanently affixed to the item or equipment. Major components include, but are not limited to, the following:

a. FMCPs

b. Automatic transmitter/transceiver

c. Terminal Cabinet

Furnish nameplate illustrations and data to obtain approval by the Contracting Officer before installation. Obtain approval by the Contracting Officer for installation locations. Nameplates shall be etched metal or plastic, permanently attached by screws to panels or adjacent walls.

2.1.3 Keys

Keys and locks for equipment shall be identical. Provide not less than six keys of each type required. Master all keys and locks to a single key as required by the Camp LeJeune Fire Department.

LOC is not permitted to be locked or lockable.

2.2 GENERAL PRODUCT REQUIREMENT

All fire alarm and mass notification equipment shall be listed for use under the applicable reference standards. Interfacing of Listed UL 864 or similar approved industry listing with Mass Notification Panels listed to UL 2017 shall be done in a laboratory listed configuration, if the software programming features cannot provide a listed interface control. If a field modification is needed, such as adding equipment like relays, the manufacturer of the panels being same or different brand from manufacturer shall provide detailed modification instructions/diagrams to the installing contractor for review and confirmation by the installing contractor. As part of the submittal documents, provide this information.

2.3 SYSTEM OPERATION

The Addressable Interior Fire Alarm and Mass Notification System shall be a complete, supervised, noncoded, analog/addressable fire alarm and mass notification system conforming to NFPA 72, UL 864, and UL 2017. The system shall be activated into the alarm mode by actuation of any alarm initiating device. The system shall remain in the alarm mode until the initiating device is reset and the control panel is reset and restored to normal. The system may be placed in the alarm mode by local microphones, LOC, or remotely from authorized locations/users.

Submit data on each circuit to indicate that there is at least 25 percent spare capacity for notification appliances, 25 percent spare capacity for initiating devices. Annotate data for each circuit on the drawings. Submit a complete description of the system operation in matrix format on the drawings. Submit a complete list of device addresses and corresponding messages.

2.3.1 Alarm Initiating Devices and Notification Appliances (Visual, Voice, Textural)

a. Connect alarm initiating devices to initiating device circuits (IDC)
Class "A", or to signal line circuits (SLC) Class "A" and installed in accordance with NFPA 72. Clearly label all IDC and SLC devices with a typed printed label affixed to each device.

b. Connect alarm notification appliances and speakers to notification appliance circuits (NAC) Class "A". Clearly label all NACs and NAC appliances with a typed printed label affixed to each circuit and appliance.

c. The system shall operate in the alarm mode upon actuation of any alarm initiating device or a mass notification signal. The system shall remain in the alarm mode until initiating device(s) or mass notification signal is/are reset and the control panel is manually reset and restored to normal. Audible, and visual appliances and systems shall comply with NFPA 72 and as specified herein. Fire alarm system/mass notification system components requiring power, except for the control panel power supply, shall operate on 24 Volts dc.

2.3.2 Functions and Operating Features

The system shall provide the following functions and operating features:

a. The FMCP shall provide power, annunciation, supervision, and control for the system. Addressable systems shall be microcomputer (microprocessor or microcontroller) based with a minimum word size of eight bits with sufficient memory to perform as specified.

b. For Class "A" circuits with conductor lengths of 3m (10 feet) or less, the conductors shall be permitted to be installed in the same raceway in accordance with NFPA 72.

c. Provide signaling line circuits for each floor.

d. Provide signaling line circuits for the network.

e. Provide notification appliance circuits. The visual alarm notification appliances shall have the flash rates synchronized as required by NFPA 72.

f. Provide electrical supervision of the primary power (AC) supply, presence of the battery, battery voltage, and placement of system modules within the control panel.

g. Provide an audible and visual trouble signal to activate upon a single break or open condition, or ground fault (or short circuit for Class "X"). The trouble signal shall also operate upon loss of primary power (AC) supply, absence of a battery supply, low battery voltage, or removal of alarm or supervisory panel modules. Provide a trouble alarm silence feature that shall silence the audible trouble signal, without affecting the visual indicator. After the system returns to normal operating conditions, the trouble signal shall again sound until the trouble is acknowledged. A smoke sensor in the process of being verified for the actual presence of smoke shall not initiate a trouble condition.

h. Provide program capability via switches in a locked portion of the FACP to bypass the automatic notification appliance circuits, fire reporting system air handler shutdown features. Operation of this programming shall indicate this action on the FACP display.
i. Alarm, supervisory, and/or trouble signals shall be automatically transmitted to the Emergency Consolidated Communication Center.

j. Alarm functions shall override trouble or supervisory functions. Supervisory functions shall override trouble functions.

k. The system shall be capable of being programmed from the panels keyboard. Programmed information shall be stored in non-volatile memory.

l. The system shall be capable of operating, supervising, and/or monitoring both addressable and non-addressable alarm and supervisory devices.

m. There shall be no limit, other than maximum system capacity, as to the number of addressable devices, that may be in alarm simultaneously.

n. Where the fire alarm/mass notification system is responsible for initiating an action in another emergency control device or system, such as an HVAC system, the addressable fire alarm relay shall be in the vicinity of the emergency control device.

o. An alarm signal shall automatically initiate the following functions:

1. Transmission of an alarm signal to the Emergency Consolidated Communication Center.

2. Visual indication of the device operated on the control panel (FACP/MNCP), and sound the audible alarm at the respective panel. Indication on the graphic annunciator shall be by floor, zone or circuit, and type of device.

3. Continuous actuation of all alarm notification appliances.

4. Recording of the event via electronically in the history log of the fire control system unit.

5. Operation of a duct smoke sensor shall shut down the appropriate air handler in accordance with NFPA 90A in addition to other requirements of this paragraph and as allowed by NFPA 72.

6. Operation of a sprinkler waterflow switch shall activate audible and visual fire alarm appliances.

p. A supervisory signal shall automatically initiate the following functions:

1. Visual indication of the device operated on the FACP and sound the audible alarm at the respective panel.

2. Transmission of a supervisory signal to the Emergency Consolidated Communication Center.

3. Recording of the event electronically in the history log of the control unit.

q. A trouble condition shall automatically initiate the following functions:
(1) Visual indication of the system trouble on the FACP and sound the audible alarm at the respective panel.

(2) Transmission of a trouble signal to the Emergency Consolidated Communication Center.

(3) Recording of the event in the history log of the control unit.

r. The maximum permissible elapsed time between the actuation of an initiating device and its indication at the FACP is 10 seconds.

s. The maximum elapsed time between the occurrence of the trouble condition and its indication at the FACP is 200 seconds.

t. Activation of a LOC pushbutton shall activate the audible and visual alarms in the facility. The audible message shall be the one associated with the pushbutton activated.

2.4 SYSTEM MONITORING

2.4.1 Valves

Each valve affecting the proper operation of a fire protection system, including automatic sprinkler control valves, standpipe control valves, sprinkler service entrance valve, isolating valves for pressure type waterflow or supervision switches, and valves at backflow preventers, whether supplied under this contract or existing, shall be electrically monitored to ensure its proper position. Provide each tamper switch with a separate address. Clearly label each sprinkler addressable devices and circuit with a typed printed label affixed to each device.

2.5 MASS NOTIFICATION SYSTEM FUNCTIONS

2.5.1 Notification Appliance Network

The audible notification appliance network consists of speakers located to provide intelligible instructions at all locations in the building. The Mass Notification System announcements shall take priority over all other audible announcements of the system including the output of the fire alarm system in a normal or alarm state. When a mass notification announcement is activated during a fire alarm, all fire alarm system functions shall continue in an alarm state except for the output signals of the fire alarm audible and visual notification appliances.

2.5.2 Strobes

Provide strobes to alert hearing-impaired occupants.

2.5.3 Wide Area MNS

The Wide Area MNS system (if available) in the area of the building shall not be activated by the in-building MNS.

2.5.4 Voice Notification

An autonomous voice notification control unit is used to monitor and control the notification appliance network and provide consoles for local operation. Using a console, personnel in the building can initiate
delivery of pre-recorded voice messages, provide live voice messages and instructions, and initiate visual strobe and optional textual message notification appliances. The autonomous voice notification control unit will temporarily override audible fire alarm notification while delivering Mass Notification messages to ensure they are intelligible.

2.5.5 Installation-Wide Control

If an installation-wide control system for mass notification exists on the base, the autonomous control unit shall communicate with the central control unit of the installation-wide system. The autonomous control unit shall receive commands/messages from the central control unit and provide status information.

2.6 OVERVOLTAGE AND SURGE PROTECTION

2.6.1 Signaling Line Circuit Surge Protection

For systems having circuits located outdoors, communications equipment shall be protected against surges induced on any signaling line circuit and shall comply with the applicable requirements of IEEE C62.41.1 and IEEE C62.41.2. Cables and conductors, that serve as communications links, shall have surge protection circuits installed at each end that meet the following waveform(s):

a. A 10 microsecond by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 microsecond by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Protection shall be provided at the equipment. Additional triple electrode gas surge protectors, rated for the application, shall be installed on each wireline circuit within 3 feet of the building cable entrance. Fuses shall not be used for surge protection.

2.6.2 Sensor Wiring Surge Protection

Digital and analog inputs and outputs shall be protected against surges induced by sensor wiring installed outdoors and as shown. The inputs and outputs shall be tested with the following waveforms:

a. A 10 by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Fuses shall not be used for surge protection.

2.7 ADDRESSABLE INTERFACE DEVICES

The initiating device being monitored shall be configured as a Class "A" initiating device circuits. The system shall be capable of defining any module as an alarm module and report alarm trouble, loss of polling, or as a supervisory module, and reporting supervisory short, supervisory open or loss of polling such as waterflow switches, valve supervisory switches, fire pump monitoring, independent smoke detection systems, relays for output function actuation, etc. The module shall be UL or FM listed as compatible with the control panel. The monitor module shall provide address setting means compatible with the control panel's SLC supervision.
and store an internal identifying code. Monitor module shall contain an integral LED that flashes each time the monitor module is polled and is visible through the device cover plate. Pull stations with a monitor module in a common backbox are not required to have an LED.

2.8 ADDRESSABLE CONTROL MODULE

The control module shall be capable of operating as a relay (dry contact form C) for interfacing the control panel with other systems, and to control door holders or initiate elevator fire service. The module shall be UL or FM listed as compatible with the control panel. The indicating device or the external load being controlled shall be configured as a Class "B" notification appliance circuits. The system shall be capable of supervising, audible, visual and dry contact circuits. The control module shall have both an input and output address. The supervision shall detect a short on the supervised circuit and shall prevent power from being applied to the circuit. The control model shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. The control module shall contain an integral LED that flashes each time the control module is polled and is visible through the device cover plate. Control Modules shall be located in environmental areas that reflect the conditions to which they were listed.

2.9 ISOLATION MODULES

Provide isolation modules to subdivide each signaling line circuit into groups of not more than 20 addressable devices between adjacent isolation modules.

2.10 SMOKE SENSORS

2.10.1 Photoelectric Smoke Sensors

Provide addressable photoelectric smoke sensors as follows:

a. Provide analog/addressable photoelectric smoke sensors utilizing the photoelectric light scattering principle for operation in accordance with UL 268. Smoke sensors shall be listed for use with the fire alarm control panel.

b. Provide self-restoring type sensors that do not require any readjustment after actuation at the FACP to restore them to normal operation. Sensors shall be UL listed as smoke-automatic fire sensors.

c. Components shall be rust and corrosion resistant. Vibration shall have no effect on the sensor's operation. Protect the detection chamber with a fine mesh metallic screen that prevents the entrance of insects or airborne materials. The screen shall not inhibit the movement of smoke particles into the chamber.

d. Provide twist lock bases with sounder that produces a minimum of 90 dBA at 10 feet for the sensors. The sensors shall maintain contact with their bases without the use of springs. Provide companion mounting base with screw terminals for each conductor. Terminate field wiring on the screw terminals. The sensor shall have a visual indicator to show actuation.

e. The sensor address shall identify the particular unit, its location within the system, and its sensitivity setting. Sensors shall be of
the low voltage type rated for use on a 24 VDC system.

f. An operator at the control panel, having a proper access level, shall have the capability to manually access the following information for each initiating device.

(1) Primary status
(2) Device type
(3) Present average value
(4) Present sensitivity selected
(5) Sensor range (normal, dirty, etc.)

2.10.2 Duct Smoke Sensors

Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated and in accordance with NFPA 90A. Units shall consist of a smoke detector as specified in paragraph Photoelectric Detectors, mounted in a special housing fitted with duct sampling tubes. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. (It is not permitted to cut the duct insulation to install the duct detector directly on the duct). Detectors shall have a manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the fire alarm panel.

a. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the requirements of NFPA 90A, UL 268A, and shall be UL listed for use in air-handling systems. The control functions, operation, reset, and bypass shall be controlled from the fire alarm control panel.

b. Lights to indicate the operation and alarm condition; and the test and reset buttons shall be visible and accessible with the unit installed and the cover in place. Remote indicators shall be provided where required by NFPA 72 and these shall be provided with test and reset switches.

c. Remote lamps and switches as well as the affected fan units shall be properly identified in etched plastic placards. Detectors shall provide for control of auxiliary contacts that provide control, interlock, and shutdown functions. Auxiliary contacts provide for this function shall be located within 3 feet of the controlled circuit or appliance. The detectors shall be supplied by the fire alarm system manufacturer to ensure complete system compatibility.

2.10.3 Smoke Sensor Testing

Smoke sensors shall be tested in accordance with NFPA 72 and manufacturer's recommended calibrated test method. Submit smoke sensor testing procedures for approval. In addition to the NFPA 72 requirements, smoke detector sensitivity shall be tested during the preliminary tests.
2.11 ELECTRIC POWER

2.11.1 Primary Power

Power shall be 120 VAC service for the FMCP from the AC service to the building in accordance with NFPA 72.

2.12 SECONDARY POWER SUPPLY

Provide for system operation in the event of primary power source failure. Transfer from normal to auxiliary (secondary) power or restoration from auxiliary to normal power shall be automatic and shall not cause transmission of a false alarm.

2.12.1 Batteries

Provide sealed, maintenance-free, sealed lead acid batteries as the source for emergency power to the FMCP. Batteries shall contain suspended electrolyte. The battery system shall be maintained in a fully charged condition by means of a solid state battery charger. Provide an automatic transfer switch to transfer the load to the batteries in the event of the failure of primary power.

2.12.1.1 Capacity

Battery size shall be the greater of the following two capacities.

a. Sufficient capacity to operate the fire alarm system under supervisory and trouble conditions, including audible trouble signal devices for 48 hours and audible and visual signal devices under alarm conditions for an additional 15 minutes.

b. Sufficient capacity to operate the mass notification for 60 minutes after loss of AC power.

2.12.1.2 Battery Power Calculations

a. Verify that battery capacity exceeds supervisory and alarm power requirements.

(1) Substantiate the battery calculations for alarm, alert, and supervisory power requirements. Include ampere-hour requirements for each system component and each panel component, and compliance with UL 864.

(2) Provide complete battery calculations for both the alarm, alert, and supervisory power requirements. Submit ampere-hour requirements for each system component with the calculations.

(3) A voltage drop calculation to indicate that sufficient voltage is available for proper operation of the system and all components, at the minimum rated voltage of the system operating on batteries.

b. For battery calculations use the following assumptions: Assume a starting voltage of 24 VDC for starting the calculations to size the batteries. Calculate the required Amp-Hours for the specified standby time, and then calculate the required Amp-Hours for the specified alarm time. Calculate the nominal battery voltage after operation on batteries for the specified time period. Using this voltage perform a

SECTION 28 31 76 Page 16
voltage drop calculation for circuit containing device and/or appliances remote from the power sources.

2.12.2 Battery Chargers

Provide a solid state, fully automatic, variable charging rate battery charger. The charger shall be capable of providing 120 percent of the connected system load and shall maintain the batteries at full charge. In the event the batteries are fully discharged (20.4 Volts dc), the charger shall recharge the batteries back to 95 percent of full charge within 48 hours after a single discharge cycle as described in paragraph CAPACITY above. Provide pilot light to indicate when batteries are manually placed on a high rate of charge as part of the unit assembly if a high rate switch is provided.

2.13 FIRE ALARM CONTROL UNIT AND MASS NOTIFICATION CONTROL UNIT (FMCP)

Provide a complete control panel fully enclosed in a lockable steel cabinet as specified herein. Operations required for testing or for normal care and maintenance of the systems shall be performed from the front of the enclosure. If more than a single unit is required at a location to form a complete control panel, the unit cabinets shall match exactly.

a. Each control unit shall provide power, supervision, control, and logic for the entire system, utilizing solid state, modular components, internally mounted and arranged for easy access. Each control unit shall be suitable for operation on a 120 volt, 60 hertz, normal building power supply. Provide each panel with supervisory functions for power failure, internal component placement, and operation.

b. Visual indication of alarm, supervisory, or trouble initiation on the fire alarm control panel shall be by liquid crystal display or similar means with a minimum of 80 characters. The mass notification control unit shall have the capability of temporarily deactivate the fire alarm audible notification appliances while delivering voice messages.

c. Provide secure operator console for initiating recorded messages, strobes and displays; and for delivering live voice messages. Provide capacity for at least eight pre-recorded messages. Provide the ability to automatically repeat pre-recorded messages. Provide a secure microphone for delivering live messages. Provide adequate discrete outputs to temporarily deactivate fire alarm audible notification, and initiate/synchronize strobes. Provide a complete set of self-diagnostics for controller and appliance network. Provide local diagnostic information display and local diagnostic information and system event log file.

d. The mass notification control unit shall have the capability of temporarily deactivating the fire alarm audible notification appliances while delivering voice messages.

2.13.1 Cabinet

Install control panel components in cabinets large enough to accommodate all components and also to allow ample gutter space for interconnection of panels as well as field wiring. The enclosure shall be identified by an engraved laminated phenolic resin nameplate. Lettering on the nameplate shall say "Fire Alarm and Mass Notification Control Panel" and shall not be
less than 1 inch high. Provide prominent rigid plastic or metal identification plates for lamps, circuits, meters, fuses, and switches. The cabinet shall be provided in a sturdy steel housing, complete with back box, hinged steel door with cylinder lock, and surface mounting provisions.

2.13.2 Control Modules

Provide power and control modules to perform all functions of the FACP. Provide audible signals to indicate any alarm, supervisory, or trouble condition. The alarm signals shall be different from the trouble signal. Connect circuit conductors entering or leaving the panel to screw-type terminals with each terminal marked for identification. Locate diodes and resistors, if any, on screw terminals in the FACP. Circuits operating at 24 VDC shall not operate at less than the UL listed voltage at the sensor or appliance connected. Circuits operating at any other voltage shall not have a voltage drop exceeding 10 percent of nominal voltage.

2.13.3 Silencing Switches

2.13.3.1 Alarm Silencing Switch

Provide an alarm silencing switch at the FMCP that shall silence the audible and visual. This switch shall be overridden upon activation of a subsequent alarm.

2.13.3.2 Supervisory/Trouble Silencing Switch

Provide supervisory and trouble silencing switch that shall silence the audible trouble and supervisory signal, but not extinguish the visual indicator. This switch shall be overridden upon activation of a subsequent alarm, supervision, or trouble condition. Audible trouble indication must resound automatically every 24 hours after the silencing feature has been operated.

2.13.4 Non-Interfering

Power and supervise each circuit such that a signal from one device does not prevent the receipt of signals from any other device. Circuits shall be manually reset by switch from the FACP after the initiating device or devices have been restored to normal.

2.13.5 Audible Notification System

The Audible Notification System shall comply with the requirements of NFPA 72 for Emergency Voice/Alarm Communications System requirements ISO 7240-16, IEC 60268-16, except as specified herein. The system shall be a one-way multi-channel voice notification system incorporating user selectability of a minimum eight distinct sounds for tone signaling, and the incorporation of a voice module for delivery of prerecorded messages. Audible appliances shall produce a temporal code 3 tone for three cycles followed by a voice message that is repeated until the control panel is reset or silenced. Automatic messages shall be broadcast through speakers throughout the building/facility but not in stairs. A live voice message shall override the automatic audible output through use of a microphone input at the control panel.

a. When using the microphone, live messages shall be broadcast throughout a selected floor or floors or all call. The system shall be capable of operating all speakers at the same time. The Audible Notification
System shall support Public Address (PA) paging for the facility. The
microprocessor shall actively interrogate circuitry, field wiring, and
digital coding necessary for the immediate and accurate rebroadcasting
of the stored voice data into the appropriate amplifier input. Loss of
operating power, supervisory power, or any other malfunction that could
render the digitalized voice module inoperative shall automatically
cause the code 3 temporal tone to take over all functions assigned to
the failed unit in the event an alarm is activated.

b. The Mass Notification functions shall override the manual or automatic
fire alarm notification or Public Address (PA) functions. Other fire
alarm functions including transmission of a signal(s) to the Emergency
Consolidated Communication Center shall remain operational.
Notification Appliance Circuits (NAC) shall be provided for the
activation of strobe appliances. The activation of the NAC Circuits
shall follow the operation of the speaker NAC circuits. Audio output
shall be selectable for line level. Amplifier outputs shall be not
greater than 100 watts RMS output. The strobe NAC Circuits shall
provide at least 2 amps of 24 VDC power to operate strobes and have the
ability to synchronize all strobes. A hand held microphone shall be
provided and, upon activation, shall take priority over any tone
signal, recorded message or PA microphone operation in progress, while
maintaining the strobe NAC Circuits activation.

2.13.5.1 Outputs and Operational Modules

All outputs and operational modules shall be fully supervised with on-board
diagnostics and trouble reporting circuits. Provide form "C" contacts for
system alarm and trouble conditions. Provide circuits for operation of
auxiliary appliance during trouble conditions. During a Mass Notification
event the panel shall not generate nor cause any trouble alarms to be
generated with the Fire Alarm system.

2.13.5.2 Mass Notification

a. Mass Notification functions shall take precedence over all other
function performed by the Audible Notification System. Messages shall
utilize a female voice and shall be similar to the following:

(1) 1000 Hz tones (as required in 18.4.2.1 of NFPA 72)

(2) "May I have your attention please. May I have your attention
please. An fire emergency has been reported in the building.
Please leave the building by the nearest exit or exit stairway."
(Provide a 2 second pause.) "May I have your attention please,
(repeat the message)."

b. Include ALL installation specific message in this section & all
additional messages as required by the Camp LeJeune Fire Department.

c. Auxiliary Input Module shall be designed to be an outboard expansion
module to either expand the number of optional LOC's, or allow a
telephone interface.

2.13.6 Memory

Provide each control unit with non-volatile memory and logic for all
functions. The use of long life batteries, capacitors, or other
age-dependent devices shall not be considered as equal to non-volatile
processors, PROMS, or EPROMS.

2.13.7 Field Programmability

Provide control units and control panels that are fully field programmable for control, initiation, notification, supervisory, and trouble functions of both input and output. The system program configuration shall be menu driven. System changes shall be password protected and shall be accomplished using personal computer based equipment. Any proprietary equipment and proprietary software needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract.

2.13.8 Input/Output Modifications

The FMCP shall contain features that allow the bypassing of input devices from the system or the modification of system outputs. These control features shall consist of a panel mounted keypad. Any bypass or modification to the system shall indicate a trouble condition on the FMCP.

2.13.9 Resetting

Provide the necessary controls to prevent the resetting of any alarm, supervisory, or trouble signal while the alarm, supervisory or trouble condition on the system still exists.

2.13.10 Instructions

Provide a typeset printed or typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. Install the frame in a conspicuous location observable from the FACP. The card shall show those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions, normal, alarm, supervisory, and trouble. The instructions shall be approved by the Contracting Officer before being posted.

2.13.11 Walk Test

The FACP shall have a walk test feature. When using this feature, operation of initiating devices shall result in limited system outputs, so that the notification appliances operate for only a few seconds and the event is indicated on the system history log, but no other outputs occur.

2.13.12 History Logging

The control panel shall have the ability to store a minimum of 400 events in a log. These events shall be stored in a battery-protected memory and shall remain in the memory until the memory is downloaded or cleared manually. Resetting of the control panel shall not clear the memory.

2.14 AMPLIFIERS, PREAMPLIFIERS

Any amplifiers, preamplifiers, digitalized voice generators, and other hardware necessary for a complete, operational, textual audible circuit conforming to NFPA 72 shall be housed in a remote FMCP, terminal cabinet, or in the FMCP. Submit data to indicate that the amplifiers have sufficient capacity to simultaneously drive all notification speakers at the maximum rating plus 50 percent spare capacity. Annotate data for each
circuit on the drawings.

2.14.1 Operation

The system shall automatically operate and control all building speakers.

2.14.2 Construction

Amplifiers shall utilize computer grade solid state components and shall be provided with output protection devices sufficient to protect the amplifier against any transient up to 10 times the highest rated voltage in the system.

2.14.3 Inputs

Equip each system with separate inputs for the tone generator, digitalized voice driver and panel mounted microphone Public Address Paging Function (where allowed). Microphone inputs shall be of the low impedance, balanced line type. Both microphone and tone generator input shall be operational on any amplifier.

2.14.4 Protection Circuits

Each amplifier shall be constantly supervised for any condition that could render the amplifier inoperable at its maximum output. Failure of any component shall cause automatic transfer to a designated backup amplifier, illumination of a visual "amplifier trouble" indicator on the control panel, appropriate logging of the condition on the system printer, and other actions for trouble conditions as specified.

2.15 ANNUNCIATOR

2.15.1 Annunciator Panel

Provide an annunciator that includes an LCD display. The display shall indicate the device in trouble/alarm or any supervisory device. Display the device name, address, and actual building location.

A building floor plan shall be provided mounted (behind plexiglass or similar protective material) at the annunciator location. The floor plan shall indicate all rooms by name and number including the locations of stairs and elevators. The floor plan shall show all devices and their programmed address to facilitate their physical location from the LCD display information.

2.15.2 Programming

Where programming for the operation of the annunciator is accomplished by a separate software program than the software for the FMCP, the software program shall not require reprogramming after loss of power. The software shall be reprogrammable in the field.

2.16 MANUAL STATIONS

Provide metal or plastic, semi-flush mounted, double action, addressable manual stations, that are not subject to operation by jarring or vibration. Stations shall be equipped with screw terminals for each conductor. Stations that require the replacement of any portion of the device after activation are not permitted. Stations shall be finished in
fire-engine red with molded raised lettering operating instructions of contrasting color. The use of a key or wrench shall be required to reset the station. Manual stations shall be mounted at 42 to 48 inches above finished floor. Stations shall have a separate screw terminal for each conductor.

2.17 NOTIFICATION APPLIANCES

2.17.1 Fire Alarm/Mass Notification Speakers

Audible appliances shall conform to the applicable requirements of UL 464. Appliances shall be connected into notification appliance circuits. Audible appliances shall be painted white.

a. Speakers shall conform to the applicable requirements of UL 1480. Speakers shall have six different sound output levels and operate with audio line input levels of 70.7 VRMs and 25 VRMs, by means of selectable tap settings. Tap settings shall include taps of 1/8, 1/4, 1/2, 1, and 2 watt. Speakers shall incorporate a high efficiency speaker for maximum output at minimum power across a frequency range of 150 Hz to 10,000 Hz, and shall have a sealed back construction. Speakers shall be capable of installation on standard 4 inch square electrical boxes. Where speakers and strobes are provided in the same location, they may be combined into a single wall or ceiling mounted unit. All inputs shall be polarized for compatibility with standard reverse polarity supervision of circuit wiring via the FMCP.

b. Provide speaker mounting plates constructed of cold rolled steel having a minimum thickness of 16 gauge or molded high impact plastic and equipped with mounting holes and other openings as needed for a complete installation. Fabrication marks and holes shall be ground and finished to provide a smooth and neat appearance for each plate. Each plate shall be primed and painted.

c. Speakers shall utilize screw terminals for termination of all field wiring.

2.17.2 Visual Notification Appliances

Visual notification appliances shall conform to the applicable requirements of UL 1971 and conform to the Architectural Barriers Act (ABA). Colored lens, such as amber, shall comply with UL 1638. The manufacturer shall have the color lens tested to the full UL 1971 polar plotting criteria, voltage drop, and temperature rise as stated in 1971. Fire Alarm/Mass Notification Appliances shall have clear high intensity optic lens, xenon flash tubes, and output white light and be marked "ALERT" in red letters. The light pattern shall be disbursed so that it is visible above and below the strobe and from a 90 degree angle on both sides of the strobe. Strobe flash rate shall be 1 flash per second and a minimum of 15 candela (actual output after derating for tinted lens) based on the UL 1971 test. Strobe shall be surface or semi-flush mounted. Where more than two appliances are located in the same room or corridor or field of view, provide synchronized operation. Devices shall use screw terminals for all field wiring.

2.18 ENVIRONMENTAL ENCLOSURES OR GUARDS

Environmental enclosures shall be provided to permit Fire Alarm or Mass Notification components to be used in areas that exceed the environmental limits of the listing. The enclosure shall be listed for the device or
appliance as either a manufactured part number or as a listed compatible accessory for the UL category that the component is currently listed. Guards required to deter mechanical damage shall be either a listed manufactured part or a listed accessory for the category of the initiating device or notification appliance.

2.19 INTERFACE TO THE BASE WIDE MASS NOTIFICATION NETWORK

2.19.1 Radio

The radio transceiver shall be bi-direction and meet all the requirements of paragraph, RADIO TRANSMITTER AND INTERFACE PANELS as specified in this Specification Section. The transceiver utilized in the Mass Notification System shall be capable of the following:

a. Communication with the Central Control/Monitoring System to provide supervision of communication link and status changes are reported by automatic and manual poll/reply/acknowledge routines.

b. All monitored points/status changes are transmitted immediately and at programmed intervals until acknowledged by the Central Control/Monitoring System.

c. Transmits a unique identity code as part of all messages; the code is set by the user at the Fire Alarm/Mass Notification Panel.

2.20 AUTOMATIC FIRE TRANSMITTERS

2.20.1 Digital Alarm Communicator Transmitter (DACT)

Provide DACT that is compatible with the existing Sur-Gard System III multi-platform digital telephone receiver and is programmed to report by points via contact ID protocol. Transmitter shall have a means to transmit alarm, supervisory, and trouble conditions via a single transmitter. Transmitter shall have a source of power for operation that conforms to NFPA 72. Transmitter shall be capable of initiating a test signal daily at any selected time. Transmitter shall be arranged to seize telephone circuits in accordance with NFPA 72.

2.20.2 Signals to Be Transmitted to the Sur-Gard System III multi-platform Digital Telephone Receiver

The following signals shall be sent to the base receiving station:

a. Sprinkler water flow

b. Manual pull stations

c. Smoke detectors

d. Duct smoke detectors

e. Sleeping room smoke detectors

f. Sprinkler valve supervision

g. All other signals as required elsewhere in this specification or drawings
2.21 WIRING

Provide wiring materials under this section as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM with the additions and modifications specified herein. NFPA 70 accepted fire alarm cables that do not require the use of raceways except as modified herein are permitted.

2.21.1 Alarm Wiring

The SLC wiring shall be solid copper cable in accordance with the manufacturers' requirements. Copper signaling line circuits and initiating device circuit field wiring shall be No. 14 AWG size twisted and shielded solid conductors at a minimum. Visual notification appliance circuit conductors, that contain audible alarm appliances, shall be solid copper No. 14 AWG size conductors at a minimum. Speaker circuits shall be copper No. 16 AWG size twisted and shielded conductors at a minimum. Wire size shall be sufficient to prevent voltage drop problems. Circuits operating at 24 VDC shall not operate at less than the UL listed voltages for the sensors and/or appliances. Power wiring, operating at 120 VAC minimum, shall be a minimum No. 12 AWG solid copper having similar insulation. Acceptable power-limited cables are FPL, FPLR or FPLP as appropriate with red colored covering. Nonpower-limited cables shall comply with NFPA 70.

PART 3 EXECUTION

3.1 INSTALLATION OF FIRE ALARM INITIATING DEVICES AND NOTIFICATION APPLIANCES

3.1.1 FACP

Locate the FACP where indicated on the drawings. Semi-recess the enclosure with the top of the cabinet 6 feet above the finished floor or center the cabinet at 5 feet, whichever is lower. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted. Documentation Cabinet shall be prominently labeled "System Record Documents" with a cylinder key locking hing-mounted door. Items to be stored within the cabinet are completed record of inspection and testing, CD/DVD of site specific software (in jewel case), as-built drawings, and NFPA 72 Record of Completion.

3.1.2 Manual Stations:

Locate manual stations as required by NFPA 72 and as indicated on the contract drawings. Mount stations so that their operating handles are 44 inches to 48 inches above the finished floor. Mount stations so they are located no farther than 5 feet from the exit door they serve, measured horizontally. The use of a wrench to reset a manual pull station shall not be permitted.

3.1.3 Notification Appliance Devices

Locate notification appliance devices as required by NFPA 72 & where indicated. Mount assemblies on walls as required by NFPA 72 and to meet the intelligibility requirements. Ceiling mounted speakers shall conform to NFPA 72.
3.1.4 Smoke Sensors

Locate sensors as required by NFPA 72 and their listings & as indicated on a 4 inch mounting box. Locate smoke and heat sensors on the ceiling. Install heat sensors not less than 4 inches from a side wall to the near edge. Heat sensors located on the wall shall have the top of the sensor at least 4 inches below the ceiling, but not more than 12 inches below the ceiling. Smoke sensors are permitted to be on the wall no lower than 12 inches from the ceiling with no minimum distance from the ceiling. In raised floor spaces, install the smoke sensors to protect 225 square feet per sensor. Install smoke sensors no closer than 5 feet from air handling supply outlets.

3.1.5 Annunciator

Locate the annunciator as shown on the drawings. Surface mount the panel, with the top of the panel 6 feet above the finished floor or center the panel at 5 feet, whichever is lower.

3.1.6 Water Flow Detectors and Tamper Switches

Connect to water flow detectors and tamper switches. Each device shall have a separate address.

3.2 SYSTEM FIELD WIRING

3.2.1 Wiring within Cabinets, Enclosures, and Boxes

Provide wiring installed in a neat and workmanlike manner and installed parallel with or at right angles to the sides and back of any box, enclosure, or cabinet. Clearly label each conductor that is terminated, spliced, or otherwise interrupted in any enclosure, cabinet, mounting, or junction box shall be connected to screw-type terminal blocks. Mark each terminal in accordance with the wiring diagrams of the system. The use of wire nuts or similar devices is prohibited. Conform wiring to NFPA 70.

Indicate the following in the wiring diagrams.

a. Point-to-point wiring diagrams showing the points of connection and terminals used for electrical field connections in the system, including interconnections between the equipment or systems that are supervised or controlled by the system. Diagrams shall show connections from field devices to the FACP and remote fire alarm control units, initiating circuits, switches, relays and terminals.

b. Complete riser diagrams indicating the wiring sequence of devices and their connections to the control equipment. Include a color code schedule for the wiring. Include floor plans showing the locations of devices and equipment.

3.2.2 Terminal Cabinets

Provide a terminal cabinet at the base of any circuit riser, on each floor at each riser, and where indicated on the drawings. Terminal size shall be appropriate for the size of the wiring to be connected. Conductor terminations shall be clearly labeled with a typed label and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the terminal cabinet. Minimum size is 8 inches by 8 inches. Only screw-type terminals are
3.2.3 Alarm Wiring

Voltages shall not be mixed in any junction box, housing, or device, except those containing power supplies and control relays. Provide all wiring in electrical metallic conduit. Conceal conduit in finished areas of new construction and wherever practicable in existing construction. The use of flexible conduit not exceeding a 6 foot length shall be permitted in initiating device or notification appliance circuits. Run conduit or tubing (rigid, IMC, EMT, FMC, etc. as permitted by NFPA 72 and NFPA 70) concealed unless specifically indicated otherwise.

3.2.4 Conductor Terminations

Labeling of conductors at terminal blocks in terminal cabinets, FMCP, and remote FMCP and the LOC shall be provided at each conductor connection. Each conductor or cable shall have a shrink-wrap label to provide a unique and specific designation. Each terminal cabinet, FMCP, and remote FMCP shall contain a laminated drawing that indicates each conductor, its label, circuit, and terminal. The laminated drawing shall be neat, using 12 point lettering minimum size, and mounted within each cabinet, panel, or unit so that it does not interfere with the wiring or terminals. Maintain existing color code scheme where connecting to existing equipment.

3.3 FIRESTOPPING

Provide firestopping for holes at conduit penetrations through floor slabs, fire rated walls, partitions with fire rated doors, corridor walls, and vertical service shafts in accordance with Section 07 84 00 FIRESTOPPING.

3.4 PAINTING

Paint exposed electrical, fire alarm conduit, and surface metal raceway to match adjacent finishes in exposed areas. Paint junction boxes red in unfinished areas and conduits and surface metal raceways shall be painted with a 1-inch wide red band every 10 feet in unfinished areas. Painting shall comply with Section 09 90 00 PAINTS AND COATINGS.

3.5 FIELD QUALITY CONTROL

3.5.1 Testing Procedures

Submit detailed test procedures, prepared and signed by a Registered Professional Engineer or a NICET Level 3 Fire Alarm Technician, and signed by representative of the installing company, for the fire detection and alarm system 60 days prior to performing system tests. Detailed test procedures shall list all components of the installed system such as initiating devices and circuits, notification appliances and circuits, signaling line devices and circuits, control devices/equipment, batteries, transmitting and receiving equipment, power sources/supply, annunciators, special hazard equipment, emergency communication equipment, interface equipment, Guard's Tour equipment, and transient (surge) suppressors. Test procedures shall include sequence of testing, time estimate for each test, and sample test data forms. The test data forms shall be in a check-off format (pass/fail with space to add applicable test data; similar to the forma in NFPA 72) and shall be used for the preliminary testing and the acceptance testing. The test data forms shall record the test results and shall:
a. Identify the NFPA Class of all Initiating Device Circuits (IDC), Notification Appliance Circuits (NAC), Voice Notification System Circuits (NAC Audio), and Signaling Line Circuits (SLC).

b. Identify each test required by NFPA 72 Test Methods and required test herein to be performed on each component, and describe how this test shall be performed.

c. Identify each component and circuit as to type, location within the facility, and unique identity within the installed system. Provide necessary floor plan sheets showing each component location, test location, and alphanumeric identity.

d. Identify all test equipment and personnel required to perform each test (including equipment necessary for testing smoke detectors using real smoke).

e. Provide space to identify the date and time of each test. Provide space to identify the names and signatures of the individuals conducting and witnessing each test.

3.5.2 Tests Stages

3.5.2.1 Preliminary Testing

Conduct preliminary tests to ensure that devices and circuits are functioning properly. Tests shall meet the requirements of paragraph entitled "Minimum System Tests." After preliminary testing is complete, provide a letter certifying that the installation is complete and fully operable. The letter shall state that each initiating and indicating device was tested in place and functioned properly. The letter shall also state that panel functions were tested and operated properly. The letter shall include the names and titles of the witnesses to the preliminary tests. The Contractor and an authorized representative from each supplier of equipment shall be in attendance at the preliminary testing to make necessary adjustments.

3.5.2.2 Request for Formal Inspection and Tests

When tests have been completed and corrections made, submit a signed, dated certificate with a request for formal inspection and tests to the Contracting Offices Designated Representative (COR) and Engineer of Record.

3.5.2.3 Final Testing

Notify the Contracting Officer in writing when the system is ready for final acceptance testing. Submit request for test at least 15 calendar days prior to the test date. The tests shall be performed in accordance with the approved test procedures in the presence of the Contracting Officer. Furnish instruments and personnel required for the tests. A final acceptance test will not be scheduled until the following are provided at the job site:

a. The systems manufacturer's technical representative

b. Marked-up red line drawings of the system as actually installed

c. Megger test results
d. Loop resistance test results

e. Complete program printout including input/output addresses

The final tests will be witnessed by the Contracting Offices Designated Representative (COR) and Engineer of Record. At this time, any and all required tests shall be repeated at their discretion.

3.5.2.4 System Acceptance

Following acceptance of the system, as-built drawings and O&M manuals shall be delivered to the Contracting Officer for review and acceptance. Submit six sets of detailed as-built drawings. The drawings shall show the system as installed, including deviations from both the project drawings and the approved shop drawings. These drawings shall be submitted within two weeks after the final acceptance test of the system. At least one set of as-built (marked-up) drawings shall be provided at the time of, or prior to the final acceptance test.

a. Furnish one set of full size paper as-built drawings and schematics. The drawings shall be prepared on uniform sized mylar sheets not less than 30 by 42 inches with 8 by 4 inch title block similar to contract drawings. Furnish one set of CD or DVD discs containing software back-up and CAD based drawings in latest version of AutoCAD and DXF format of as-built drawings and schematics.

b. Include complete wiring diagrams showing connections between devices and equipment, both factory and field wired.

c. Include a riser diagram and drawings showing the as-built location of devices and equipment.

d. Include a list of Contact ID point descriptions.

3.5.3 Minimum System Tests

Test the system in accordance with the procedures outlined in NFPA 72, ISO 7240-16, IEC 60268-16. The required tests are as follows:

a. Megger Tests: After wiring has been installed, and prior to making any connections to panels or devices, wiring shall be megger tested for insulation resistance, grounds, and/or shorts. Conductors with 300 volt rated insulation shall be tested at a minimum of 250 VDC. Conductors with 600 volt rated insulation shall be tested at a minimum of 500 VDC. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

b. Loop Resistance Tests: Measure and record the resistance of each circuit with each pair of conductors in the circuit short-circuited at the farthest point from the circuit origin. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

c. Verify the absence of unwanted voltages between circuit conductors and ground. The tests shall be accomplished at the preliminary test with results available at the final system test.

d. Verify that the control unit is in the normal condition as detailed in
the manufacturer's O&M manual.

e. Test each initiating device and notification appliance and circuit for proper operation and response at the control unit. Smoke sensors shall be tested in accordance with manufacturer's recommended calibrated test method. Use of magnets is prohibited. Testing of duct smoke detectors shall comply with the requirements of NFPA 72 except that, for item 12(e) (Supervision) in Table 14.4.2.2, disconnect at least 20 percent of devices. If there is a failure at these devices, then supervision shall be tested at each device.

f. Test the system for specified functions in accordance with the contract drawings and specifications and the manufacturer's O&M manual.

g. Test both primary power and secondary power. Verify, by test, the secondary power system is capable of operating the system for the time period and in the manner specified.

h. Determine that the system is operable under trouble conditions as specified.

i. Visually inspect wiring.

j. Test the battery charger and batteries.

k. Verify that software control and data files have been entered or programmed into the FACP. Hard copy records of the software shall be provided to the Contracting Officer.

l. Verify that red-line drawings are accurate.

m. Measure the current in circuits to ensure there is the calculated spare capacity for the circuits.

n. Measure voltage readings for circuits to ensure that voltage drop is not excessive.

o. Disconnect the verification feature for smoke sensors during tests to minimize the amount of smoke needed to activate the sensor. Testing of smoke sensors shall be conducted using real smoke or the use of canned smoke which is permitted.

p. Measure the voltage drop at the most remote appliance (based on wire length) on each notification appliance circuit.

3.5.3.1 Intelligibility Tests

Intelligibility testing of the System shall be accomplished in accordance with NFPA 72 for Voice Evacuation Systems, IEC 60268-16, and ASA S3.2. Following are the specific requirements for intelligibility tests:

a. Intelligibility Requirements: Verify intelligibility by measurement after installation.

b. Ensure that a CIS value greater than the required minimum value is provided in each area where building occupants typically could be found. The minimum required value for CIS is .7.

c. Areas of the building provided with hard wall and ceiling surfaces
(such as metal or concrete) that are found to cause excessive sound reflections may be permitted to have a CIS score less than the minimum required value if approved by the DOD installation, and if building occupants in these areas can determine that a voice signal is being broadcast and they must walk no more than 33 feet to find a location with at least the minimum required CIS value within the same area.

d. Areas of the building where occupants are not expected to be normally present are permitted to have a CIS score less than the minimum required value if personnel can determine that a voice signal is being broadcast and they must walk no more than 50 feet to a location with at least the minimum required CIS value within the same area.

e. Take measurements near the head level applicable for most personnel in the space under normal conditions (e.g., standing, sitting, sleeping, as appropriate).

f. The distance the occupant must walk to the location meeting the minimum required CIS value shall be measured on the floor or other walking surface as follows:

 (1) Along the centerline of the natural path of travel, starting from any point subject to occupancy with less than the minimum required CIS value.

 (2) Curving around any corners or obstructions, with a 12 inches clearance there from.

 (3) Terminating directly below the location where the minimum required CIS value has been obtained.

Use commercially available test instrumentation to measure intelligibility as specified by ISO 7240-19 and ISO 7240-16 as applicable. Use the mean value of at least three readings to compute the intelligibility score at each test location.

3.6 INSTRUCTION OF GOVERNMENT EMPLOYEES

Equipment manufacturer or experienced training representative shall provide 2 days on-site and 5 days of technical training at the manufacturing facility to the government.

3.6.1 Instructor

Include in the project the services of an instructor, who has received specific training from the manufacturer for the training of other persons regarding the inspection, testing, and maintenance of the system provided. The instructor shall train the Government employees designated by the Contracting Officer, in the care, adjustment, maintenance, and operation of the fire alarm and fire detection system. Each instructor shall be thoroughly familiar with all parts of this installation. The instructor shall be trained in operating theory as well as in practical O&M work. Submit the instructors information and qualifications including the training history.

3.6.2 Required Instruction Time

Provide 2 days (16) hours on-site of instruction after final acceptance of the system. The instruction shall be given during regular working hours on
such dates and times as are selected by the Contracting Officer. The instruction may be divided into two or more periods at the discretion of the Contracting Officer. The training shall allow for rescheduling for unforeseen maintenance and/or fire department responses.

3.6.2.1 Technical Training

Equipment manufacturer or a factory representative shall provide 1 day of on site and 5 days of technical training to the Government at Camp Lejeune for three government personnel. Training shall allow for classroom instruction as well as individual hands on programming, troubleshooting and diagnostics exercises. The manufacturer shall provide the computer and system software, special connecting cable(s), and the proprietary equipment necessary for the maintenance, testing, and reprogramming of the equipment and system. Training shall occur within 6 months of system acceptance.

3.7 Technical Data and Computer Software

Provide, in manual format, lesson plans, operating instructions, maintenance procedures, and training data for the training courses. The operations training shall familiarize designated government personnel with proper operation of the installed system. The maintenance training course shall provide the designated government personnel adequate knowledge required to diagnose, repair, maintain, and expand functions inherent to the system.

Any proprietary equipment and proprietary software needed by technicians to implement future changes to the fire alarm system shall be provided as part of this contract.

Maintenance software required and provided as part of this contract shall not require any type of annual license agreement or annual cost to continue use of the software or any updates. The software that is provided will continue to operate during the entire lifetime of the installed equipment without any additional cost to the government.

3.8 OPERATION AND MAINTENANCE (O&M) INSTRUCTIONS AND PROGRAMMING

Submit 6 copies of the Operation and Maintenance Instructions and Programming, indexed and in booklet form. The Operation and Maintenance Instructions shall be a single volume or in separate volumes, and may be submitted as a Technical Data Package. Manuals shall be approved prior to training. The Interior Fire Alarm And Mass Notification System Operation and Maintenance Instructions shall include:

a. "Manufacturer Data Package 5" as specified in Section 01 78 23 OPERATION AND MAINTENANCE DATA.

b. Operating manual outlining step-by-step procedures required for system startup, operation, and shutdown. The manual shall include the manufacturer's name, model number, service manual, parts list, and complete description of equipment and their basic operating features in addition to the list of contact ID point description.

c. Maintenance manual listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guide. The manuals shall include conduit layout, equipment layout and simplified wiring, and control diagrams of the system as installed.
d. The manuals shall include complete procedures for system revision and expansion, detailing both equipment and software requirements.

e. Software delivered for this project shall be provided, on each type of CD/DVD media utilized.

f. Printouts of configuration settings for all devices.

g. Routine maintenance checklist. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all installed devices, the second column shall state the maintenance activity or state no maintenance required, the third column shall state the frequency of the maintenance activity, and the fourth column for additional comments or reference. All data (devices, testing frequencies, etc.) shall comply with UFC 3-601-02.

3.9 DOCUMENTATION CABINET

Install a Documentation Cabinet adjacent to the fire alarm control panel. Cabinet shall be steel with locking, hinge-mounted door prominently labeled "SYSTEM RECORD DOCUMENTS" that stores paper copies of Life Safety, Fire Alarm and Sprinkler As-Built drawings and NFPA 72 Record of Completion in paper format. In addition, a CD/DVD of site-specific software, fire alarm and sprinkler as-built drawings, NFPA 72 Record of Completion and O&M manuals stored in a CD jewel Case. Cabinet shall be sized to handle all of the aforementioned contents.

3.10 EXTRA MATERIALS

3.10.1 Repair Service/Replacement Parts

Repair services and replacement parts for the system shall be available for a period of 10 years after the date of final acceptance of this work by the Contracting Officer. During guarantee period, the service technician shall be on-site within 24 hours after notification. All repairs shall be completed within 24 hours of arrival on-site.

3.10.2 Interchangeable Parts

Spare parts furnished shall be directly interchangeable with the corresponding components of the installed system. Spare parts shall be suitably packaged and identified by nameplate, tagging, or stamping. Spare parts shall be delivered to the Contracting Officer at the time of the final acceptance testing.

3.10.3 Spare Parts

Furnish the following spare parts and accessories:

a. Four fuses for each fused circuit

b. Two of each type of notification appliance in the system (e.g. speaker, FA strobe, MNS strobe, etc.)

c. Two of each type of initiating device included in the system (e.g. smoke detector, thermal detector, manual station, etc.)
3.10.4 Special Tools

Any proprietary equipment and proprietary software needed by technicians to implement future changes to the fire alarm/mass notification system shall be provided as part of this contract. Software, connecting cables and proprietary equipment, necessary for the maintenance, testing, and reprogramming of the equipment shall be furnished to the Contracting Officer. Software required to maintain the system that is provided as part of this contract shall continue to operate for the entire lifetime of the installed equipment and shall not require any additional cost or renewal fees to the government.

-- End of Section --
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO T 180 (2015) Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop

AASHTO T 224 (2010) Standard Method of Test for Correction for Coarse Particles in the Soil Compaction Test

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C600 (2010) Installation of Ductile-Iron Water Mains and Their Appurtenances

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASTM INTERNATIONAL (ASTM)

ASTM D1140 (2014) Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve

ASTM D1557 (2012; E 2015) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³) (2700 kN-m/m³)

ASTM D2167 (2015) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D2487 (2011) Soils for Engineering Purposes (Unified Soil Classification System)

ASTM D4318 (2010; E 2014) Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D698 (2012; E 2014; E 2015) Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/cu. ft. (600 kN-m/cu. m.))

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

1.2 DEFINITIONS

1.2.1 Satisfactory Materials

1.2.2 Unsatisfactory Materials

Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. Unsatisfactory materials also include man-made fills; trash; refuse; backfills from previous construction; and material classified as satisfactory which contains root and other organic matter or frozen material. Notify the Contracting Officer when encountering any contaminated materials.

1.2.3 Cohesionless and Cohesive Materials

Cohesionless materials include materials classified in ASTM D2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM will be identified as cohesionless only when the fines are nonplastic. Perform testing, required for classifying materials, in accordance with ASTM D4318,
1.2.4 Degree of Compaction

Degree of compaction required, except as noted in the second sentence, is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D1557 abbreviated as a percent of laboratory maximum density. Since ASTM D1557 applies only to soils that have 30 percent or less by weight of their particles retained on the 3/4 inch sieve, express the degree of compaction for material having more than 30 percent by weight of their particles retained on the 3/4 inch sieve as a percentage of the maximum density in accordance with AASHTO T 180 and corrected with AASHTO T 224. To maintain the same percentage of coarse material, use the "remove and replace" procedure as described in NOTE 8 of Paragraph 7.2 in AASHTO T 180.

1.2.5 Hard/Unyielding Materials

Hard/Unyielding materials comprise weathered rock, dense consolidated deposits, or conglomerate materials which are not included in the definition of "rock" with stones greater than 3 inch in any dimension or as defined by the pipe manufacturer, whichever is smaller. These materials usually require the use of heavy excavation equipment, ripper teeth, or jack hammers for removal.

1.2.6 Rock

Solid homogeneous interlocking crystalline material with firmly cemented, laminated, or foliated masses or conglomerate deposits, neither of which can be removed without systematic drilling and blasting, drilling and the use of expansion jacks or feather wedges, or the use of backhoe-mounted pneumatic hole punchers or rock breakers; also large boulders, buried masonry, or concrete other than pavement exceeding 1/2 cubic yard in volume. Removal of hard material will not be considered rock excavation because of intermittent drilling and blasting that is performed merely to increase production.

1.2.7 Unstable Material

Unstable materials are too wet to properly support the utility pipe, conduit, or appurtenant structure.

1.2.8 Select Granular Material

1.2.8.1 General Requirements

Select granular material consist of materials classified as GW, GP, SW, or SP by ASTM D2487 where indicated. The liquid limit of such material must not exceed 25 percent when tested in accordance with ASTM D4318. The plasticity index must not be greater than 12 percent when tested in accordance with ASTM D4318, and not more than 35 percent by weight may be finer than No. 200 sieve when tested in accordance with ASTM D1140.

1.2.9 Initial Backfill Material

Initial backfill consists of select granular material or satisfactory materials free from rocks 25 inches or larger in any dimension or free from rocks of such size as recommended by the pipe manufacturer, whichever is smaller. When the pipe is coated or wrapped for corrosion protection, free
the initial backfill material of stones larger than 1 inches in any dimension or as recommended by the pipe manufacturer, whichever is smaller.

1.2.10 Pile Supported Structure

As used herein, a structure where both the foundation and floor slab are pile supported.

1.3 SYSTEM DESCRIPTION

1.3.1 Classification of Excavation

No consideration will be given to the nature of the materials, and all excavation will be designated as unclassified excavation.

1.3.1.1 Common Excavation

Include common excavation with the satisfactory removal and disposal of all materials not classified as rock excavation.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval.

SD-01 Preconstruction Submittals

Submit 15 days prior to starting work.

SD-03 Product Data

Notification - Encountering rock in the project and opening of excavation.
Utilization of Excavated Materials; G - Procedure and location for disposal of unused satisfactory material. Proposed source of borrow material.
Shoulder Construction - Advance notice on shoulder construction for rigid pavements.

SD-06 Test Reports

Testing
Borrow Site Testing

Within 24 hours of conclusion of physical tests, submit 3 copies of test results, including calibration curves and results of calibration tests.

SD-07 Certificates

Testing

Qualifications of the Corps validated commercial testing laboratory or the Contractor's validated testing facilities.
PART 2 PRODUCTS

2.1 REQUIREMENTS FOR OFFSITE SOILS

Test offsite soils brought in for use as backfill for Total Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) and full Toxicity Characteristic Leaching Procedure (TCLP) including ignitability, corrosivity and reactivity. Backfill shall contain a maximum of 100 parts per million (ppm) of total petroleum hydrocarbons (TPH) and a maximum of 10 ppm of the sum of Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) and shall pass the TCLP test. Determine TPH concentrations by using EPA 600/4-79/020 Method 418.1. Determine BTEX concentrations by using EPA SW-846.3-3 Method 5030/8020. Perform TCLP in accordance with EPA SW-846.3-3 Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site. Do not bring material onsite until tests have been approved by the Contracting Officer.

2.2 BURIED WARNING AND IDENTIFICATION TAPE

Provide polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant, polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inches minimum width, color coded as specified below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Provide permanent color and printing, unaffected by moisture or soil.

<table>
<thead>
<tr>
<th>Warning Tape Color Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
</tr>
<tr>
<td>Yellow</td>
</tr>
<tr>
<td>Orange</td>
</tr>
<tr>
<td>Blue</td>
</tr>
<tr>
<td>Green</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Gray</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Electric</td>
</tr>
<tr>
<td>Yellow</td>
<td>Gas, Oil; Dangerous Materials</td>
</tr>
<tr>
<td>Orange</td>
<td>Telephone and Other Communications</td>
</tr>
<tr>
<td>Blue</td>
<td>Water Systems</td>
</tr>
<tr>
<td>Green</td>
<td>Sewer Systems</td>
</tr>
<tr>
<td>White</td>
<td>Steam Systems</td>
</tr>
<tr>
<td>Gray</td>
<td>Compressed Air</td>
</tr>
</tbody>
</table>

2.2.1 Warning Tape for Metallic Piping

Provide acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above, with a minimum thickness of 0.003 inch and a minimum strength of 1500 psi lengthwise, and 1250 psi crosswise, with a maximum 350 percent elongation.

2.2.2 Detectable Warning Tape for Non-Metallic Piping

Provide polyethylene plastic tape conforming to the width, color, and
printing requirements specified above, with a minimum thickness of 0.004 inch, and a minimum strength of 1500 psi lengthwise and 1250 psi crosswise. Manufacture tape with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 3 feet deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.

2.3 DETECTION WIRE FOR NON-METALLIC PIPING

Insulate a single strand, solid copper detection wire with a minimum of 12 AWG.

2.4 MATERIAL FOR RIP-RAP

Provide Bedding material, Grout, Filter fabric and rock conforming to these requirements for construction indicated.

2.4.1 Bedding Material

Provide bedding material consisting of sand, gravel, or crushed rock, well graded, with a maximum particle size of 2 inches. Compose material of tough, durable particles. Allow fines passing the No. 200 standard sieve with a plasticity index less than six.

2.4.2 Grout

Provide durable grout composed of cement, water, an air-entraining admixture, and sand mixed in proportions of one part portland cement to two parts of sand, sufficient water to produce a workable mixture, and an amount of admixture which will entrain sufficient air, as determined by the Contracting Officer. Mix grout in a concrete mixer. Allow a sufficient mixing time to produce a mixture having a consistency permitting gravity flow into the interstices of the rip-rap with limited spading and brooming.

2.4.3 Rock

Provide rock fragments sufficiently durable to ensure permanence in the structure and the environment in which it is to be used. Use rock fragments free from cracks, seams, and other defects that would increase the risk of deterioration from natural causes. Provide fragments sized so that no individual fragment exceeds a weight of 150 pounds and that no more than 10 percent of the mixture, by weight, consists of fragments weighing 2 pounds or less each. Provide rock with a minimum specific gravity of 2.50. Do not permit the inclusion of more than trace 1 percent quantities of dirt, sand, clay, and rock fines.

2.5 CAPILLARY WATER BARRIER

Provide capillary water barrier of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Conform to ASTM C33/C33M for fine aggregate grading with a maximum of 3 percent by weight passing ASTM D1140, No. 200 sieve, or 1-1/2 inch and no more than 2 percent by weight passing the No. 4 size sieve or coarse aggregate Size 57, 67, or 77.
2.6 PIPE CASING

2.6.1 Casing Pipe

ASTM A139/A139M, Grade B, or ASTM A252, Grade 2, smooth wall pipe.

PART 3 EXECUTION

3.1 STRIPPING OF TOPSOIL

Where indicated or directed, strip topsoil to a depth of 4 inches. Spread topsoil on areas already graded and prepared for topsoil, or transported and deposited in stockpiles convenient to areas that are to receive application of the topsoil later, or at locations indicated or specified. Keep topsoil separate from other excavated materials, brush, litter, objectionable weeds, roots, stones larger than 2 inches in diameter, and other materials that would interfere with planting and maintenance operations. Remove from the site any surplus of topsoil from excavations and gradings.

3.2 GENERAL EXCAVATION

Perform excavation of every type of material encountered within the limits of the project to the lines, grades, and elevations indicated and as specified. Perform the grading in accordance with the typical sections shown and the tolerances specified in paragraph FINISHING. Transport satisfactory excavated materials and place in fill or embankment within the limits of the work. Excavate unsatisfactory materials encountered within the limits of the work below grade and replace with satisfactory materials as directed. Include such excavated material and the satisfactory material ordered as replacement in excavation. Dispose surplus satisfactory excavated material not required for fill or embankment in areas approved for surplus material storage or designated waste areas. Dispose unsatisfactory excavated material in designated waste or spoil areas. During construction, perform excavation and fill in a manner and sequence that will provide proper drainage at all times. Excavate material required for fill or embankment in excess of that produced by excavation within the grading limits from other approved areas selected by the Contractor as specified.

3.2.1 Ditches, Gutters, and Channel Changes

Finish excavation of ditches, gutters, and channel changes by cutting accurately to the cross sections, grades, and elevations shown. Do not excavate ditches and gutters below grades shown. Backfill the excessive open ditch or gutter excavation with satisfactory, thoroughly compacted, material or with suitable stone or cobble to grades shown. Dispose excavated material as shown or as directed, except in no case allow material be deposited a maximum 4 feet from edge of a ditch. Maintain excavations free from detrimental quantities of leaves, brush, sticks, trash, and other debris until final acceptance of the work.

3.2.2 Drainage

Provide for the collection and disposal of surface and subsurface water encountered during construction. Completely drain construction site during periods of construction to keep soil materials sufficiently dry. Construct storm drainage features (ponds/basins) at the earliest stages of site development, and throughout construction grade the construction area to
provide positive surface water runoff away from the construction activity and provide temporary ditches, swales, and other drainage features and equipment as required to maintain dry soils. When unsuitable working platforms for equipment operation and unsuitable soil support for subsequent construction features develop, remove unsuitable material and provide new soil material as specified herein. It is the responsibility of the Contractor to assess the soil and ground water conditions presented by the plans and specifications and to employ necessary measures to permit construction to proceed.

3.2.3 Dewatering

Control groundwater flowing toward or into excavations to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. Do not permit French drains, sumps, ditches or trenches within 3 feet of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Take control measures by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, maintain the water level continuously, at least 3 feet below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. Submit performance records weekly. Measure and record performance of dewatering system at same time each day by use of observation wells or piezometers installed in conjunction with the dewatering system. Relieve hydrostatic head in previous zones below subgrade elevation in layered soils to prevent uplift.

3.2.4 Trench Excavation Requirements

Excavate the trench as recommended by the manufacturer of the pipe to be installed. Slope trench walls below the top of the pipe, or make vertical, and of such width as recommended in the manufacturer's printed installation manual. Provide vertical trench walls where no manufacturer's printed installation manual is available. Shore trench walls more than 4 feet high, cut back to a stable slope, or provide with equivalent means of protection for employees who may be exposed to moving ground or cave in. Shore vertical trench walls more than 6 feet high. Excavate trench walls which are cut back to at least the angle of repose of the soil. Give special attention to slopes which may be adversely affected by weather or moisture content. Do not exceed the trench width below the pipe top of 24 inches plus pipe outside diameter (O.D.) for pipes of less than 24 inches inside diameter, and do not exceed 36 inches plus pipe outside diameter for sizes larger than 24 inches inside diameter. Where recommended trench widths are exceeded, provide redesign, stronger pipe, or special installation procedures by the Contractor. The Contractor is responsible for the cost of redesign, stronger pipe, or special installation procedures without any additional cost to the Government.

3.2.4.1 Bottom Preparation

Grade the bottoms of trenches accurately to provide uniform bearing and support for the bottom quadrant of each section of the pipe. Excavate bell holes to the necessary size at each joint or coupling to eliminate point bearing. Remove stones of 1 inch or greater in any dimension, or as recommended by the pipe manufacturer, whichever is smaller, to avoid point bearing.
3.2.4.2 Removal of Unyielding Material

Where unyielding material is encountered in the bottom of the trench, remove such material 4 inch below the required grade and replaced with suitable materials as provided in paragraph BACKFILLING AND COMPACTION.

3.2.4.3 Removal of Unstable Material

Where unstable material is encountered in the bottom of the trench, remove such material to the depth directed and replace it to the proper grade with select granular material as provided in paragraph BACKFILLING AND COMPACTION. When removal of unstable material is required due to the Contractor's fault or neglect in performing the work, the Contractor is responsible for excavating the resulting material and replacing it without additional cost to the Government.

3.2.4.4 Excavation for Appurtenances

Provide excavation for manholes, catch-basins, inlets, or similar structures of sufficient size to permit the placement and removal of forms for the full length and width of structure footings and foundations as shown. Clean rock or loose debris and cut to a firm surface either level, stepped, or serrated, as shown or as directed. Remove loose disintegrated rock and thin strata. Specify removal of unstable material. When concrete or masonry is to be placed in an excavated area, take special care not to disturb the bottom of the excavation. Do not excavate to the final grade level until just before the concrete or masonry is to be placed.

3.2.4.5 Jacking, Boring, and Tunneling

Unless otherwise indicated, provide excavation by open cut except that sections of a trench may be jacked, bored, or tunneled if, in the opinion of the Contracting Officer, the pipe, cable, or duct can be safely and properly installed and backfill can be properly compacted in such sections.

3.2.5 Underground Utilities

The Contractor is responsible for movement of construction machinery and equipment over pipes and utilities during construction. Perform work adjacent to non-Government utilities as indicated in accordance with procedures outlined by utility company. Excavation made with power-driven equipment is not permitted within 2 feet of known Government-owned utility or subsurface construction. For work immediately adjacent to or for excavations exposing a utility or other buried obstruction, excavate by hand. Start hand excavation on each side of the indicated obstruction and continue until the obstruction is uncovered or until clearance for the new grade is assured. Support uncovered lines or other existing work affected by the contract excavation until approval for backfill is granted by the Contracting Officer. Report damage to utility lines or subsurface construction immediately to the Contracting Officer.

3.2.6 Structural Excavation

Ensure that footing subgrades have been inspected and approved by the Contracting Officer prior to concrete placement. Excavate to bottom of pile cap prior to placing or driving piles, unless authorized otherwise by the Contracting Officer. Backfill and compact over excavations and changes in grade due to pile driving operations to 95 percent of ASTM D698 maximum density.
3.3 SELECTION OF BORROW MATERIAL

Select borrow material to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Obtain borrow material from the borrow areas from approved private sources. Unless otherwise provided in the contract, the Contractor is responsible for obtaining the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling from the owners. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, do not obtain borrow within the limits of the project site without prior written approval. Consider necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon related operations to the borrow excavation.

3.4 OPENING AND DRAINAGE OF EXCAVATION AND BORROW PITS

Except as otherwise permitted, excavate excavation areas providing adequate drainage. Transport overburden and other spoil material to designated spoil areas or otherwise dispose of as directed. Ensure that excavation of any area, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.5 GRADING AREAS

Where indicated, divide work into grading areas within which satisfactory excavated material will be placed in embankments, fills, and required backfills. Do not haul satisfactory material excavated in one grading area to another grading area except when so directed in writing. Place and grade stockpiles of satisfactory and unsatisfactory and wasted materials as specified. Keep stockpiles in a neat and well drained condition, giving due consideration to drainage at all times. Clear, grub, and seal by rubber-tired equipment, the ground surface at stockpile locations; separately stockpile excavated satisfactory and unsatisfactory materials. Protect stockpiles of satisfactory materials from contamination which may destroy the quality and fitness of the stockpiled material. If the Contractor fails to protect the stockpiles, and any material becomes unsatisfactory, remove and replace such material with satisfactory material from approved sources.

3.6 FINAL GRADE OF SURFACES TO SUPPORT CONCRETE

Do not excavate to final grade until just before concrete is to be placed. Only use excavation methods that will leave the foundation rock in a solid and unshattered condition. Roughen the level surfaces, and cut the sloped surfaces, as indicated, into rough steps or benches to provide a satisfactory bond. Protect shales from slaking and all surfaces from erosion resulting from ponding or water flow.

3.7 GROUND SURFACE PREPARATION

3.7.1 General Requirements

Remove and replace unsatisfactory material with satisfactory materials, as directed by the Contracting Officer, in surfaces to receive fill or in excavated areas. Scarify the surface to a depth of 6 inches before the fill is started. Plow, step, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so that the fill material will bond with
the existing material. When subgrades are less than the specified density, break up the ground surface to a minimum depth of 6 inches, pulverizing, and compacting to the specified density. When the subgrade is part fill and part excavation or natural ground, scarify the excavated or natural ground portion to a depth of 12 inches and compact it as specified for the adjacent fill.

3.7.2 Frozen Material

Do not place material on surfaces that are muddy, frozen, or contain frost. Finish compaction by sheepfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other approved equipment well suited to the soil being compacted. Moisten material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used.

3.8 UTILIZATION OF EXCAVATED MATERIALS

Dispose unsatisfactory materials removing from excavations into designated waste disposal or spoil areas. Use satisfactory material removed from excavations, insofar as practicable, in the construction of fills, embankments, subgrades, shoulders, bedding (as backfill), and for similar purposes. Do not waste any satisfactory excavated material without specific written authorization. Dispose of satisfactory material, authorized to be wasted, in designated areas approved for surplus material storage or designated waste areas as directed. Clear and grub newly designated waste areas on Government-controlled land before disposal of waste material thereon. Stockpile and use coarse rock from excavations for constructing slopes or embankments adjacent to streams, or sides and bottoms of channels and for protecting against erosion. Do not dispose excavated material to obstruct the flow of any stream, endanger a partly finished structure, impair the efficiency or appearance of any structure, or be detrimental to the completed work in any way.

3.9 BURIED TAPE AND DETECTION WIRE

3.9.1 Buried Warning and Identification Tape

Provide buried utility lines with utility identification tape. Bury tape 12 inches below finished grade; under pavements and slabs, bury tape 6 inches below top of subgrade.

3.9.2 Buried Detection Wire

Bury detection wire directly above non-metallic piping at a distance not to exceed 12 inches above the top of pipe. Extend the wire continuously and unbroken, from manhole to manhole. Terminate the ends of the wire inside the manholes at each end of the pipe, with a minimum of 3 feet of wire, coiled, remaining accessible in each manhole. Furnish insulated wire over it's entire length. Install wires at manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, terminate the wire in the valve pit at the pump station end of the pipe.

3.10 BACKFILLING AND COMPACTION

Place backfill adjacent to any and all types of structures, in successive horizontal layers of loose material not more than 8 inches in depth. Compact to at least 90 percent laboratory maximum density for cohesive
materials or 95 percent laboratory maximum density for cohesionless materials, to prevent wedging action or eccentric loading upon or against the structure. Backfill material must be within the range of -2 to +2 percent of optimum moisture content at the time of compaction.

Prepare ground surface on which backfill is to be placed and provide compaction requirements for backfill materials in conformance with the applicable portions of paragraphs GROUND SURFACE PREPARATION. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment.

3.10.1 Trench Backfill

Backfill trenches to the grade shown. Backfill the trench to 2 feet above the top of pipe prior to performing the required pressure tests. Leave the joints and couplings uncovered during the pressure test. Do not backfill the trench until all specified tests are performed.

3.10.1.1 Replacement of Unyielding Material

Replace unyielding material removed from the bottom of the trench with select granular material or initial backfill material.

3.10.1.2 Replacement of Unstable Material

Replace unstable material removed from the bottom of the trench or excavation with select granular material placed in layers not exceeding 6 inches loose thickness.

3.10.1.3 Bedding and Initial Backfill

Provide bedding of the type and thickness shown. Place initial backfill material and compact it with approved tampers to a height of at least one foot above the utility pipe or conduit. Bring up the backfill evenly on both sides of the pipe for the full length of the pipe. Take care to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Compact backfill to top of pipe to 95 percent of ASTM D698 maximum density. Provide plastic piping with bedding to spring line of pipe. Provide materials as follows:

3.10.1.3.1 Class I

Angular, 0.25 to 1.5 inch, graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.

3.10.1.3.2 Class II

Coarse sands and gravels with maximum particle size of 1.5 inch, including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.

3.10.1.3.3 Sand

Clean, coarse-grained sand classified as SW or SP by ASTM D2487 for bedding and backfill as indicated.
3.10.1.3.4 Gravel and Crushed Stone

Clean, coarsely graded natural gravel, crushed stone or a combination thereof identified as #57 or #67 stone.

3.10.1.4 Final Backfill

Fill the remainder of the trench, except for special materials for roadways, railroads and airfields, with satisfactory material. Place backfill material and compact as follows:

3.10.1.4.1 Roadways, Railroads, and Airfields

Place backfill up to the required elevation as specified. Do not permit water flooding or jetting methods of compaction.

3.10.1.4.2 Sidewalks, Turfed or Seeded Areas and Miscellaneous Areas

Deposit backfill in layers of a maximum of 12 inches loose thickness, and compact it to 85 percent maximum density for cohesive soils and 90 percent maximum density for cohesionless soils. Do not permit compaction by water flooding or jetting. Apply this requirement to all other areas not specifically designated above.

3.10.2 Backfill for Appurtenances

After the manhole, catch basin, inlet, or similar structure has been constructed and the concrete has been allowed to cure for 3 days, place backfill in such a manner that the structure is not be damaged by the shock of falling earth. Deposit the backfill material, compact it as specified for final backfill, and bring up the backfill evenly on all sides of the structure to prevent eccentric loading and excessive stress.

3.11 SPECIAL REQUIREMENTS

Special requirements for both excavation and backfill relating to the specific utilities are as follows:

3.11.1 Gas Distribution

Excavate trenches to a depth that will provide a minimum 18 inches of cover in rock excavation and a minimum 24 inch of cover in other excavation.

3.11.2 Water Lines

Excavate trenches to a depth that provides a minimum cover of 3 feet from the existing ground surface, or from the indicated finished grade, whichever is lower, to the top of the pipe. For fire protection yard mains or piping, reference is made to NFPA 24 for recommended depth of cover.

3.11.3 Heat Distribution System

Free initial backfill material of stones larger than 1/4 inch in any dimension.

3.11.4 Electrical Distribution System

Provide a minimum cover of 24 inches from the finished grade to direct
burial cable and conduit or duct line, unless otherwise indicated.

3.11.5 Pipeline Casing

Provide new smooth wall steel pipeline casing under new and existing pavement by the boring and jacking method of installation. Provide each new pipeline casing, where indicated and to the lengths and dimensions shown, complete and suitable for use with the new piped utility as indicated. Install pipeline casing by dry boring and jacking method as follows:

3.11.5.1 Bore Holes

Mechanically bore holes and case through the soil with a cutting head on a continuous auger mounted inside the casing pipe. Weld lengths of pipe together in accordance with AWS D1.1/D1.1M. Do not use water or other fluids in connection with the boring operation.

3.11.5.2 Cleaning

Clean inside of the pipeline casing of dirt, weld splatters, and other foreign matter which would interfere with insertion of the piped utilities by attaching a pipe cleaning plug to the boring rig and passing it through the pipe.

3.11.5.3 End Seals

After installation of piped utilities in pipeline casing, provide watertight end seals at each end of pipeline casing between pipeline casing and piping utilities. Provide watertight end seals as indicated.

3.11.6 Rip-Rap Construction

Construct rip-rap on filter fabric in the areas indicated. Trim and dress indicated areas to conform to cross sections, lines and grades shown within a tolerance of 0.1 foot.

3.11.6.1 Bedding Placement

Spread filter fabric and bedding material uniformly to a thickness of at least 3 inches on prepared subgrade as indicated. Compaction of bedding is not required. Finish bedding to present even surface free from mounds and windrows.

3.11.6.2 Stone Placement

Place rock for rip-rap on prepared bedding material to produce a well graded mass with the minimum practicable percentage of voids in conformance with lines and grades indicated. Distribute larger rock fragments, with dimensions extending the full depth of the rip-rap throughout the entire mass and eliminate "pockets" of small rock fragments. Rearrange individual pieces by mechanical equipment or by hand as necessary to obtain the distribution of fragment sizes specified above. For grouted rip-rap, hand-place surface rock with open joints to facilitate grouting and do not fill smaller spaces between surface rock with finer material. Provide at least one "weep hole" through grouted rip-rap for every 50 square feet of finished surface. Provide weep holes with columns of bedding material, 4 inches in diameter, extending up to the rip-rap surface without grout.
3.11.6.3 Grouting

Prior to grouting, wet rip-rap surfaces. Grout rip-rap in successive longitudinal strips, approximately 10 feet in width, commencing at the lowest strip and working up the slope. Distribute grout to place of final deposit and work into place between stones with brooms, spades, trowels, or vibrating equipment. Take precautions to prevent grout from penetrating bedding layer. Protect and cure surface for a minimum of 7 days.

3.12 EMBANKMENTS

3.12.1 Earth Embankments

Construct earth embankments from satisfactory materials free of organic or frozen material and rocks with any dimension greater than 3 inches. Place the material in successive horizontal layers of loose material not more than 8 inches in depth. Spread each layer uniformly on a soil surface that has been moistened or aerated as necessary, and scarified or otherwise broken up so that the fill will bond with the surface on which it is placed. After spreading, plow, disk, or otherwise break up each layer; moisten or aerate as necessary; thoroughly mix; and compact to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials. Backfill material must be within the range of -2 to +2 percent of optimum moisture content at the time of compaction.

Compaction requirements for the upper portion of earth embankments forming subgrade for pavements are identical with those requirements specified in paragraph SUBGRADE PREPARATION. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment.

3.13 SUBGRADE PREPARATION

3.13.1 Proof Rolling

Finish proof rolling on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. After stripping, proof roll the existing subgrade with six passes of a dump truck loaded with 4 cubic yards of soil. Operate the truck in a systematic manner to ensure the number of passes over all areas, and at speeds between 2-1/2 to 3-1/2 mph. When proof rolling, provide one-half of the passes made with the roller in a direction perpendicular to the other passes. Notify the Contracting Officer a minimum of 3 days prior to proof rolling. Perform proof rolling in the presence of the Contracting Officer. Undercut rutting or pumping of material as directed by the Contracting Officer and replace with select material.

3.13.2 Construction

Shape subgrade to line, grade, and cross section, and compact as specified. Include plowing, diskling, and any moistening or aerating required to obtain specified compaction for this operation. Remove soft or otherwise unsatisfactory material and replace with satisfactory excavated material or other approved material as directed. Excavate rock encountered in the cut section to a depth of 6 inches below finished grade for the subgrade. Bring up low areas resulting from removal of unsatisfactory material or excavation of rock to required grade with satisfactory
materials, and shape the entire subgrade to line, grade, and cross section and compact as specified. After rolling, do not show deviations for the surface of the subgrade for roadways greater than 1/2 inch when tested with a 12-foot straightedge applied both parallel and at right angles to the centerline of the area. Do not vary the elevation of the finish subgrade more than 0.05 foot from the established grade and cross section.

3.13.3 Compaction

Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Except for paved areas and railroads, compact each layer of the embankment to at least 95 percent of laboratory maximum density.

3.13.3.1 Subgrade for Pavements

Compact subgrade for pavements to at least 95 percentage laboratory maximum density for the depth below the surface of the pavement shown. When more than one soil classification is present in the subgrade, thoroughly blend, reshape, and compact the top 12 inch of subgrade.

3.13.3.2 Subgrade for Shoulders

Compact subgrade for shoulders to at least 95 percentage laboratory maximum density for the depth below the surface of shoulder shown.

3.14 SHOULDER CONSTRUCTION

Construct shoulders of satisfactory excavated material or as otherwise shown or specified. Submit advanced notice on shoulder construction for rigid pavements. Construct shoulders immediately after adjacent paving is complete. In the case of rigid pavements, do not construct shoulders until permission of the Contracting Officer has been obtained. Compact the entire shoulder area to at least the percentage of maximum density as specified in paragraph SUBGRADE PREPARATION above, for specific ranges of depth below the surface of the shoulder. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Finish shoulder construction in proper sequence in such a manner that adjacent ditches will be drained effectively and that no damage of any kind is done to the adjacent completed pavement. Align the completed shoulders true to grade and shaped to drain in conformity with the cross section shown.

3.15 FINISHING

Finish the surface of excavations, embankments, and subgrades to a smooth and compact surface in accordance with the lines, grades, and cross sections or elevations shown. Provide the degree of finish for graded areas within 0.1 foot of the grades and elevations indicated except that the degree of finish for subgrades specified in paragraph SUBGRADE PREPARATION. Finish gutters and ditches in a manner that will result in effective drainage. Finish the surface of areas to be turfed from settlement or washing to a smoothness suitable for the application of turving materials. Repair graded, topsoiled, or backfilled areas prior to acceptance of the work, and re-established grades to the required elevations and slopes.
3.15.1 Subgrade and Embankments

During construction, keep embankments and excavations shaped and drained. Maintain ditches and drains along subgrade to drain effectively at all times. Do not disturb the finished subgrade by traffic or other operation. Protect and maintain the finished subgrade in a satisfactory condition until ballast, subbase, base, or pavement is placed. Do not permit the storage or stockpiling of materials on the finished subgrade. Do not lay subbase, base course, ballast, or pavement until the subgrade has been checked and approved, and in no case place subbase, base, surfacing, pavement, or ballast on a muddy, spongy, or frozen subgrade.

3.15.2 Capillary Water Barrier

Place a capillary water barrier under concrete floor and area-way slabs grade directly on the subgrade and compact with a minimum of two passes of a hand-operated plate-type vibratory compactor.

3.15.3 Grading Around Structures

Construct areas within 5 feet outside of each building and structure line true-to-grade, shape to drain, and maintain free of trash and debris until final inspection has been completed and the work has been accepted.

3.16 PLACING TOPSOIL

On areas to receive topsoil, prepare the compacted subgrade soil to a 2 inches depth for bonding of topsoil with subsoil. Spread topsoil evenly to a thickness of 4 inch and grade to the elevations and slopes shown. Do not spread topsoil when frozen or excessively wet or dry. Obtain material required for topsoil in excess of that produced by excavation within the grading limits from offsite areas.

3.17 TESTING

Perform testing by a Corps validated commercial testing laboratory or the Contractor's validated testing facility. If the Contractor elects to establish testing facilities, do not permit work requiring testing until the Contractor's facilities have been inspected, Corps validated and approved by the Contracting Officer.

a. Determine field in-place density in accordance with ASTM D1556/D1556M, ASTM D2167, and ASTM D6938. When ASTM D6938 is used, check the calibration curves and adjust using only the sand cone method as described in ASTM D1556/D1556M. ASTM D6938 results in a wet unit weight of soil in determining the moisture content of the soil when using this method.

b. Check the calibration curves furnished with the moisture gauges along with density calibration checks as described in ASTM D6938; check the calibration of both the density and moisture gauges at the beginning of a job on each different type of material encountered and at intervals as directed by the Contracting Officer. When test results indicate, as determined by the Contracting Officer, that compaction is not as specified, remove the material, replace and recompact to meet specification requirements.

c. Perform tests on recompacted areas to determine conformance with specification requirements. Appoint a registered professional civil
engineer to certify inspections and test results. These certifications shall state that the tests and observations were performed by or under the direct supervision of the engineer and that the results are representative of the materials or conditions being certified by the tests. The following number of tests, if performed at the appropriate time, will be the minimum acceptable for each type operation.

3.17.1 Fill and Backfill Material Gradation

One test per 200 cubic yards stockpiled or in-place source material. Determine gradation of fill and backfill material in accordance with ASTM C136/C136M and ASTM D1140.

3.17.2 In-Place Densities

a. One test per 2500 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by other than hand-operated machines.

b. One test per 1000 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by hand-operated machines.

3.17.3 Check Tests on In-Place Densities

If ASTM D6938 is used, check in-place densities by ASTM D1556/D1556M as follows:

a. One check test per lift for each 2500 square feet, or fraction thereof, of each lift of fill or backfill compacted by other than hand-operated machines.

b. One check test per lift for each 1000 square feet, of fill or backfill areas compacted by hand-operated machines.

3.17.4 Moisture Contents

In the stockpile, excavation, or borrow areas, perform a minimum of two tests per day per type of material or source of material being placed during stable weather conditions. During unstable weather, perform tests as dictated by local conditions and approved by the Contracting Officer.

3.17.5 Optimum Moisture and Laboratory Maximum Density

Perform tests for each type material or source of material to determine the optimum moisture and laboratory maximum density values. One representative test per 500 cubic yards of fill and backfill, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density.

3.17.6 Tolerance Tests for Subgrades

Perform continuous checks on the degree of finish specified in paragraph SUBGRADE PREPARATION during construction of the subgrades.

3.17.7 Displacement of Sewers

After other required tests have been performed and the trench backfill compacted to the finished grade surface, inspect the pipe to determine whether significant displacement has occurred. Conduct this inspection in the presence of the Contracting Officer. Inspect pipe sizes larger than 36
inches, while inspecting smaller diameter pipe by shining a light or laser between manholes or manhole locations, or by the use of television cameras passed through the pipe. If, in the judgment of the Contracting Officer, the interior of the pipe shows poor alignment or any other defects that would cause improper functioning of the system, replace or repair the defects as directed at no additional cost to the Government.

3.18 DISPOSITION OF SURPLUS MATERIAL

Remove surplus material or other soil material not required or suitable for filling or backfilling, and brush, refuse, stumps, roots, and timber from Government property and delivered to a licensed/permitted facility or to a location approved by the Contracting Officer.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 182 (2005) Standard Specification for Burlap Cloth Made from Jute or Kenaf and Cotton Mats

ASTM INTERNATIONAL (ASTM)

ASTM A 615/A 615M (2008b) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM C 231 (2009a) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

1.2 SYSTEM DESCRIPTION

1.2.1 General Requirements

Provide plant, equipment, machines, and tools used in the work subject to approval and maintained in a satisfactory working condition at all times. The equipment shall have the capability of producing the required product, meeting grade controls, thickness control and smoothness requirements as specified. Use of the equipment shall be discontinued if it produces unsatisfactory results. The Contracting Officer shall have access at all times to the plant and equipment to ensure proper operation and compliance with specifications.

1.2.2 Slip Form Equipment

Slip form paver or curb forming machine, will be approved based on trial use on the job and shall be self-propelled, automatically controlled, crawler mounted, and capable of spreading, consolidating, and shaping the plastic concrete to the desired cross section in 1 pass.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval.

SD-03 Product Data

Concrete

Copies of certified delivery tickets for all concrete used in the construction.

SD-06 Test Reports

Field Quality Control

Copies of all test reports within 24 hours of completion of the test.

1.4 ENVIRONMENTAL REQUIREMENTS

1.4.1 Placing During Cold Weather

Do not place concrete when the air temperature reaches 40 degrees F and is...
falling, or is already below that point. Placement may begin when the air temperature reaches 35 degrees F and is rising, or is already above 40 degrees F. Make provisions to protect the concrete from freezing during the specified curing period. If necessary to place concrete when the temperature of the air, aggregates, or water is below 35 degrees F, placement and protection shall be approved in writing. Approval will be contingent upon full conformance with the following provisions. The underlying material shall be prepared and protected so that it is entirely free of frost when the concrete is deposited. Mixing water shall be heated as necessary to result in the temperature of the in-place concrete being between 50 and 85 degrees F. Methods and equipment for heating shall be approved. The aggregates shall be free of ice, snow, and frozen lumps before entering the mixer. Covering and other means shall be provided for maintaining the concrete at a temperature of at least 50 degrees F for not less than 72 hours after placing, and at a temperature above freezing for the remainder of the curing period.

1.4.2 Placing During Warm Weather

The temperature of the concrete as placed shall not exceed 85 degrees F except where an approved retarder is used. The mixing water and/or aggregates shall be cooled, if necessary, to maintain a satisfactory placing temperature. The placing temperature shall not exceed 95 degrees F at any time.

PART 2 PRODUCTS

2.1 CONCRETE

Provide concrete conforming to the applicable requirements of 03 30 50 CAST-IN-PLACE CONCRETE except as otherwise specified. Concrete shall have a minimum compressive strength of 3500 psi at 28 days. Maximum size of aggregate shall be 1-1/2 inches.

2.1.1 Air Content

Mixtures shall have air content by volume of concrete of 5 to 7 percent, based on measurements made immediately after discharge from the mixer.

2.1.2 Slump

The concrete slump shall be 2 inches plus or minus 1 inch where determined in accordance with ASTM C 143/C 143M.

2.1.3 Reinforcement Steel

Reinforcement bars shall conform to ASTM A 615/A 615M. Wire mesh reinforcement shall conform to ASTM A 185/A 185M.

2.2 CONCRETE CURING MATERIALS

2.2.1 Impervious Sheet Materials

Impervious sheet materials shall conform to ASTM C 171, type optional, except that polyethylene film, if used, shall be white opaque.

2.2.2 Burlap

Burlap shall conform to AASHTO M 182.
2.2.3 White Pigmented Membrane-Forming Curing Compound

White pigmented membrane-forming curing compound shall conform to ASTM C 309, Type 2.

2.3 CONCRETE PROTECTION MATERIALS

Concrete protection materials shall be a linseed oil mixture of equal parts, by volume, of linseed oil and either mineral spirits, naphtha, or turpentine. At the option of the Contractor, commercially prepared linseed oil mixtures, formulated specifically for application to concrete to provide protection against the action of deicing chemicals may be used, except that emulsified mixtures are not acceptable.

2.4 JOINT FILLER STRIPS

2.4.1 Contraction Joint Filler for Curb and Gutter

Contraction joint filler for curb and gutter shall consist of hard-pressed fiberboard.

2.4.2 Expansion Joint Filler, Premolded

Expansion joint filler, premolded, shall conform to ASTM D 1751 or ASTM D 1752, 1/2 inch thick, unless otherwise indicated.

2.5 JOINT SEALANTS

Joint sealant, cold-applied shall conform to ASTM C 920 or ASTM D 5893.

2.6 FORM WORK

Design and construct form work to ensure that the finished concrete will conform accurately to the indicated dimensions, lines, and elevations, and within the tolerances specified. Forms shall be of wood or steel, straight, of sufficient strength to resist springing during depositing and consolidating concrete. Wood forms shall be surfaced plank, 2 inches nominal thickness, straight and free from warp, twist, loose knots, splits or other defects. Wood forms shall have a nominal length of 10 feet. Radius bends may be formed with 3/4 inch boards, laminated to the required thickness. Steel forms shall be channel-formed sections with a flat top surface and with welded braces at each end and at not less than two intermediate points. Ends of steel forms shall be interlocking and self-aligning. Steel forms shall include flexible forms for radius forming, corner forms, form spreaders, and fillers. Steel forms shall have a nominal length of 10 feet with a minimum of 3 welded stake pockets per form. Stake pins shall be solid steel rods with chamfered heads and pointed tips designed for use with steel forms.

2.6.1 Sidewalk Forms

Sidewalk forms shall be of a height equal to the full depth of the finished sidewalk.

2.6.2 Curb and Gutter Forms

Curb and gutter outside forms shall have a height equal to the full depth of the curb or gutter. The inside form of curb shall have batter as
indicated and shall be securely fastened to and supported by the outside form. Rigid forms shall be provided for curb returns, except that benders or thin plank forms may be used for curb or curb returns with a radius of 10 feet or more, where grade changes occur in the return, or where the central angle is such that a rigid form with a central angle of 90 degrees cannot be used. Back forms for curb returns may be made of 1-1/2 inch benders, for the full height of the curb, cleated together. In lieu of inside forms for curbs, a curb "mule" may be used for forming and finishing this surface, provided the results are approved.

PART 3 EXECUTION

3.1 SUBGRADE PREPARATION

The subgrade shall be constructed to the specified grade and cross section prior to concrete placement. Subgrade shall be placed and compacted in conformance with Section 31 00 00 EARTHWORK.

3.1.1 Sidewalk Subgrade

The subgrade shall be tested for grade and cross section with a template extending the full width of the sidewalk and supported between side forms.

3.1.2 Curb and Gutter Subgrade

The subgrade shall be tested for grade and cross section by means of a template extending the full width of the curb and gutter. The subgrade shall be of materials equal in bearing quality to the subgrade under the adjacent pavement.

3.1.3 Maintenance of Subgrade

The subgrade shall be maintained in a smooth, compacted condition in conformity with the required section and established grade until the concrete is placed. The subgrade shall be in a moist condition when concrete is placed. The subgrade shall be prepared and protected to produce a subgrade free from frost when the concrete is deposited.

3.2 FORM SETTING

Set forms to the indicated alignment, grade and dimensions. Hold forms rigidly in place by a minimum of 3 stakes per form placed at intervals not to exceed 4 feet. Corners, deep sections, and radius bends shall have additional stakes and braces, as required. Clamps, spreaders, and braces shall be used where required to ensure rigidity in the forms. Forms shall be removed without injuring the concrete. Bars or heavy tools shall not be used against the concrete in removing the forms. Any concrete found defective after form removal shall be promptly and satisfactorily repaired. Forms shall be cleaned and coated with form oil each time before concrete is placed. Wood forms may, instead, be thoroughly wetted with water before concrete is placed, except that with probable freezing temperatures, oiling is mandatory.

3.2.1 Sidewalks

Set forms for sidewalks with the upper edge true to line and grade with an allowable tolerance of 1/8 inch in any 10 foot long section. After forms are set, grade and alignment shall be checked with a 10 foot straightedge. Forms shall have a transverse slope as indicated. Side forms shall not be
removed for 12 hours after finishing has been completed.

3.2.2 Curbs and Gutters

The forms of the front of the curb shall be removed not less than 2 hours nor more than 6 hours after the concrete has been placed. Forms back of curb shall remain in place until the face and top of the curb have been finished, as specified for concrete finishing. Gutter forms shall not be removed while the concrete is sufficiently plastic to slump in any direction.

3.3 SIDEWALK CONCRETE PLACEMENT AND FINISHING

3.3.1 Formed Sidewalks

Place concrete in the forms in one layer. When consolidated and finished, the sidewalks shall be of the thickness indicated. After concrete has been placed in the forms, a strike-off guided by side forms shall be used to bring the surface to proper section to be compacted. The concrete shall be consolidated with an approved vibrator, and the surface shall be finished to grade with a strike off.

3.3.2 Concrete Finishing

After straightedging, when most of the water sheen has disappeared, and just before the concrete hardens, finish the surface with a wood float or darby to a smooth and uniformly fine granular or sandy texture free of waves, irregularities, or tool marks. A scored surface shall be produced by brooming with a fiber-bristle brush in a direction transverse to that of the traffic, followed by edging.

3.3.3 Edge and Joint Finishing

All slab edges, including those at formed joints, shall be finished with an edger having a radius of 1/8 inch. Transverse joint shall be edged before brooming, and the brooming shall eliminate the flat surface left by the surface face of the edger. Corners and edges which have crumbled and areas which lack sufficient mortar for proper finishing shall be cleaned and filled solidly with a properly proportioned mortar mixture and then finished.

3.3.4 Surface and Thickness Tolerances

Finished surfaces shall not vary more than 5/16 inch from the testing edge of a 10-foot straightedge. Permissible deficiency in section thickness will be up to 1/4 inch.

3.4 CURB AND GUTTER CONCRETE PLACEMENT AND FINISHING

3.4.1 Formed Curb and Gutter

Concrete shall be placed to the section required in a single lift. Consolidation shall be achieved by using approved mechanical vibrators. Curve shaped gutters shall be finished with a standard curb "mule".

3.4.2 Curb and Gutter Finishing

Approved slipformed curb and gutter machines may be used in lieu of hand placement.
3.4.3 Concrete Finishing

Exposed surfaces shall be floated and finished with a smooth wood float until true to grade and section and uniform in texture. Floated surfaces shall then be brushed with a fine-hair brush with longitudinal strokes. The edges of the gutter and top of the curb shall be rounded with an edging tool to a radius of 1/2 inch. Immediately after removing the front curb form, the face of the curb shall be rubbed with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The front curb surface, while still wet, shall be brushed in the same manner as the gutter and curb top. The top surface of gutter and entrance shall be finished to grade with a wood float.

3.4.4 Joint Finishing

Curb edges at formed joints shall be finished as indicated.

3.4.5 Surface and Thickness Tolerances

Finished surfaces shall not vary more than 1/4 inch from the testing edge of a 10-foot straightedge. Permissible deficiency in section thickness will be up to 1/4 inch.

3.5 SIDEWALK JOINTS

Sidewalk joints shall be constructed to divide the surface into rectangular areas. Transverse contraction joints shall be spaced at a distance equal to the sidewalk width or 5 feet on centers, whichever is less, and shall be continuous across the slab. Longitudinal contraction joints shall be constructed along the centerline of all sidewalks 10 feet or more in width. Transverse expansion joints shall be installed at sidewalk returns and opposite expansion joints in adjoining curbs. Where the sidewalk is not in contact with the curb, transverse expansion joints shall be installed as indicated. Expansion joints shall be formed about structures and features which project through or into the sidewalk pavement, using joint filler of the type, thickness, and width indicated. Expansion joints are not required between sidewalks and curb that abut the sidewalk longitudinally.

3.5.1 Sidewalk Contraction Joints

The contraction joints shall be formed in the fresh concrete by cutting a groove in the top portion of the slab to a depth of at least one-fourth of the sidewalk slab thickness, using a jointer to cut the groove, or by sawing a groove in the hardened concrete with a power-driven saw, unless otherwise approved. Sawed joints shall be constructed by sawing a groove in the concrete with a 1/8 inch blade to the depth indicated. An ample supply of saw blades shall be available on the job before concrete placement is started, and at least one standby sawing unit in good working order shall be available at the jobsite at all times during the sawing operations.

3.5.2 Sidewalk Expansion Joints

Expansion joints shall be formed with 1/2 inch joint filler strips. Joint filler in expansion joints surrounding structures and features within the sidewalk may consist of preformed filler material conforming to ASTM D 1752 or building paper. Joint filler shall be held in place with steel pins or...
other devices to prevent warping of the filler during floating and finishing. Immediately after finishing operations are completed, joint edges shall be rounded with an edging tool having a radius of 1/8 inch, and concrete over the joint filler shall be removed. At the end of the curing period, expansion joints shall be cleaned and filled with cold-applied joint sealant. Joint sealant shall be gray or stone in color. The joint opening shall be thoroughly cleaned before the sealing material is placed. Sealing material shall not be spilled on exposed surfaces of the concrete. Concrete at the joint shall be surface dry and atmospheric and concrete temperatures shall be above 50 degrees F at the time of application of joint sealing material. Excess material on exposed surfaces of the concrete shall be removed immediately and concrete surfaces cleaned.

3.5.3 Reinforcement Steel Placement

Reinforcement steel shall be accurately and securely fastened in place with suitable supports and ties before the concrete is placed.

3.6 CURB AND GUTTER JOINTS

Curb and gutter joints shall be constructed at right angles to the line of curb and gutter.

3.6.1 Contraction Joints

Contraction joints shall be constructed directly opposite contraction joints in abutting portland cement concrete pavements and spaced so that monolithic sections between curb returns will not be less than 5 feet nor greater than 15 feet in length.

a. Contraction joints (except for slip forming) shall be constructed by means of 1/8 inch thick separators and of a section conforming to the cross section of the curb and gutter. Separators shall be removed as soon as practicable after concrete has set sufficiently to preserve the width and shape of the joint and prior to finishing.

b. When slip forming is used, the contraction joints shall be cut in the top portion of the gutter/curb hardened concrete in a continuous cut across the curb and gutter, using a power-driven saw. The depth of cut shall be at least one-fourth of the gutter/curb depth and 1/8 inch in width.

3.6.2 Expansion Joints

Expansion joints shall be formed by means of preformed expansion joint filler material cut and shaped to the cross section of curb and gutter. Expansion joints shall be provided in curb and gutter directly opposite expansion joints of abutting portland cement concrete pavement, and shall be of the same type and thickness as joints in the pavement. Where curb and gutter do not abut portland cement concrete pavement, expansion joints at least 1/2 inch in width shall be provided at intervals not less than 30 feet nor greater than 120 feet. Expansion joints shall be provided in nonreinforced concrete gutter at locations indicated. Expansion joints shall be sealed immediately following curing of the concrete or as soon thereafter as weather conditions permit. Expansion joints and the top 1 inch depth of curb and gutter contraction-joints shall be sealed with joint sealant. The joint opening shall be thoroughly cleaned before the sealing material is placed. Sealing material shall not be spilled on exposed surfaces of the concrete. Concrete at the joint shall be surface dry and
atmospheric and concrete temperatures shall be above 50 degrees F at the time of application of joint sealing material. Excess material on exposed surfaces of the concrete shall be removed immediately and concrete surfaces cleaned.

3.7 CURING AND PROTECTION

3.7.1 General Requirements

Protect concrete against loss of moisture and rapid temperature changes for at least 7 days from the beginning of the curing operation. Protect unhardened concrete from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready for use before actual concrete placement begins. Protection shall be provided as necessary to prevent cracking of the pavement due to temperature changes during the curing period.

3.7.1.1 Mat Method

The entire exposed surface shall be covered with 2 or more layers of burlap. Mats shall overlap each other at least 6 inches. The mat shall be thoroughly wetted with water prior to placing on concrete surface and shall be kept continuously in a saturated condition and in intimate contact with concrete for not less than 7 days.

3.7.1.2 Impervious Sheeting Method

The entire exposed surface shall be wetted with a fine spray of water and then covered with impervious sheeting material. Sheets shall be laid directly on the concrete surface with the light-colored side up and overlapped 12 inches when a continuous sheet is not used. The curing medium shall not be less than 18-inches wider than the concrete surface to be cured, and shall be securely weighted down by heavy wood planks, or a bank of moist earth placed along edges and laps in the sheets. Sheets shall be satisfactorily repaired or replaced if torn or otherwise damaged during curing. The curing medium shall remain on the concrete surface to be cured for not less than 7 days.

3.7.1.3 Membrane Curing Method

A uniform coating of white-pigmented membrane-curing compound shall be applied to the entire exposed surface of the concrete as soon after finishing as the free water has disappeared from the finished surface. Formed surfaces shall be coated immediately after the forms are removed and in no case longer than 1 hour after the removal of forms. Concrete shall not be allowed to dry before the application of the membrane. If any drying has occurred, the surface of the concrete shall be moistened with a fine spray of water and the curing compound applied as soon as the free water disappears. Curing compound shall be applied in two coats by hand-operated pressure sprayers at a coverage of approximately 200 square feet/gallon for the total of both coats. The second coat shall be applied in a direction approximately at right angles to the direction of application of the first coat. The compound shall form a uniform, continuous, coherent film that will not check, crack, or peel and shall be free from pinholes or other imperfections. If pinholes, abrasion, or other discontinuities exist, an additional coat shall be applied to the affected areas within 30 minutes. Concrete surfaces that are subjected to heavy rainfall within 3 hours after the curing compound has been applied shall be resprayed by the method and at the coverage specified above. Areas where
the curing compound is damaged by subsequent construction operations within the curing period shall be resprayed. Necessary precautions shall be taken to insure that the concrete is properly cured at sawed joints, and that no curing compound enters the joints. The top of the joint opening and the joint groove at exposed edges shall be tightly sealed before the concrete in the region of the joint is resprayed with curing compound. The method used for sealing the joint groove shall prevent loss of moisture from the joint during the entire specified curing period. Approved standby facilities for curing concrete pavement shall be provided at a location accessible to the jobsite for use in the event of mechanical failure of the spraying equipment or other conditions that might prevent correct application of the membrane-curing compound at the proper time. Concrete surfaces to which membrane-curing compounds have been applied shall be adequately protected during the entire curing period from pedestrian and vehicular traffic, except as required for joint-sawing operations and surface tests, and from any other possible damage to the continuity of the membrane.

3.7.2 Backfilling

After curing, debris shall be removed and the area adjoining the concrete shall be backfilled, graded, and compacted to conform to the surrounding area in accordance with lines and grades indicated.

3.7.3 Protection

Completed concrete shall be protected from damage until accepted. Repair damaged concrete and clean concrete discolored during construction. Concrete that is damaged shall be removed and reconstructed for the entire length between regularly scheduled joints. Refinishing the damaged portion will not be acceptable. Removed damaged portions shall be disposed of as directed.

3.7.4 Protective Coating

Protective coating, of linseed oil mixture, shall be applied to the exposed-to-view concrete surface after the curing period, if concrete will be exposed to de-icing chemicals within 6 weeks after placement. Concrete to receive a protective coating shall be moist cured.

3.7.4.1 Application

Curing and backfilling operation shall be completed prior to applying two coats of protective coating. Concrete shall be surface dry and clean before each application. Coverage shall be by spray application at not more than 50 square yards/gallon for first application and not more than 70 square yards/gallon for second application, except that the number of applications and coverage for each application for commercially prepared mixture shall be in accordance with the manufacturer's instructions. Coated surfaces shall be protected from vehicular and pedestrian traffic until dry.

3.7.4.2 Precautions

Protective coating shall not be heated by direct application of flame or electrical heaters and shall be protected from exposure to open flame, sparks, and fire adjacent to open containers or applicators. Material shall not be applied at ambient or material temperatures lower than 50 degrees F.
3.8 FIELD QUALITY CONTROL

3.8.1 General Requirements

Perform the inspection and tests described and meet the specified requirements for inspection details and frequency of testing. Based upon the results of these inspections and tests, take the action and submit reports as required below, and any additional tests to insure that the requirements of these specifications are met.

3.8.2 Concrete Testing

3.8.2.1 Strength Testing

Provide molded concrete specimens for strength tests. Samples of concrete placed each day shall be taken not less than once a day nor less than once for every 250 cubic yards of concrete. The samples for strength tests shall be taken in accordance with ASTM C 172. Cylinders for acceptance shall be molded in conformance with ASTM C 31/C 31M by an approved testing laboratory. Each strength test result shall be the average of 2 test cylinders from the same concrete sample tested at 28 days, unless otherwise specified or approved. Concrete specified on the basis of compressive strength will be considered satisfactory if the averages of all sets of three consecutive strength test results equal or exceed the specified strength, and no individual strength test result falls below the specified strength by more than 500 psi.

3.8.2.2 Air Content

Determine air content in accordance with ASTM C 173/C 173M or ASTM C 231. ASTM C 231 shall be used with concretes and mortars made with relatively dense natural aggregates. Two tests for air content shall be made on randomly selected batches of each class of concrete placed during each shift. Additional tests shall be made when excessive variation in concrete workability is reported by the placing foreman or the Government inspector. If results are out of tolerance, the placing foreman shall be notified and he shall take appropriate action to have the air content corrected at the plant. Additional tests for air content will be performed on each truckload of material until such time as the air content is within the tolerance specified.

3.8.2.3 Slump Test

Two slump tests shall be made on randomly selected batches of each class of concrete for every 250 cubic yards, or fraction thereof, of concrete placed during each shift. Additional tests shall be performed when excessive variation in the workability of the concrete is noted or when excessive crumbling or slumping is noted along the edges of slip-formed concrete.

3.8.3 Thickness Evaluation

The anticipated thickness of the concrete shall be determined prior to placement by passing a template through the formed section or by measuring the depth of opening of the extrusion template of the curb forming machine. If a slip form paver is used for sidewalk placement, the subgrade shall be true to grade prior to concrete placement and the thickness will be determined by measuring each edge of the completed slab.
3.8.4 Surface Evaluation

The finished surface of each category of the completed work shall be uniform in color and free of blemishes and form or tool marks.

3.9 SURFACE DEFICIENCIES AND CORRECTIONS

3.9.1 Thickness Deficiency

When measurements indicate that the completed concrete section is deficient in thickness by more than 1/4 inch the deficient section will be removed, between regularly scheduled joints, and replaced.

3.9.2 High Areas

In areas not meeting surface smoothness and plan grade requirements, high areas shall be reduced either by rubbing the freshly finished concrete with carborundum brick and water when the concrete is less than 36 hours old or by grinding the hardened concrete with an approved surface grinding machine after the concrete is 36 hours old or more. The area corrected by grinding the surface of the hardened concrete shall not exceed 5 percent of the area of any integral slab, and the depth of grinding shall not exceed 1/4 inch. Pavement areas requiring grade or surface smoothness corrections in excess of the limits specified above shall be removed and replaced.

3.9.3 Appearance

Exposed surfaces of the finished work will be inspected by the Government and any deficiencies in appearance will be identified. Areas which exhibit excessive cracking, discoloration, form marks, or tool marks or which are otherwise inconsistent with the overall appearances of the work shall be removed and replaced.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES
The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 249 (2012; R2016) Standard Specification for White and Yellow Reflective Thermoplastic Striping Material (Solid Form)

ASTM INTERNATIONAL (ASTM)

ASTM D4505 (2012) Preformed Retroflective Pavement Marking Tape for Extended Service Life

U.S. FEDERAL HIGHWAY ADMINISTRATION (FHWA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only or as otherwise designated. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Exterior Surface Preparation

Material Safety Data Sheets (MSDS) for proposed materials

Reflective media for roads

Thermoplastic compound

SD-06 Test Reports

Reflective Media for Roads
1.3 QUALITY ASSURANCE

1.3.1 Regulatory Requirements

Submit certificate stating that the proposed pavement marking paint meets the Volatile Organic Compound, (VOC) regulations of the local Air Pollution Control District having jurisdiction over the geographical area in which the project is located. Submit Material Safety Data Sheets (MSDS) for each product.

1.3.2 Qualifications

Submit documentation certifying that pertinent personnel are qualified for equipment operation and handling of applicable chemicals. The documentation should include experience on five projects of similar size and scope with references for all personnel.

1.4 DELIVERY AND STORAGE

Deliver paint materials, thermoplastic compound materials, and reflective media in original sealed containers that plainly show the designated name, specification number, batch number, color, date of manufacture, manufacturer's directions, and name of manufacturer.

Provide storage facilities at the job site, only in areas approved by the Contracting Officer, for maintaining materials at temperatures recommended by the manufacturer.

1.5 PROJECT/SITE CONDITIONS

1.5.1 Environmental Requirements

1.5.1.1 Weather Limitations for Application

Apply pavement markings to clean, dry surfaces, and unless otherwise approved, only when the air and pavement surface temperature is at least 5 degrees F above the dew point and the air and pavement temperatures are within the limits recommended by the pavement marking manufacturer. Allow pavement surfaces to dry after water has been used for cleaning or rainfall has occurred prior to striping or marking. Test the pavement surface for moisture before beginning work each day and after cleaning. Do not commence marking until the pavement is sufficiently dry and the pavement
condition has been approved by the Contracting Officer. Employ the "plastic wrap method" to test the pavement for moisture as specified in paragraph TESTING FOR MOISTURE.

1.5.1.2 Weather Limitations for Removal of Pavement Markings on Roads and Parking Areas

Pavement surface must be free of snow, ice, or slush; with a surface temperature of at least 40 degrees F and rising at the beginning of operations, except those involving shot or sand blasting or grinding. Cease operation during thunderstorms, or during rainfall, except for waterblasting and removal of previously applied chemicals. Cease waterblasting where surface water accumulation alters the effectiveness of material removal.

1.5.2 Traffic Controls

Place warning signs conforming to MUTCD near the beginning of the worksite and well ahead of the worksite for alerting approaching traffic from both directions. Place small markers along newly painted lines or freshly placed raised markers to control traffic and prevent damage to newly painted surfaces or displacement of raised pavement markers. Mark painting equipment with large warning signs indicating slow-moving painting equipment in operation.

When traffic must be rerouted or controlled to accomplish the work, provide necessary warning signs, flag persons, and related equipment for the safe passage of vehicles.

PART 2 PRODUCTS

2.1 EQUIPMENT

2.1.1 Surface Preparation Equipment for Roads and Parking Areas

Mobile equipment must allow for removal of markings without damaging the pavement surface or joint sealant. Maintain machines, tools, and equipment used in the performance of the work in satisfactory operating condition.

2.1.1.1 Sandblasting Equipment

Use mobile sandblasting equipment capable of producing a pressurized stream of sand and air that effectively removes paint from the surface without filling voids with debris in asphalt or tar pavements or removing joint sealants in portland cement concrete pavements. Include with the equipment and air compressor, hoses, and nozzles of adequate size and capacity for removing paint. Equip the compressor with traps and coalescing filters that maintain the compressed air free of oil and water.

2.1.1.2 Waterblasting Equipment

Use mobile waterblasting equipment capable of producing a pressurized stream of water that effectively removes paint from the pavement surface without significantly damaging the pavement. Provide equipment, tools, and machinery which are safe and in good working order at all times.

2.1.1.3 Grinding or Scarifying Equipment

Use equipment capable of removing surface contaminants, paint build-up, or
extraneous markings from the pavement surface without leaving any residue. Clean the surface by hydro blast to remove surface contaminates and ash after a weed torch is used to remove paint.

2.1.1.4 Chemical Removal Equipment

Use chemical equipment capable of applying and removing chemicals and paint from the pavement surface, leaving only non-toxic biodegradable residue without scarring or other damage to the pavement or joints and joint seals.

2.1.2 Application Equipment

Provide and maintain machines, tools, and equipment used in the performance of the work in satisfactory operating condition, or remove them from the work site. Provide mobile and maneuverable application equipment to the extent that straight lines can be followed and normal curves can be made in a true arc.

2.1.2.1 Paint Application Equipment

2.1.2.1.1 Hand-Operated, Push-Type Machines

Provide hand-operated push-type applicator machine of a type commonly used for application of water based paint or two-component, chemically curing paint, thermoplastic, or preformed tape, to pavement surfaces for small marking projects, such as legends and cross-walks, parking areas, or surface painted signs. Provide applicator machine equipped with the necessary tanks and spraying nozzles capable of applying paint uniformly at coverage specified. Hand operated spray guns may be used in areas where push-type machines cannot be used.

2.1.2.1.2 Self-Propelled or Mobile-Drawn Spraying Machines

Provide self-propelled or mobile-drawn spraying machine with suitable arrangements of atomizing nozzles and controls to obtain the specified results. Provide machine having a speed during application capable of applying the stripe widths indicated at the paint coverage rate specified herein and of even uniform thickness with clear-cut edges.

2.1.2.1.2.1 Road Marking

Provide equipment used for marking roads capable of placing the prescribed number of lines at a single pass as solid lines, intermittent lines, or a combination of solid and intermittent lines using a maximum of three different colors of paint as specified.

2.1.2.2 Thermoplastic Application Equipment

2.1.2.2.1 Thermoplastic Material

Apply thermoplastic material with equipment that is capable of providing continuous uniformity in the dimensions and reflectorization of the marking.

2.1.2.2.2 Application Equipment

a. Provide application equipment capable of continuous mixing and agitation of the material, with conveying parts which prevent accumulation and clogging between the main material reservoir and the extrusion shoe or spray gun. All parts of the equipment which come
into contact with the material must be easily accessible and exposed for cleaning and maintenance. All mixing and conveying parts up to and including the extrusion shoes and spray guns must maintain the material at the required temperature with heat-transfer oil or electrical-element-controlled heat.

b. Provide application equipment constructed to ensure continuous uniformity in the dimensions of the stripe. Provide an applicator with a means for cleanly cutting off stripe ends squarely and providing a method of applying "skiplines." Provide equipment capable of applying varying widths of traffic markings.

c. Provide mobile and maneuverable application equipment allowing straight lines to be followed and normal curves to be made in a true arc. Provide equipment used for the placement of thermoplastic pavement markings of two general types: mobile applicator and portable applicator.

d. Equip the applicator with a pressurized or drop-on type bead dispenser capable of uniformly dispensing reflective glass spheres at controlled rates of flow. The bead dispenser must operate automatically to begin flow prior to the flow of binder to assure that the strip is fully reflectorized.

2.1.2.2.3 Portable Application Equipment

Provide portable hand-operated equipment, specifically designed for placing special markings such as crosswalks, stop bars, legends, arrows, and short lengths of lane, edge and centerlines; and capable of applying thermoplastic pavement markings by the extrusion method. Equip the portable applicator with all the necessary components, including a materials storage reservoir, bead dispenser, extrusion shoe, and heating accessories, capable of holding the molten thermoplastic at the temperature recommended by the manufacturer, and of extruding a line of 3 to 12 inches in width, and in thickness of not less than 0.120 inch nor more than 0.190 inch and of generally uniform cross section.

2.1.2.3 Reflective Media Dispenser

Attach the dispenser for applying the reflective media to the paint dispenser and designed to operate automatically and simultaneously with the applicator through the same control mechanism. The bead applicator must be capable of adjustment and designed to provide uniform flow of reflective media over the full length and width of the stripe at the rate of coverage specified in paragraph APPLICATION.

2.1.2.4 Preformed Tape Application Equipment

Provide and use mechanical application equipment for the placement of preformed marking tape which is a mobile pavement marking machine specifically designed for use in applying pressure-sensitive pavement marking tape of varying widths. Equip the applicator with rollers, or other suitable compaction device to provide initial adhesion of the material with the pavement surface. Use additional tools and devices as needed to properly seat the applied material as recommended by the manufacturer.
2.2 MATERIALS

Color of markings are indicated on the drawings and must conform to ASTM D6628 for roads and parking areas. Provide materials conforming to the requirements specified herein.

2.2.1 Thermoplastic Compound

2.2.1.1 Composition Requirements

Thermoplastic compound must conform to NCDOT Standards Manual and AASHTO M 249. Formulate the binder component as an alkyd resin.

2.2.1.2 Primer

a. Asphalt concrete primer: Provide thermosetting adhesive primer with a solids content of pigment reinforced synthetic rubber and synthetic plastic resin dissolved or dispersed in a volatile organic solvent for asphaltic concrete pavements. The solids content must not be less than 10 percent by weight at 70 degrees F and 60 percent relative humidity. A wet film thickness of 0.005 inch, plus or minus 0.001 inch, must dry to a tack-free condition in less than 5 minutes.

b. Portland cement concrete primer: Provide an epoxy resin primer for portland cement concrete pavements, of the type recommended by the manufacturer of the thermoplastic composition.

2.2.2 Preformed Tape

Provide adherent reflectorized strip preformed tape in accordance with ASTM D4505 Retroreflectivity Level II, Class 1, 2 or 3, Skid Resistance Level B.

2.2.3 Reflective Media

2.2.3.1 Reflective Media for Roads

AASHTO M 247, Type 1.

PART 3 EXECUTION

3.1 EXAMINATION

3.1.1 Testing for Moisture

Test the pavement surface for moisture before beginning pavement marking after each period of rainfall, fog, high humidity, or cleaning, or when the ambient temperature has fallen below the dew point. Do not commence marking until the pavement is sufficiently dry and the pavement condition has been approved by the Contracting Officer or authorized representative.

3.1.2 Surface Preparation Demonstration

Prior to surface preparation, demonstrate the proposed procedures and equipment. Prepare areas large enough to determine cleanliness and rate of cleaning. Approved demonstration area establishes the standard for the
remainder of the work.

3.1.3 Test Stripe Demonstration

Prior to paint application, demonstrate test stripe application within the work area using the proposed materials and equipment. Apply separate test stripes in each of the line widths and configurations required herein using the proposed equipment. Make the test stripes long enough to determine the proper speed and operating pressures for the vehicle(s) and machinery, but not less than 50 feet long.

3.1.4 Application Rate Demonstration

During the Test Stripe Demonstration, demonstrate compliance with the application rates specified herein. Document the equipment speed and operating pressures required to meet the specified rates in each configuration of the equipment and provide a copy of the documentation to the Contracting Officer prior to proceeding with the work.

3.1.5 Retroreflective Value Demonstration

After the test stripes have cured to a "no-track" condition, demonstrate compliance with the average retroreflective values specified herein. Take a minimum of ten readings on each test stripe with a Retroreflectometer with a direct readout in millicandela per square meter per lux (mcd/m2/1x).

3.1.6 Level of Performance Demonstration

The Contracting Officer will be present at the application demonstrations to observe the results obtained and to validate the operating parameters of the vehicle(s) and equipment. If accepted by the Contracting Officer, the test stripe is the measure of performance required for this project. Do not proceed with the work until the demonstration results are satisfactory to the Contracting Officer.

3.2 EXTERIOR SURFACE PREPARATION

Allow new pavement surfaces to cure for a period of not less than 30 days before application of marking materials. Thoroughly clean surfaces to be marked before application of the paint. Remove dust, dirt, and other granular surface deposits by sweeping, blowing with compressed air, rinsing with water, or a combination of these methods as required. Remove rubber deposits, existing paint markings, residual curing compounds, and other coatings adhering to the pavement by water blasting.

a. Scrub affected areas, where oil or grease is present on old pavements to be marked, with several applications of trisodium phosphate solution or other approved detergent or degreaser and rinse thoroughly after each application. After cleaning oil-soaked areas, seal with shellac or primer recommended by the manufacturer to prevent bleeding through the new paint. Do not commence painting in any area until pavement surfaces are dry and clean.

3.2.1 Early Painting of Asphalt Pavements

For asphalt pavement systems requiring painting application at less than 30 days, apply the paint and beads at half the normal application rate,
followed by a second application at the normal rate after 30 days.

3.3 APPLICATION

Apply pavement markings to dry pavements only.

3.3.1 Paint

Apply paint pneumatically with approved equipment at rate of coverage specified herein. Provide guidelines and templates as necessary to control paint application. Take special precautions in marking numbers, letters, and symbols. Manually paint numbers, letters, and symbols. Sharply outline all edges of markings. The maximum drying time requirements of the paint specifications will be strictly enforced, to prevent undue softening of bitumen, and pickup, displacement, or discoloration by tires of traffic. If there is a deficiency in drying of the markings, painting operations must cease until the cause of the slow drying is determined and corrected.

3.3.2 Thermoplastic Compound

Place thermoplastic pavement markings, free from dirt or tint, upon dry pavement. The temperature must be a minimum of 40 degrees F and rising at the time of installation. Apply all centerline, skipline, edgeline, and other longitudinal type markings with a mobile applicator. Place all special markings, crosswalks, stop bars, legends, arrows, and similar patterns with a portable applicator, using the extrusion method.

3.3.2.1 Primer

After surface preparation has been completed, prime the asphalt or concrete pavement surface with spray equipment. Allow primer materials to "set-up" prior to applying the thermoplastic composition. Allow the asphalt concrete primer to dry to a tack-free condition, usually occurring in less than 10 minutes. Apply asphalt concrete primer to all asphalt concrete pavements at a wet film thickness of 0.005 inch, plus or minus 0.001 inch (265 to 400 square feet per gallon).

After the primer has "set-up", apply the thermoplastic at temperatures no lower than 375 degrees F nor higher than 425 degrees F at the point of deposition. Apply all extruded thermoplastic markings at the specified width and at a thickness of not less than 0.125 inch nor more than 0.190 inch. Apply all sprayed thermoplastic markings at the specified width and the thickness designated in the contract plans. If the plans do not specify a thickness, apply centerline markings at a wet thickness of 0.090 inch, plus or minus 0.005 inch, and edgeline markings at a wet thickness of 0.060 inch, plus or minus 0.005 inch.

3.3.2.2 Reflective Media

Immediately after installation of the thermoplastic material, mechanically apply drop-on reflective glass spheres conforming to AASHTO M 247 Type 1 at the rate of one pound per 20 square feet such that the spheres are held by and imbedded in the surface of the molten material. Accomplish drop-on application of the glass spheres to ensure even distribution at the specified rate of coverage. If there is a malfunction of either thermoplastic applicator or reflective media dispenser, discontinue operations until deficiency is corrected.
3.3.3 Preformed Tape

The pavement surface and ambient air temperature must be a minimum of 60 degrees F and rising. Place the preformed markings in accordance with the manufacturer's written instructions.

3.3.4 Cleanup and Waste Disposal

Keep the worksite clean and free of debris and waste from the removal and application operations. Dispose of debris at approved sites.

3.4 FIELD QUALITY CONTROL

3.4.1 Sampling and Testing

As soon as the paint and thermoplastic materials and reflective media are available for sampling, obtain by random selection from the sealed containers, two quart samples of each batch in the presence of the Contracting Officer. Accomplish adequate mixing prior to sampling to ensure a uniform, representative sample. A batch is defined as that quantity of material processed by the manufacturer at one time and identified by number on the label. Clearly identify samples by designated name, specification number, batch number, project contract number, intended use, and quantity involved.

Test samples by an approved laboratory. If a sample fails to meet specification, replace the material in the area represented by the samples and retest the replacement material as specified above. Submit certified copies of the test reports, prior to the use of the materials at the jobsite. Include in the report of test results a listing of any specification requirements not verified by the test laboratory.

3.4.2 Material Inspection

Examine material at the job site to determine that it is the material referenced in the report of test results or certificate of compliance. A certificate of compliance shall be accompanied by test results substantiating conformance to the specified requirements.

3.4.3 Dimensional Tolerances

Apply all markings in the standard dimensions provide in the drawings. New markings may deviate a maximum of 10 percent larger than the standard dimension. The maximum deviation allowed when painting over an old marking is up to 20 percent larger than the standard dimensions.

3.4.4 Bond Failure Verification

Inspect newly applied markings for signs of bond failure based on visual inspection and comparison to results from Test Stripe Demonstration paragraph.

3.4.5 Reflective Media and Coating Application Verification

Use a wet film thickness gauge to measure the application of wet paint. Use a microscope or magnifying glass to evaluate the embedment of glass beads in the paint. Verify the glass bead embedment with approximately 50 percent of the individual bead spheres embedded and 50 percent of the beam.
individual bead spheres exposed.

-- End of Section --
SECTION 32 92 19

SEEDING

10/06

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D 4427 (2007) Peat Samples by Laboratory Testing
ASTM D 4972 (2001; R 2007) pH of Soils

U.S. DEPARTMENT OF AGRICULTURE (USDA)

AMS Seed Act (1940; R 1988; R 1998) Federal Seed Act

1.2 DEFINITIONS

1.2.1 Stand of Turf

95 percent ground cover of the established species.

1.3 RELATED REQUIREMENTS

Section 31 00 00 EARTHWORK

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.

SD-03 Product Data

Wood cellulose fiber mulch
Fertilizer

Include physical characteristics, and recommendations.

SD-06 Test Reports

Topsoil composition tests (reports and recommendations).
SD-07 Certificates
State certification and approval for seed

SD-08 Manufacturer's Instructions
Erosion Control Materials

1.5 DELIVERY, STORAGE, AND HANDLING

1.5.1 Delivery

1.5.1.1 Seed Protection
Protect from drying out and from contamination during delivery, on-site storage, and handling.

1.5.1.2 Fertilizer and Lime Delivery
Deliver to the site in original, unopened containers bearing manufacturer's chemical analysis, name, trade name, trademark, and indication of conformance to state and federal laws. Instead of containers, fertilizer and lime may be furnished in bulk with certificate indicating the above information.

1.5.2 Storage

1.5.2.1 Seed, Fertilizer Gypsum Sulfur Iron and Lime Storage
Store in cool, dry locations away from contaminants.

1.5.2.2 Topsoil
Prior to stockpiling topsoil, treat growing vegetation with application of appropriate specified non-selective herbicide. Clear and grub existing vegetation three to four weeks prior to stockpiling topsoil.

1.5.2.3 Handling
Do not drop or dump materials from vehicles.

1.6 TIME RESTRICTIONS AND PLANTING CONDITIONS

1.6.1 Restrictions
Do not plant when the ground is frozen, snow covered, muddy, or when air temperature exceeds 90 degrees Fahrenheit.

1.7 TIME LIMITATIONS

1.7.1 Seed
Apply seed within twenty four hours after seed bed preparation.
PART 2 PRODUCTS

2.1 SEED

2.1.1 Classification

Provide State-certified seed of the latest season's crop delivered in original sealed packages, bearing producer's guaranteed analysis for percentages of mixtures, purity, germination, weedseed content, and inert material. Label in conformance with AMS Seed Act and applicable state seed laws. Wet, moldy, or otherwise damaged seed will be rejected. Field mixes will be acceptable when field mix is performed on site in the presence of the Contracting Officer.

2.1.2 Planting Dates
Included in Erosion Control Details and Notes of Construction plans

2.1.3 Seed Purity
Included in Erosion Control Details and Notes of Construction plans

2.1.4 Seed Mixture by Weight

Proportion seed mixtures by weight. Temporary seeding must later be replaced by plantings for a permanent stand of grass. The same requirements of turf establishment for apply for temporary seeding.

2.2 TOPSOIL

2.2.1 On-Site Topsoil

Surface soil stripped and stockpiled on site and modified as necessary to meet the requirements specified for topsoil in paragraph entitled "Composition." When available topsoil shall be existing surface soil stripped and stockpiled on-site in accordance with Section 31 00 00 EARTHWORK.

2.2.2 Off-Site Topsoil

Conform to requirements specified in paragraph entitled "Composition." Additional topsoil shall be furnished by the Contractor.

2.2.3 Composition

Containing from 5 to 10 percent organic matter as determined by the topsoil composition tests of the Organic Carbon, 6A, Chemical Analysis Method described in DOA SSIR 42. Maximum particle size, 3/4 inch, with maximum 3 percent retained on 1/4 inch screen. The pH shall be tested in accordance with ASTM D 4972. Topsoil shall be free of sticks, stones, roots, and other debris and objectionable materials. Other components shall conform to the following limits:

<table>
<thead>
<tr>
<th>Component</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt</td>
<td>25-50</td>
</tr>
<tr>
<td>Clay</td>
<td>10-30</td>
</tr>
<tr>
<td>Sand</td>
<td>20-35</td>
</tr>
<tr>
<td>pH</td>
<td>5.5 to 7.0</td>
</tr>
<tr>
<td>Soluble Salts</td>
<td>600</td>
</tr>
</tbody>
</table>
2.3 SOIL CONDITIONERS

Add conditioners to topsoil as required to bring into compliance with "composition" standard for topsoil as specified herein.

2.3.1 Lime

Commercial grade hydrate limestone containing a calcium carbonate equivalent (C.C.E.) as specified in ASTM C 602 of not less than 110 percent.

2.3.2 Peat

Natural product of peat moss derived from a freshwater site and conforming to ASTM D 4427 as modified herein. Shred and granulate peat to pass a 1/2 inch mesh screen and condition in storage pile for minimum 6 months after excavation.

2.3.3 Sand

Clean and free of materials harmful to plants.

2.3.4 Perlite

Horticultural grade.

2.3.5 Composted Derivatives

Ground bark, nitrolized sawdust, humus or other green wood waste material free of stones, sticks, and soil stabilized with nitrogen and having the following properties:

2.3.5.1 Particle Size

Minimum percent by weight passing:

- No. 4 mesh screen: 95
- No. 8 mesh screen: 80

2.3.5.2 Nitrogen Content

Minimum percent based on dry weight:

- Fir Sawdust: 0.7
- Fir or Pine Bark: 1.0

2.3.6 Gypsum

Coarsely ground gypsum comprised of calcium sulfate dihydrate 61 percent, calcium 22 percent, sulfur 17 percent; minimum 96 percent passing through 20 mesh screen, 100 percent passing thru 16 mesh screen.

2.3.7 Calcined Clay

Calcined clay shall be granular particles produced from montmorillonite clay calcined to a minimum temperature of 1200 degrees F. Gradation: A minimum 90 percent shall pass a No. 8 sieve; a minimum 99 percent shall be retained on a No. 60 sieve; and a maximum 2 percent shall pass a No. 100 sieve. Bulk density: A maximum 40 pounds per cubic foot.
2.4 FERTILIZER

2.4.1 Granular Fertilizer

Organic, granular controlled release fertilizer containing the following minimum percentages, by weight, of plant food nutrients:

- 10 percent available nitrogen
- 10 percent available phosphorus
- 10 percent available potassium

2.4.2 Hydroseeding Fertilizer

Controlled release fertilizer, to use with hydroseeding and composed of pills coated with plastic resin to provide a continuous release of nutrients for at least 6 months and containing the following minimum percentages, by weight, of plant food nutrients.

- 10 percent available nitrogen
- 10 percent available phosphorus
- 10 percent available potassium

2.5 MULCH

Mulch shall be free from noxious weeds, mold, and other deleterious materials.

2.5.1 Straw

Stalks from oats, wheat, rye, barley, or rice. Furnish in air-dry condition and of proper consistency for placing with commercial mulch blowing equipment. Straw shall contain no fertile seed.

2.5.2 Hay

Air-dry condition and of proper consistency for placing with commercial mulch blowing equipment. Hay shall be sterile, containing no fertile seed.

2.5.3 Wood Cellulose Fiber Mulch

Use recovered materials of either paper-based (100 percent) or wood-based (100 percent) hydraulic mulch. Processed to contain no growth or germination-inhibiting factors and dyed an appropriate color to facilitate visual metering of materials application. Composition on air-dry weight basis: 9 to 15 percent moisture, pH range from 5.5 to 8.2. Use with hydraulic application of grass seed and fertilizer.

2.6 WATER

Source of water shall be approved by Contracting Officer and of suitable quality for irrigation, containing no elements toxic to plant life.

2.7 EROSION CONTROL MATERIALS

Erosion control material shall conform to the following:

2.7.1 Erosion Control Blanket

70 percent agricultural straw/30 percent coconut fiber matrix stitched with...
a degradable nettings, designed to degrade within 12 months.

2.7.2 Erosion Control Fabric

Fabric shall be knitted construction of polypropylene yarn with uniform mesh openings 3/4 to 1 inch square with strips of biodegradable paper. Filler paper strips shall have a minimum life of 6 months.

2.7.3 Erosion Control Net

Net shall be heavy, twisted jute mesh, weighing approximately 1.22 pounds per linear yard and 4 feet wide with mesh openings of approximately 1 inch square.

2.7.4 Hydrophilic Colloids

Hydrophilic colloids shall be physiologically harmless to plant and animal life without phytotoxic agents. Colloids shall be naturally occurring, silicate powder based, and shall form a water insoluble membrane after curing. Colloids shall resist mold growth.

2.7.5 Erosion Control Material Anchors

Erosion control anchors shall be as recommended by the manufacturer.

PART 3 EXECUTION

3.1 PREPARATION

3.1.1 EXTENT OF WORK

Provide soil preparation (including soil conditioners as required), fertilizing, seeding, and surface topdressing of all newly graded finished earth surfaces, unless indicated otherwise, and at all areas inside or outside the limits of construction that are disturbed by the Contractor's operations.

3.1.1.1 Topsoil

Provide 4 inches of off-site topsoil or on-site topsoil or existing soil to meet indicated finish grade. After areas have been brought to indicated finish grade, incorporate fertilizersoil conditioners into soil a minimum depth of 4 inches by diskong, harrowing, tilling or other method approved by the Contracting Officer. Remove debris and stones larger than 3/4 inch in any dimension remaining on the surface after finish grading. Correct irregularities in finish surfaces to eliminate depressions. Protect finished topsoil areas from damage by vehicular or pedestrian traffic.

3.1.1.2 Soil Conditioner Application Rates

Apply soil conditioners at rates as determined by laboratory soil analysis of the soils at the job site.

3.1.1.3 Fertilizer Application Rates

Apply fertilizer at rates as determined by laboratory soil analysis of the soils at the job site.
3.2 SEEDING

3.2.1 Seed Application Seasons and Conditions

Immediately before seeding, restore soil to proper grade. Do not seed when ground is muddy frozen snow covered or in an unsatisfactory condition for seeding. If special conditions exist that may warrant a variance in the above seeding dates or conditions, submit a written request to the Contracting Officer stating the special conditions and proposed variance. Apply seed within twenty four hours after seedbed preparation. Sow seed by approved sowing equipment. Sow one-half the seed in one direction, and sow remainder at right angles to the first sowing.

3.2.2 Seed Application Method

Seeding method shall be broadcasted and drop seeding hydroseeding.

3.2.2.1 Broadcast and Drop Seeding

Seed shall be uniformly broadcast as specified on erosion control details. Use broadcast or drop seeders. Sow one-half the seed in one direction, and sow remainder at right angles to the first sowing. Cover seed uniformly to a maximum depth of 1/4 inch in clay soils and 1/2 inch in sandy soils by means of spike-tooth harrow, cultipacker, raking or other approved devices.

3.2.2.2 Hydroseeding

First, mix water and fiber. Wood cellulose fiber, paper fiber, or recycled paper shall be applied as part of the hydroseeding operation. Fiber shall be added at 1,000 pounds, dry weight, per acre. Then add and mix seed and fertilizer to produce a homogeneous slurry. Seed shall be mixed to ensure broadcasting as indicated on the plans. When hydraulically sprayed on the ground, material shall form a blotter like cover impregnated uniformly with grass seed. Spread with one application with no second application of mulch.

3.2.3 Mulching

3.2.3.1 Hay or Straw Mulch

Hay or straw mulch shall be spread uniformly at the rate of 2 tons per acre. Mulch shall be spread by hand, blower-type mulch spreader, or other approved method. Mulching shall be started on the windward side of relatively flat areas or on the upper part of steep slopes, and continued uniformly until the area is covered. The mulch shall not be bunched or clumped. Sunlight shall not be completely excluded from penetrating to the ground surface. All areas installed with seed shall be mulched on the same day as the seeding. Mulch shall be anchored immediately following spreading.

3.2.4 Erosion Control Material

Install in accordance with manufacturer's instructions, where indicated or as directed by the Contracting Officer.

3.2.5 Watering

Start watering areas seeded as required by temperature and wind conditions. Apply water at a rate sufficient to insure thorough wetting.
of soil to a depth of 2 inches without run off. During the germination process, seed is to be kept actively growing and not allowed to dry out.

3.3 PROTECTION OF TURF AREAS

Immediately after turfing, protect area against traffic and other use.

3.4 RESTORATION

Restore to original condition existing turf areas which have been damaged during turf installation operations at the Contractor's expense. Keep clean at all times at least one paved pedestrian access route and one paved vehicular access route to each building. Clean other paving when work in adjacent areas is complete.

-- End of Section --
SECTION 33 11 00
WATER DISTRIBUTION
02/11

PART 1 GENERAL
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)
AWWA C151/A21.51 (2009) Ductile-Iron Pipe, Centrifugally Cast, for Water
AWWA C500 (2009) Metal-Seated Gate Valves for Water Supply Service
AWWA C509 (2009) Resilient-Seated Gate Valves for Water Supply Service
AWWA C600 (2010) Installation of Ductile-Iron Water Mains and Their Appurtenances
AWWA C651 (2005; Errata 2005) Standard for Disinfecting Water Mains

ASME INTERNATIONAL (ASME)
ASME B16.1 (2010) Gray Iron Threaded Fittings; Classes 25, 125 and 250

ASTM INTERNATIONAL (ASTM)
1.2 DESIGN REQUIREMENTS

1.2.1 Water Distribution Mains

Provide water distribution mains indicated as 4 through 12 inch diameter pipe sizes of ductile-iron pipe. Also provide water main accessories and gate valves as specified and where indicated.

1.2.2 Water Service Lines

Provide water service lines indicated as less than 4 inch lines from water distribution main to building service at the points indicated. Water service lines shall be copper tubing. Provide water service line appurtenances as specified and where indicated.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Piping Materials

Water distribution main piping, fittings, joints, valves, and coupling

Indicator posts

Valve boxes
Submit manufacturer's standard drawings or catalog cuts, except submit both drawings and cuts for push-on and rubber-gasketed bell-and-spigot joints. Include information concerning gaskets with submittal for joints and couplings.

SD-05 Design Data

SD-06 Test Reports

Bacteriological Disinfection;

Test results from commercial laboratory verifying disinfection

SD-07 Certificates

Certificates shall attest that tests set forth in each applicable referenced publication have been performed, whether specified in that publication to be mandatory or otherwise and that production control tests have been performed at the intervals or frequency specified in the publication. Other tests shall have been performed within 3 years of the date of submittal of certificates on the same type, class, grade, and size of material as is being provided for the project.

SD-08 Manufacturer's Instructions

Delivery, storage, and handling

Installation procedures for water piping

1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery and Storage

Inspect materials delivered to site for damage. Unload and store with minimum handling. Store materials on site in enclosures or under protective covering. Store plastic piping, jointing materials and rubber gaskets under cover out of direct sunlight. Do not store materials directly on the ground. Keep inside of pipes, fittings, valves and hydrants free of dirt and debris.

1.4.2 Handling

Handle pipe, fittings, valves, hydrants, and other accessories in a manner to ensure delivery to the trench in sound undamaged condition. Take special care to avoid injury to coatings and linings on pipe and fittings; make repairs if coatings or linings are damaged. Do not place any other material or pipe inside a pipe or fitting after the coating has been applied. Carry, do not drag pipe to the trench. Use of pinch bars and tongs for aligning or turning pipe will be permitted only on the bare ends of the pipe. The interior of pipe and accessories shall be thoroughly cleaned of foreign matter before being lowered into the trench and shall be kept clean during laying operations by plugging or other approved method. Before installation, the pipe shall be inspected for defects. Material found to be defective before or after laying shall be replaced with sound material without additional expense to the Government. Store rubber gaskets that are not to be installed immediately, under cover out of direct sunlight.
PART 2 PRODUCTS

2.1 WATER DISTRIBUTION MAIN MATERIALS

2.1.1 Piping Materials

2.1.1.1 Ductile-Iron Piping

a. Pipe and Fittings: Pipe, AWWA C151/A21.51, Pressure Class 350 Thickness Class 50. Flanged pipe, AWWA C115/A21.15. Fittings, AWWA C110/A21.10 or AWWA C153/A21.53. Fittings shall have pressure rating at least equivalent to that of the pipe. Ends of pipe and fittings shall be suitable for the specified joints. Pipe and fittings shall have cement-mortar lining, AWWA C104/A21.4, twice the standard thickness.

b. Joints and Jointing Material:

(1) Joints: Joints for pipe and fittings shall be mechanical joints unless otherwise indicated.

(3) Mechanical Joints: Dimensional and material requirements for pipe ends, glands, bolts and nuts, and gaskets, AWWA C111/A21.11.

(4) Flanged Joints: Bolts, nuts, and gaskets for flanged connections as recommended in the Appendix to AWWA C115/A21.15. Flange for setscrewed flanges shall be of ductile iron, ASTM A536, Grade 65-45-12, and conform to the applicable requirements of ASME B16.1, Class 250. Setscrews for setscrewed flanges shall be 190,000 psi tensile strength, heat treated and zinc-coated steel. Gasket and lubricants for setscrewed flanges, in accordance with applicable requirements for mechanical-joint gaskets specified in AWWA C111/A21.11. Design of setscrewed gasket shall provide for confinement and compression of gasket when joint to adjoining flange is made.

(5) Sleeve-Type Mechanical Coupled Joints: As specified in paragraph entitled "Sleeve-Type Mechanical Couplings."

2.1.2 Valves, Hydrants, and Other Water Main Accessories

2.1.2.1 Gate Valves

AWWA C500, AWWA C509, or UL 262. Unless otherwise specified, valves conforming to: (1) AWWA C500 shall be nonrising stem type with double-disc gates and mechanical-joint ends, (2) AWWA C509 shall be nonrising stem type with mechanical-joint ends, and (3) UL 262 shall be inside-screw type with operating nut, double-disc or split-wedge type gate, designed for a hydraulic working pressure of 250 psi, and shall have mechanical-joint ends. Materials for UL 262 valves shall conform to the reference standards specified in AWWA C500. Valves shall open by counterclockwise rotation of the valve stem. Stuffing boxes shall have O-ring stem seals. Stuffing boxes shall be bolted and constructed so as to permit easy removal of parts for repair. Where a post indicator is shown, the valve shall have an indicator post flange; Indicator posts flange for AWWA C500 valve shall conform to the applicable requirements of UL 262.
2.1.2.2 Indicator Posts

UL 789. Provide for gate valves where indicated.

2.1.2.3 Valve Boxes

Provide a valve box for each gate valve, except where indicator post is shown. Valve boxes shall be of cast iron of a size suitable for the valve on which it is to be used and shall be adjustable. Cast-iron boxes shall have a minimum cover and wall thickness of 3/16 inch. Provide a round head. Cast the word "WATER" on the lid. The least diameter of the shaft of the box shall be 5 1/4 inches. Cast-iron box shall have a heavy coat of bituminous paint.

2.1.2.4 Sleeve-Type Mechanical Couplings

Couplings shall be designed to couple plain-end piping by compression of a ring gasket at each end of the adjoining pipe sections. The coupling shall consist of one middle ring flared or beveled at each end to provide a gasket seat; two follower rings; two resilient tapered rubber gaskets; and bolts and nuts to draw the follower rings toward each other to compress the gaskets. The middle ring and the follower rings shall be true circular sections free from irregularities, flat spots, and surface defects; the design shall provide for confinement and compression of the gaskets. For ductile iron pipe, the middle ring shall be of cast-iron; and the follower rings shall be of malleable or ductile iron. Malleable and ductile iron shall, conform to ASTM A47/A47M and ASTM A536, respectively. Gaskets shall be designed for resistance to set after installation and shall meet the applicable requirements specified for gaskets for mechanical joint in AWWA C111/A21.11. Bolts shall be track-head type, ASTM A307, Grade A, with nuts, ASTM A563, Grade A. Bolt holes in follower rings shall be of a shape to hold fast the necks of the bolts used. Mechanically coupled joints using a sleeve-type mechanical coupling shall not be used as an optional method of jointing except where pipeline is adequately anchored to resist tension pull across the joint. Mechanical couplings shall provide a tight flexible joint under all reasonable conditions, such as pipe movements caused by expansion, contraction, slight setting or shifting in the ground, minor variations in trench gradients, and traffic vibrations. Couplings shall be of strength not less than the adjoining pipeline.

2.1.2.5 Tapping Sleeves

Tapping sleeves of the sizes indicated for connection to existing main shall be the cast gray, ductile, or malleable iron, split-sleeve type with flanged or grooved outlet, and with bolts, follower rings and gaskets on each end of the sleeve. Construction shall be suitable for a maximum working pressure of 250 psi. Bolts shall have square heads and hexagonal nuts. Longitudinal gaskets and mechanical joints with gaskets shall be as recommended by the manufacturer of the sleeve. When using grooved mechanical tee, it shall consist of an upper housing with full locating collar for rigid positioning which engages a machine-cut hole in pipe, encasing an elastomeric gasket which conforms to the pipe outside diameter around the hole and a lower housing with positioning lugs, secured together during assembly by nuts and bolts as specified, pretorqued to 50 foot-pound.
PART 3 EXECUTION

3.1 INSTALLATION OF PIPELINES

3.1.1 General Requirements for Installation of Pipelines

These requirements shall apply to all pipeline installation except where specific exception is made in the "Special Requirements..." paragraphs.

3.1.1.1 Location of Water Lines

Terminate the work covered by this section at a point approximately 5 feet from the building, unless otherwise indicated. Do not lay water lines in the same trench with gas lines fuel lines or electric wiring.

a. Water Piping Installation Parallel With Sewer Piping

(1) Normal Conditions: Lay water piping at least 10 feet horizontally from a sewer or sewer manhole whenever possible. Measure the distance edge-to-edge.

(2) Unusual Conditions: When local conditions prevent a horizontal separation of 10 feet, the water piping may be laid closer to a sewer or sewer manhole provided that:

(a) The bottom (invert) of the water piping shall be at least 18 inches above the top (crown) of the sewer piping.

(b) Where this vertical separation cannot be obtained, the sewer piping shall be constructed of AWWA-approved water pipe and pressure tested in place without leakage prior to backfilling. Approved waste water disposal method shall be utilized.

(c) The sewer manhole shall be of watertight construction and tested in place.

b. Installation of Water Piping Crossing Sewer Piping

(1) Normal Conditions: Water piping crossing above sewer piping shall be laid to provide a separation of at least 18 inches between the bottom of the water piping and the top of the sewer piping.

(2) Unusual Conditions: When local conditions prevent a vertical separation described above, use the following construction:

(a) Sewer piping passing over or under water piping shall be constructed of AWWA-approved ductile iron water piping, pressure tested in place without leakage prior to backfilling.

(b) Water piping passing under sewer piping shall, in addition, be protected by providing a vertical separation of at least 18 inches between the bottom of the sewer piping and the top of the water piping; adequate structural support for the sewer piping to prevent excessive deflection of the joints and the settling on and breaking of the water piping; and that the length, minimum 20 feet, of the water piping be centered at the point of the crossing so that joints shall be equidistant and as far as possible from the sewer piping.
c. Sewer Piping or Sewer Manholes: No water piping shall pass through or come in contact with any part of a sewer manhole.

3.1.1.2 Earthwork

Perform earthwork operations in accordance with Section 31 00 00.

3.1.1.3 Pipe Laying and Jointing

Remove fins and burrs from pipe and fittings. Before placing in position, clean pipe, fittings, valves, and accessories, and maintain in a clean condition. Provide proper facilities for lowering sections of pipe into trenches. Do not under any circumstances drop or dump pipe, fittings, valves, or any other water line material into trenches. Cut pipe in a neat workmanlike manner accurately to length established at the site and work into place without springing or forcing. Replace by one of the proper length any pipe or fitting that does not allow sufficient space for proper installation of jointing material. Blocking or wedging between bells and spigots will not be permitted. Lay bell-and-spigot pipe with the bell end pointing in the direction of laying. Grade the pipeline in straight lines; avoid the formation of dips and low points. Support pipe at proper elevation and grade. Secure firm, uniform support. Wood support blocking will not be permitted. Lay pipe so that the full length of each section of pipe and each fitting will rest solidly on the pipe bedding; excavate recesses to accommodate bells, joints, and couplings. Provide anchors and supports where indicated and where necessary for fastening work into place. Make proper provision for expansion and contraction of pipelines. Keep trenches free of water until joints have been properly made. At the end of each work day, close open ends of pipe temporarily with wood blocks or bulkheads. Do not lay pipe when conditions of trench or weather prevent installation. Depth of cover over top of pipe shall not be less than 2 1/2 feet.

3.1.1.4 Installation of Tracer Wire

Install a continuous length of tracer wire for the full length of each run of nonmetallic pipe. Attach wire to top of pipe in such manner that it will not be displaced during construction operations.

3.1.1.5 Connections to Existing Water Lines

Make connections to existing water lines after approval is obtained and with a minimum interruption of service on the existing line. Make connections to existing lines under pressure in accordance with the recommended procedures of the manufacturer of the pipe being tapped.

3.1.2 Special Requirements for Installation of Water Mains

3.1.2.1 Installation of Ductile-Iron Piping

Unless otherwise specified, install pipe and fittings in accordance with paragraph entitled "General Requirements for Installation of Pipelines" and with the requirements of AWWA C600 for pipe installation, joint assembly, valve-and-fitting installation, and thrust restraint.

a. Jointing: Make mechanical joints with the gaskets, glands, bolts, and nuts specified for this type joint; assemble in accordance with the applicable requirements of AWWA C600 for joint assembly and the
recommendations of Appendix A to AWWA C111/A21.11. Make flanged joints with the gaskets, bolts, and nuts specified for this type joint. Make flanged joints up tight; avoid undue strain on flanges, fittings, valves, and other accessories. Align bolt holes for each flanged joint. Use full size bolts for the bolt holes; use of undersized bolts to make up for misalignment of bolt holes or for any other purpose will not be permitted. Do not allow adjoining flange faces to be out of parallel to such degree that the flanged joint cannot be made watertight without overstraining the flange. When flanged pipe or fitting has dimensions that do not allow the making of a proper flanged joint as specified, replace it by one of proper dimensions. Use setscrewed flanges to make flanged joints where conditions prevent the use of full-length flanged pipe and assemble in accordance with the recommendations of the setscrewed flange manufacturer. Assemble joints made with sleeve-type mechanical couplings in accordance with the recommendations of the coupling manufacturer.

b. Allowable Deflection: The maximum allowable deflection shall be as given in AWWA C600. If the alignment requires deflection in excess of the above limitations, special bends or a sufficient number of shorter lengths of pipe shall be furnished to provide angular deflections within the limit set forth.

c. Pipe Anchorage: Provide concrete thrust blocks (reaction backing) for pipe anchorage. Thrust blocks shall be in accordance with the requirements of AWWA C600 for thrust restraint, except that size and positioning of thrust blocks shall be as indicated. Use concrete, ASTM C94/C94M, having a minimum compressive strength of 2,500 psi at 28 days; or use concrete of a mix not leaner than one part cement, 2 1/2 parts sand, and 5 parts gravel, having the same minimum compressive strength.

d. Exterior Protection: Completely encase buried ductile iron pipelines with polyethylene tube or sheet, using Class A polyethylene film, in accordance with AWWA C105/A21.5.

3.1.2.3 Service Lines for Sprinkler Supplies

Water service lines used to supply building sprinkler systems for fire protection shall be connected to the water distribution main in accordance with NFPA 24.

3.1.3 Disinfection

Prior to disinfection, obtain Contracting Officer approval of the proposed method for disposal of waste water from disinfection procedures. Disinfect
new water piping and existing water piping affected by Contractor's operations in accordance with AWWA C651. Fill piping systems with solution containing minimum of 50 parts per million of available chlorine and allow solution to stand for minimum of 24 hours. Flush solution from the systems with domestic water until maximum residual chlorine content is within the range of 0.2 and 0.5 parts per million, or the residual chlorine content of domestic water supply. Obtain at least two consecutive satisfactory bacteriological samples from new water piping, analyze by a certified laboratory, and submit the results prior to the new water piping being placed into service. Disinfection of systems supplying nonpotable water is not required.

3.2 FIELD QUALITY CONTROL

3.2.1 Field Tests and Inspections

Prior to hydrostatic testing, obtain Contracting Officer approval of the proposed method for disposal of waste water from hydrostatic testing. The Contracting Officer will conduct field inspections and witness field tests specified in this section. The Contractor shall perform field tests, and provide labor, equipment, and incidentals required for testing. The Contractor shall produce evidence, when required, that any item of work has been constructed in accordance with the drawings and specifications. Do not begin testing on any section of a pipeline where concrete thrust blocks have been provided until at least 5 days after placing of the concrete.

3.2.2 Testing Procedure

Test water mains and water service lines in accordance with the applicable specified standard, except for the special testing requirements given in paragraph entitled "Special Testing Requirements." Test ductile-iron water mains in accordance with the requirements of AWWA C600 for hydrostatic testing. The amount of leakage on ductile-iron pipelines with mechanical-joints shall not exceed the amounts given in AWWA C600; no leakage will be allowed at joints made by any other method.

3.2.3 Special Testing Requirements

For pressure test, use a hydrostatic pressure 50 psi greater than the maximum working pressure of the system, except that for those portions of the system having pipe size larger than 2 inches in diameter, hydrostatic test pressure shall be not less than 200 psi. Hold this pressure for not less than 2 hours. Prior to the pressure test, fill that portion of the pipeline being tested with water for a soaking period of not less than 24 hours. For leakage test, use a hydrostatic pressure not less than the maximum working pressure of the system. Leakage test may be performed at the same time and at the same test pressure as the pressure test.

3.3 CLEANUP

Upon completion of the installation of water lines, and appurtenances, all debris and surplus materials resulting from the work shall be removed.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C600 (2010) Installation of Ductile-Iron Water Mains and Their Appurtenances
AWWA C900 (2007; Errata 2008) Polyvinyl Chloride (PVC) Pressure Pipe, and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Distribution

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASTM INTERNATIONAL (ASTM)

ASTM C828 (2011) Low-Pressure Air Test of Vitrified Clay Pipe Lines
Concrete Manhole Structures, Pipes and Laterals

ASTM C924 (2002; R 2009) Testing Concrete Pipe Sewer Lines by Low-Pressure Air Test Method

ASTM C969 (2002; R 2009) Standard Practice for Infiltration and Exfiltration Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines

ASTM C972 (2000; R 2011) Compression-Recovery of Tape Sealant

ASTM D2412 (2011) Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading

1.2 SYSTEM DESCRIPTION

1.2.1 Sanitary Sewer Gravity Pipeline

Provide building connections with polyvinyl chloride (PVC) plastic pipe. Provide new and modify existing exterior sanitary gravity sewer piping and appurtenances. Provide each system complete and ready for operation. The exterior sanitary gravity sewer system includes equipment, materials, installation, and workmanship as specified herein more than 5 feet outside of building walls.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control
Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

- SD-01 Preconstruction Submittals
 - Existing Conditions
- SD-02 Shop Drawings
 - Drawings
- SD-03 Product Data
 - Pipeline materials
- SD-06 Test Reports
 - Reports
- SD-07 Certificates

1.4 QUALITY ASSURANCE

1.4.1 Installer Qualifications

Install specified materials by a licensed underground utility Contractor licensed for such work in the state where the work is to be performed. Installing Contractor's License shall be current and be state certified or state registered.

1.4.2 Drawings

a. Submit Installation Drawings showing complete detail, both plan and side view details with proper layout and elevations.

b. Submit As-Built Drawings for the complete sanitary sewer system showing complete detail with all dimensions, both above and below grade, including invert elevation.

c. Sign and seal As-Built Drawings by a Professional Surveyor and Mapper. Include the following statement: "All potable water lines crossed by sanitary hazard mains are in accordance with the permitted utility separation requirements."

1.5 DELIVERY, STORAGE, AND HANDLING

1.5.1 Delivery and Storage

1.5.1.1 Piping

Inspect materials delivered to site for damage; store with minimum of handling. Store materials on site in enclosures or under protective coverings. Store plastic piping and jointing materials and rubber gaskets under cover out of direct sunlight. Do not store materials directly on the ground. Keep inside of pipes and fittings free of dirt and debris.

1.5.1.2 Metal Items

Check upon arrival; identify and segregate as to types, functions, and
sizes. Store off the ground in a manner affording easy accessibility and not causing excessive rusting or coating with grease or other objectionable materials.

1.5.1.3 Cement, Aggregate, and Reinforcement

As specified in Section 03 30 50 CAST-IN-PLACE CONCRETE.

1.5.2 Handling

Handle pipe, fittings, and other accessories in such manner as to ensure delivery to the trench in sound undamaged condition. Take special care not to damage linings of pipe and fittings; if lining is damaged, make satisfactory repairs. Carry, do not drag, pipe to trench.

1.6 PROJECT/SITE CONDITIONS

Submit drawings of existing conditions, after a thorough inspection of the area in the presence of the Contracting Officer. Details shall include the environmental conditions of the site and adjacent areas. Submit copies of the records for verification before starting work.

PART 2 PRODUCTS

2.1 PIPELINE MATERIALS

Pipe shall conform to the respective specifications and other requirements specified below. Submit manufacturer's standard drawings or catalog cuts.

2.1.1 Ductile Iron Gravity Sewer Pipe and Associated Fittings

2.1.1.1 Ductile Iron Gravity Pipe and Fittings

Ductile iron pipe shall conform to ASTM A746, Thickness Class 50. Fittings shall conform to AWWA C110/A21.10 or AWWA C153/A21.53. Fittings with push-on joint ends shall conform to the same requirements as fittings with mechanical-joint ends. Fittings shall have strength at least equivalent to that of the pipe. Ends of pipe and fittings shall be suitable for the joints specified hereinafter. Pipe and fittings shall have cement-mortar lining conforming to AWWA C104/A21.4, standard thickness.

2.1.1.2 Ductile Iron Gravity Joints and Jointing Materials

Pipe and fittings shall have push-on joints or mechanical joints, except as otherwise specified in this paragraph. Mechanical joints only shall be used where indicated. Push-on joint pipe ends and fitting ends, gaskets, and lubricant for joint assembly shall conform to AWWA C111/A21.11. Mechanical joint requirements for pipe ends, glands, bolts and nuts, and gaskets shall conform to AWWA C111/A21.11.

2.1.2 PVC Plastic Gravity Sewer Piping

2.1.2.1 PVC Plastic Gravity Pipe and Fittings

ASTM D3034, SDR 35, or ASTM F949 with ends suitable for elastomeric gasket joints. ASTM F794, Series 46, for ribbed sewer pipe with smooth interior, size 8 inch through 48 inch diameters.
2.1.2.2 PVC Plastic Gravity Joints and Jointing Material

Joints shall conform to ASTM D3212. Gaskets shall conform to ASTM F477.

2.1.3 PVC Plastic Pressure Pipe and Associated Fittings

2.1.3.1 PVC Plastic Pressure Pipe and Fittings

a. Pipe and Fittings Less Than 4 inch Diameter: Pipe, couplings and fittings shall be manufactured of materials conforming to ASTM D1784, Class 12454B.

(1) Screw-Joint: Pipe shall conform to dimensional requirements of ASTM D1785, Schedule 80, with joints meeting requirements of 150 psi working pressure, 200 psi hydrostatic test pressure, unless otherwise shown or specified. Fittings for threaded pipe shall conform to requirements of ASTM D2464, threaded to conform to the requirements of ASME B1.20.1 for use with Schedule 80 pipe and fittings. Pipe couplings when used, shall be tested as required by ASTM D2464.

(2) Push-On Joint: ASTM D3139, with ASTM F477 gaskets. Fittings for push-on joints shall be iron conforming to AWWA C110/A21.10 or AWWA C111/A21.11. Iron fittings and specials shall be cement-mortar lined (standard thickness) in accordance with AWWA C104/A21.4.

(3) Solvent Cement Joint: Pipe shall conform to dimensional requirements of ASTM D1785 or ASTM D2241 with joints meeting the requirements of 150 psi working pressure and 200 psi hydrostatic test pressure. Fittings for solvent cement jointing shall conform to ASTM D2466 or ASTM D2467.

b. Pipe and Fittings 4 inch Diameter to 12 inch: Pipe shall conform to AWWA C900 and shall be plain end or gasket bell end, Pressure Class 150 (DR 18), with cast-iron-pipe-equivalent OD. Fittings shall be gray-iron or ductile-iron conforming to AWWA C110/A21.10 or AWWA C153/A21.53 and shall have cement-mortar lining conforming to AWWA C104/A21.4, standard thickness. Fittings with push-on joint ends shall conform to the same requirements as fittings with mechanical-joint ends, except that bell design shall be modified, as approved, for push-on joint suitable for use with the PVC plastic pressure pipe specified in this paragraph.

2.1.3.2 PVC Plastic Pressure Joints and Jointing Material

Joints for pipe, 4 inch to 12 inch diameter, shall be push-on joints as specified in ASTM D3139. Joints between pipe and fittings shall be push-on joints as specified in ASTM D3139 or shall be compression-type joints/mechanical-joints as respectively specified in ASTM D3139 and AWWA C111/A21.11. Each joint connection shall be provided with an elastomeric gasket suitable for the bell or coupling with which it is to be used. Gaskets for push-on joints for pipe shall conform to ASTM F477. Gaskets for push-on joints and compression-type joints/mechanical-joints for joint connections between pipe and fittings shall be as specified in AWWA C111/A21.11, respectively, for push-on joints and mechanical-joints.
2.2 MISCELLANEOUS MATERIALS

2.2.1 Gaskets and Connectors

Gaskets for joints between manhole sections shall conform to ASTM C443. Resilient connectors for making joints between manhole and pipes entering manhole shall conform to ASTM C923 or ASTM C990.

2.2.2 External Preformed Rubber Joint Seals

An external preformed rubber joint seal shall be an accepted method of sealing cast iron covers to precast concrete sections to prevent ground water infiltration into sewer systems. All finished and sealed manholes constructed in accordance with paragraph entitled "Manhole Construction" shall be tested for leakage in the same manner as pipelines as described in paragraph entitled "Leakage Tests." The seal shall be multi-section with a neoprene rubber top section and all lower sections made of Ethylene Propylene Diene Monomer (EPDM) rubber with a minimum thickness of 60 mils. Each unit shall consist of a top and bottom section and shall have mastic on the bottom of the bottom section and mastic on the top and bottom of the top section. The mastic shall be a non-hardening butyl rubber sealant and shall seal to the cone/top slab of the manhole/catch basin and over the lip of the casting. Extension sections shall cover up to two more adjusting rings. Properties and values are listed in the following tables:

| Properties, Test Methods and Minimum Values for Rubber used in Preformed Joint Seals |
|---------------------------------|----------------|---------|---------|---------|
| Physical Properties | Test Methods | EPDM | Neoprene| Butyl mastic |
| Tensile, psi | ASTM D412 | 1840 | 2195 | - |
| Elongation percent | ASTM D412 | 553 | 295 | 350 |
| Tear Resistance, ppi | ASTM D624 | 280 | 160 | - |
| Rebound, percent, 5 minutes | ASTM C972 | - | - | 11 |
| Rebound, percent, 2 hours | ASTM C972 | - | - | 12 |

2.3 REPORTS

Submit Test Reports. Compaction and density test shall be in accordance with Section 31 00 00 EARTHWORK. Submit Inspection Reports for daily activities during the installation of the sanitary system. Information in the report shall be detailed enough to describe location of work and amount of pipe laid in place, measured in linear feet.

PART 3 EXECUTION

3.1 INSTALLATION OF PIPELINES AND APPURtenantz CONSTRUCTION

3.1.1 General Requirements for Installation of Pipelines

These general requirements apply except where specific exception is made in the following paragraphs entitled "Special Requirements."
3.1.1.1 Location

The work covered by this section shall terminate at a point approximately 5 feet from the building, unless otherwise indicated. Where the location of the sewer is not clearly defined by dimensions on the drawings, do not lay sewer line closer horizontally than 10 feet to a water main or service line. Where sanitary sewer lines pass below water lines, lay pipe so that no joint in the sewer line will be closer than 3 feet, horizontal distance, to the water line.

a. Sanitary piping installation parallel with water line:

 (1) Normal conditions: Sanitary piping or manholes shall be laid at least 10 feet horizontally from a water line whenever possible. The distance shall be measured edge-to-edge.

 (2) Unusual conditions: When local conditions prevent a horizontal separation of 10 feet, the sanitary piping or manhole may be laid closer to a water line provided that:

 (a) The top (crown) of the sanitary piping shall be at least 18 inches below the bottom (invert) of the water main.

 (b) Where this vertical separation cannot be obtained, the sanitary piping shall be constructed of AWWA-approved ductile iron water pipe pressure tested in place without leakage prior to backfilling.

 (c) The sewer manhole shall be of watertight construction and tested in place.

b. Installation of sanitary piping crossing a water line:

 (1) Normal conditions: Lay sanitary sewer piping by crossing under water lines to provide a separation of at least 18 inches between the top of the sanitary piping and the bottom of the water line whenever possible.

 (2) Unusual conditions: When local conditions prevent a vertical separation described above, use the following construction:

 (a) Sanitary piping passing over or under water lines shall be constructed of AWWA-approved ductile iron water pipe, pressure tested in place without leakage prior to backfilling.

 (b) Sanitary piping passing over water lines shall, in addition, be protected by providing:

 (1) A vertical separation of at least 18 inches between the bottom of the sanitary piping and the top of the water line.

 (2) Adequate structural support for the sanitary piping to prevent excessive deflection of the joints and the settling on and breaking of the water line.

 (3) That the length, minimum 20 feet, of the sanitary piping be centered at the point of the crossing so that joints shall be equidistant and as far as possible from the water line.
c. Sanitary sewer manholes: No water piping shall pass through or come in contact with any part of a sanitary sewer manhole.

3.1.1.2 Earthwork

Perform earthwork operations in accordance with Section 31 00 00 EARTHWORK.

3.1.1.3 Pipe Laying and Jointing

Inspect each pipe and fitting before and after installation; replace those found defective and remove from site. Provide proper facilities for lowering sections of pipe into trenches. Lay nonpressure pipe with the bell or groove ends in the upgrade direction. Adjust spigots in bells and tongues in grooves to give a uniform space all around. Blocking or wedging between bells and spigots or tongues and grooves will not be permitted. Replace by one of the proper dimensions, pipe or fittings that do not allow sufficient space for installation of joint material. At the end of each work day, close open ends of pipe temporarily with wood blocks or bulkheads. Provide batterboards not more than 25 feet apart in trenches for checking and ensuring that pipe invert elevations are as indicated. Laser beam method may be used in lieu of batterboards for the same purpose. Branch connections shall be made by use of regular fittings or solvent cemented saddles as approved. Saddles for ABS and PVC composite pipe shall conform to Figure 2 of ASTM D2680; saddles for ABS pipe shall comply with Table 3 of ASTM D2751; and saddles for PVC pipe shall conform to Table 4 of ASTM D3034.

3.1.1.4 Connections to Existing Lines

Obtain approval from the Contracting Officer before making connection to existing line. Conduct work so that there is minimum interruption of service on existing line.

3.1.2 Special Requirements

3.1.2.1 Installation of Ductile Iron Gravity Sewer Pipe

Unless otherwise specified, install pipe and associated fittings in accordance with paragraph entitled "General Requirements for Installation of Pipelines" of this section and with the requirements of AWWA C600 for pipe installation and joint assembly.

a. Make mechanical-joints with the gaskets, glands, bolts, and nuts specified for this type joint and assemble in accordance with the applicable requirements of AWWA C600 for joint assembly and the recommendations of Appendix A to AWWA C111/A21.11.

b. Exterior protection: Completely encase buried ductile iron pipelines with polyethylene tube or sheet in accordance with AWWA C105/A21.5, using Class A polyethylene film.

3.1.2.2 Installation of PVC Plastic Piping

Install pipe and fittings in accordance with paragraph entitled "General Requirements for Installation of Pipelines" of this section and with the requirements of ASTM D2321 for laying and joining pipe and fittings. Make joints with the gaskets specified for joints with this piping and assemble in accordance with the requirements of ASTM D2321 for assembly of joints. Make joints to other pipe materials in accordance with the recommendations of the plastic pipe manufacturer.
3.1.3 Miscellaneous Construction and Installation

3.1.3.1 Connecting to Existing Manholes

Pipe connections to existing manholes shall be made so that finish work will conform as nearly as practicable to the applicable requirements specified for new manholes, including all necessary concrete work, cutting, and shaping. The connection shall be centered on the manhole. Holes for the new pipe shall be of sufficient diameter to allow packing cement mortar around the entire periphery of the pipe but no larger than 1.5 times the diameter of the pipe. Cutting the manhole shall be done in a manner that will cause the least damage to the walls.

3.1.3.2 Metal Work

a. Workmanship and finish: Perform metal work so that workmanship and finish will be equal to the best practice in modern structural shops and foundries. Form iron to shape and size with sharp lines and angles. Do shearing and punching so that clean true lines and surfaces are produced. Make castings sound and free from warp, cold cuts, and blow holes that may impair their strength or appearance. Give exposed surfaces a smooth finish with sharp well-defined lines and arises. Provide necessary rabbets, lugs, and brackets wherever necessary for fitting and support.

b. Field painting: After installation, clean cast-iron frames, covers, gratings, and steps not buried in concrete to bare metal of mortar, rust, grease, dirt, and other deleterious materials and apply a coat of bituminous paint. Do not paint surfaces subject to abrasion.

3.1.4 Sewage Absorption Trench Construction

Grade pipe lines uniformly downward to the outlet. Lay perforated pipe with the perforations downward. Lay drain tile with 1/4 inch open joints. Cover open joints of drain tile with the cover material specified so that it extends not less than 100 degrees on each side of the vertical center line of the tile. Wire covering in place.

3.1.5 Installations of Wye Branches

Cutting into piping for connections shall not be done except in special approved cases. When the connecting pipe cannot be adequately supported on undisturbed earth or tamped backfill, the pipe shall be encased in concrete backfill or supported on a concrete cradle as directed. Concrete required because of conditions resulting from faulty construction methods or negligence shall be installed at no additional cost to the Government. The installation of wye branches in an existing sewer shall be made by a method which does not damage the integrity of the existing sewer. One acceptable method consists of removing one pipe section, breaking off the upper half of the bell of the next lower section and half of the running bell of wye section. After placing the new section, it shall be rotated so that the broken half of the bell will be at the bottom. The two joints shall then be made with joint packing and cement mortar.
3.2 FIELD QUALITY CONTROL

3.2.1 Field Tests and Inspections

The Contracting Officer will conduct field inspections and witness field tests specified in this section. Perform field tests and provide labor, equipment, and incidentals required for testing. Be able to produce evidence, when required, that each item of work has been constructed in accordance with the drawings and specifications.

3.2.2 Tests for Nonpressure Lines

Check each straight run of pipeline for gross deficiencies by holding a light in a manhole; it shall show a practically full circle of light through the pipeline when viewed from the adjoining end of line. When pressure piping is used in a nonpressure line for nonpressure use, test this piping as specified for nonpressure pipe.

3.2.2.1 Leakage Tests

Test lines for leakage by either infiltration tests or exfiltration tests, or by low-pressure air tests. Prior to testing for leakage, backfill trench up to at least lower half of pipe. When necessary to prevent pipeline movement during testing, place additional backfill around pipe sufficient to prevent movement, but leaving joints uncovered to permit inspection. When leakage or pressure drop exceeds the allowable amount specified, make satisfactory correction and retest pipeline section in the same manner. Correct visible leaks regardless of leakage test results.

a. Infiltration tests and exfiltration tests: Perform these tests for sewer lines made of the specified materials, not only concrete, in accordance with ASTM C969. Make calculations in accordance with the Appendix to ASTM C969.

b. Low-pressure air tests: Perform tests as follows:

(1) Clay pipelines: Test in accordance with ASTM C828. Allowable pressure drop shall be as given in ASTM C828. Make calculations in accordance with the Appendix to ASTM C828.

(2) Concrete pipelines: Test in accordance with ASTM C924. Allowable pressure drop shall be as given in ASTM C924. Make calculations in accordance with the Appendix to ASTM C924.

(3) Ductile-iron pipelines: Test in accordance with the applicable requirements of ASTM C924. Allowable pressure drop shall be as given in ASTM C924. Make calculations in accordance with the Appendix to ASTM C924.

(4) ABS composite plastic pipelines: Test in accordance with the applicable requirements of UBPPA UNI-B-6. Allowable pressure drop shall be as given in UBPPA UNI-B-6. Make calculations in accordance with the Appendix to UBPPA UNI-B-6.

(5) PVC plastic pipelines: Test in accordance with UBPPA UNI-B-6. Allowable pressure drop shall be as given in UBPPA UNI-B-6. Make calculations in accordance with the Appendix to UBPPA UNI-B-6.

(6) Polypropylene: Test in accordance with ASTM F1417 or
Allowable pressure drop shall be as given in ASTM F1417 or UBPPA UNI-B-6 depending on the specification chosen to follow. Make calculations in accordance with the Appendix to ASTM F1417 or UBPPA UNI-B-6 depending on the specification chosen to follow.

3.2.2.2 Deflection Testing

Perform a deflection test on entire length of installed plastic pipeline on completion of work adjacent to and over the pipeline, including leakage tests, backfilling, placement of fill, grading, paving, concreting, and any other superimposed loads determined in accordance with ASTM D2412. Deflection of pipe in the installed pipeline under external loads shall not exceed 4.5 percent of the average inside diameter of pipe. Determine whether the allowable deflection has been exceeded by use of a pull-through device or a deflection measuring device.

a. Pull-through device: This device shall be a spherical, spheroidal, or elliptical ball, a cylinder, or circular sections fused to a common shaft. Circular sections shall be so spaced on the shaft that distance from external faces of front and back sections will equal or exceed diameter of the circular section. Pull-through device may also be of a design promulgated by the Uni-Bell Plastic Pipe Association, provided the device meets the applicable requirements specified in this paragraph, including those for diameter of the device, and that the mandrel has a minimum of 9 arms. Ball, cylinder, or circular sections shall conform to the following:

1. A diameter, or minor diameter as applicable, of 95 percent of the average inside diameter of the pipe; tolerance of plus 0.5 percent will be permitted.

2. Homogeneous material throughout, shall have a density greater than 1.0 as related to water at 39.2 degrees F, and shall have a surface Brinell hardness of not less than 150.

3. Center bored and through-bolted with a 1/4 inch minimum diameter steel shaft having a yield strength of not less than 70,000 psi, with eyes or loops at each end for attaching pulling cables.

4. Each eye or loop shall be suitably backed with a flange or heavy washer such that a pull exerted on opposite end of shaft will produce compression throughout remote end.

b. Deflection measuring device: Sensitive to 1.0 percent of the diameter of the pipe being tested and shall be accurate to 1.0 percent of the indicated dimension. Deflection measuring device shall be approved prior to use.

c. Pull-through device procedure: Pass the pull-through device through each run of pipe, either by pulling it through or flushing it through with water. If the device fails to pass freely through a pipe run, replace pipe which has the excessive deflection and completely retest in same manner and under same conditions.

d. Deflection measuring device procedure: Measure deflections through each run of installed pipe. If deflection readings in excess of 4.5 percent of average inside diameter of pipe are obtained, retest pipe by a run from the opposite direction. If retest continues to show a
deflection in excess of 4.5 percent of average inside diameter of pipe, replace pipe which has excessive deflection and completely retest in same manner and under same conditions.

-- End of Section --
This Page is Intentionally Left Blank
SECTION 33 40 00

STORM DRAINAGE UTILITIES

02/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AMERICAN RAILWAY ENGINEERING AND MAINTENANCE-OF-WAY ASSOCIATION (AREMA)

ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C55</td>
<td>(2011) Concrete Brick</td>
</tr>
<tr>
<td>ASTM C62</td>
<td>(2010) Building Brick (Solid Masonry Units Made from Clay or Shale)</td>
</tr>
<tr>
<td>ASTM C877</td>
<td>(2008) External Sealing Bands for Concrete Pipe, Manholes, and Precast Box Sections</td>
</tr>
<tr>
<td>ASTM D1171</td>
<td>(1999; R 2007) Rubber Deterioration - Surface Ozone Cracking Outdoors or Chamber (Triangular Specimens)</td>
</tr>
<tr>
<td>ASTM D1557</td>
<td>(2012; E 2015) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³) (2700 kN-m/m³)</td>
</tr>
</tbody>
</table>
Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds

ASTM D2167 (2015) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D2729 (2011) Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submit the following in accordance with Section 01 33 00

SUBMITTAL PROCEDURES:

SD-03 Product Data

Placing Pipe

SD-04 Samples

Pipe for Culverts and Storm Drains

SD-07 Certificates
Resin Certification
Pipeline Testing
Hydrostatic Test on Watertight Joints
Determination of Density
Frame and Cover for Gratings

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery and Storage

Materials delivered to site shall be inspected for damage, unloaded, and stored with a minimum of handling. Materials shall not be stored directly on the ground. The inside of pipes and fittings shall be kept free of dirt and debris. Before, during, and after installation, plastic pipe and fittings shall be protected from any environment that would result in damage or deterioration to the material. Keep a copy of the manufacturer's instructions available at the construction site at all times and follow these instructions unless directed otherwise by the Contracting Officer. Solvents, solvent compounds, lubricants, elastomeric gaskets, and any similar materials required to install plastic pipe shall be stored in accordance with the manufacturer's recommendations and shall be discarded if the storage period exceeds the recommended shelf life. Solvents in use shall be discarded when the recommended pot life is exceeded.

1.3.2 Handling

Materials shall be handled in a manner that ensures delivery to the trench in sound, undamaged condition. Pipe shall be carried to the trench, not dragged.

PART 2 PRODUCTS

2.1 PIPE FOR CULVERTS AND STORM DRAINS

Pipe for culverts and storm drains shall be of the sizes indicated and shall conform to the requirements specified.

2.1.1 Perforated Piping

2.1.1.1 PVC Pipe

ASTM D2729.

2.1.2 PVC Pipe

Submit the pipe manufacturer's resin certification, indicating the cell classification of PVC used to manufacture the pipe, prior to installation of the pipe.

2.1.2.1 Type PSM PVC Pipe

ASTM D3034, Type PSM, maximum SDR 26, produced from PVC certified by the compounder as meeting the requirements of ASTM D1784, minimum cell class 12454-B.

2.1.2.2 Profile PVC Pipe

ASTM F794, Series 46, produced from PVC certified by the compounder as
meeting the requirements of ASTM D1784, minimum cell class 12454-B.

2.1.2.3 Smooth Wall PVC Pipe

ASTM F679 produced from PVC certified by the compounder as meeting the requirements of ASTM D1784, minimum cell class 12454-B.

2.1.2.4 Corrugated PVC Pipe

ASTM F949 produced from PVC certified by the compounder as meeting the requirements of ASTM D1784, minimum cell class 12454-B.

2.1.3 HDPE Pipe

The pipe shall be corrugated exterior/smooth interior pipe (Type S), conforming to the requirements of AASHTO Specifications M294 (latest edition) for Corrugated Polyethylene Pipe.

No HDPE end treatments allowed. All end treatments should be reinforced concrete pipe or headwalls. Transitions from HDPE to concrete pipe shall be made with the appropriate adapter.

Minimum bury depth of 12″ with class III compacted to 95% SPD from the outside wall of the pipe unless specific approval by the Engineer is obtained. Maximum bury depth of 20' unless specific approval by the Engineer is obtained.

2.1.4 PolyPropylene (PP) Pipe

The pipe and fittings shall be an annular corrugated wall and an essentially smooth interior wall (that is, double wall) or pipe and fittings with an annular corrugated wall and an essentially smooth interior and exterior wall (that is, triple wall), conforming to the requirements of ASTM F2764 and AASHTO M330 (latest edition) for Corrugated Polypropylene Pipe.

No PP end treatments allowed. All end treatments should be reinforced concrete pipe or headwalls. Transitions from PP to concrete pipe shall be made with the appropriate adapter.

Minimum bury depth of 12″ with class III compacted to 95% SPD from the outside wall of the pipe unless specific approval by the Engineer is obtained. Maximum bury depth of 25' unless specific approval by the Engineer is obtained.

2.2 DRAINAGE STRUCTURES

2.2.1 Flared End Sections

Sections shall be of a standard design fabricated from zinc coated steel sheets meeting requirements of ASTM A929/A929M.

2.2.2 Precast Reinforced Concrete Box

Manufactured in accordance with and conforming to ASTM C1433.
2.3 MISCELLANEOUS MATERIALS

2.3.1 Concrete

Unless otherwise specified, concrete and reinforced concrete shall conform to the requirements for 3000 psi concrete under Section 03 30 50 CAST-IN-PLACE CONCRETE. The concrete mixture shall have air content by volume of concrete, based on measurements made immediately after discharge from the mixer, of 5 to 7 percent when maximum size of coarse aggregate exceeds 1-1/2 inches. Air content shall be determined in accordance with ASTM C231/C231M. The concrete covering over steel reinforcing shall not be less than 1 inch thick for covers and not less than 1-1/2 inches thick for walls and flooring. Concrete covering deposited directly against the ground shall have a thickness of at least 3 inches between steel and ground. Expansion-joint filler material shall conform to ASTM D1751, or ASTM D1752, or shall be resin-impregnated fiberboard conforming to the physical requirements of ASTM D1752.

2.3.2 Mortar

Mortar for pipe joints, connections to other drainage structures, and brick or block construction shall conform to ASTM C270, Type M, except that the maximum placement time shall be 1 hour. The quantity of water in the mixture shall be sufficient to produce a stiff workable mortar. Water shall be clean and free of harmful acids, alkalies, and organic impurities. The mortar shall be used within 30 minutes after the ingredients are mixed with water. The inside of the joint shall be wiped clean and finished smooth. The mortar head on the outside shall be protected from air and sun with a proper covering until satisfactorily cured.

2.3.3 Precast Concrete Segmental Blocks

Precast concrete segmental block shall conform to ASTM C139, not more than 8 inches thick, not less than 8 inches long, and of such shape that joints can be sealed effectively and bonded with cement mortar.

2.3.4 Brick

Brick shall conform to ASTM C62, Grade SW; ASTM C55, Grade S-I or S-II; or ASTM C32, Grade MS. Mortar for jointing and plastering shall consist of one part portland cement and two parts fine sand. Lime may be added to the mortar in a quantity not more than 25 percent of the volume of cement. The joints shall be filled completely and shall be smooth and free from surplus mortar on the inside of the structure. Brick structures shall be plastered with 1/2 inch of mortar over the entire outside surface of the walls. For square or rectangular structures, brick shall be laid in stretcher courses with a header course every sixth course. For round structures, brick shall be laid radially with every sixth course a stretcher course.

2.3.5 Precast Reinforced Concrete Manholes

Conform to ASTM C478. Joints between precast concrete risers and tops shall be made with flexible watertight, rubber-type gaskets meeting the requirements of paragraph JOINTS.

2.3.6 Frame and Cover for Gratings

Submit certification on the ability of frame and cover or gratings to carry
the imposed live load. Frame and cover for gratings shall be cast gray iron, ASTM A48/A48M, Class 35B; cast ductile iron, ASTM A536, Grade 65-45-12; or cast aluminum, ASTM B26/B26M, Alloy 356.0T6. Weight, shape, size, and waterway openings for graters and curb inlets shall be as indicated on the plans. The word "Storm Sewer" shall be stamped or cast into covers so that it is plainly visible.

2.3.7 Joints

2.3.7.1 Flexible Watertight Joints

a. Materials: Flexible watertight joints shall be made with plastic or rubber-type gaskets for concrete pipe and with factory-fabricated resilient materials for clay pipe. The design of joints and the physical requirements for plastic gaskets shall conform to AASHTO M 198, and rubber-type gaskets shall conform to ASTM C443 / ASTM F477. Factory-fabricated resilient joint materials shall conform to ASTM C425 / ASTM F477. Gaskets shall have not more than one factory-fabricated splice, except that two factory-fabricated splices of the rubber-type gasket are permitted if the nominal diameter of the pipe being gasketed exceeds 54 inches.

b. Test Requirements: Watertight joints shall be tested and shall meet test requirements of paragraph HYDROSTATIC TEST ON WATERTIGHT JOINTS. Rubber gaskets shall comply with the oil resistant gasket requirements of ASTM C443 / ASTM F477. Certified copies of test results shall be delivered to the Contracting Officer before gaskets or jointing materials are installed. Alternate types of watertight joint may be furnished, if specifically approved.

2.3.7.2 External Sealing Bands

Requirements for external sealing bands shall conform to ASTM C877.

2.3.7.3 Flexible Watertight, Gasketed Joints

a. Gaskets: When infiltration or exfiltration is a concern for pipe lines, the couplings may be required to have gaskets. The closed-cell expanded rubber gaskets shall be a continuous band approximately 7 inches wide and approximately 3/8 inch thick, meeting the requirements of ASTM D1056, Type 2 A1, and shall have a quality retention rating of not less than 70 percent when tested for weather resistance by ozone chamber exposure, Method B of ASTM D1171. Rubber O-ring gaskets shall be 13/16 inch in diameter for pipe diameters of 36 inches or smaller and 7/8 inch in diameter for larger pipe having 1/2 inch deep end corrugation. Rubber O-ring gaskets shall be 1-3/8 inches in diameter for pipe having 1 inch deep end corrugations. O-rings shall meet the requirements of AASHTO M 198 or ASTM C443. Flexible plastic gaskets shall conform to requirements of AASHTO M 198, Type B.

b. Connecting Bands: Connecting bands shall be of the type, size and sheet thickness of band, and the size of angles, bolts, rods and lugs as indicated or where not indicated as specified in the applicable standards or specifications for the pipe. Exterior rivet heads in the longitudinal seam under the connecting band shall be countersunk or the rivets shall be omitted and the seam welded. Watertight joints shall be tested and shall meet the test requirements of paragraph HYDROSTATIC TEST ON WATERTIGHT JOINTS.
2.3.7.4 PVC Plastic Pipes

Joints shall be solvent cement or elastomeric gasket type in accordance with the specification for the pipe and as recommended by the pipe manufacturer.

2.3.7.5 HDPE Pipes

Bell and spigot joints shall be required on all pipes. Bells shall cover at least two full corrugations on each section of pipe. The bell and spigot joint shall have "O"-ring rubber gaskets meeting ASTM F477 with the gasket factory installed, placed on the spigot end of the pipe. Pipe joints shall meet all requirements of AASHTO M294.

2.3.7.6 PolyPropylene (PP) Pipes

Bell and spigot joints shall be required on all pipes. Bells shall cover at least two full corrugations on each section of pipe. The bell and spigot joint shall have "O"-ring rubber gaskets meeting ASTM F477 with the gasket factory installed, placed on the spigot end of the pipe. Pipe joints shall meet all requirements of AASHTO M330.

2.4 STEEL LADDER

Steel ladder shall be provided where the depth of the storm drainage structure exceeds 12 feet. These ladders shall be not less than 16 inches in width, with 3/4 inch diameter rungs spaced 12 inches apart. The two stringers shall be a minimum 3/8 inch thick and 2-1/2 inches wide. Ladders and inserts shall be galvanized after fabrication in conformance with ASTM A123/A123M.

2.5 DOWNSPOUT BOOTS

Boots used to connect exterior downspouts to the storm-drainage system shall be of gray cast iron conforming to ASTM A48/A48M, Class 30B or 35B. Shape and size shall be as indicated on plans.

2.6 RESILIENT CONNECTORS

Flexible, watertight connectors used for connecting pipe to manholes and inlets shall conform to ASTM C923.

2.7 HYDROSTATIC TEST ON WATERTIGHT JOINTS

2.7.1 Concrete, Clay, PVC, HDPE, and PP Pipe

A hydrostatic test shall be made on the watertight joint types as proposed. Only one sample joint of each type needs testing; however, if the sample joint fails because of faulty design or workmanship, an additional sample joint may be tested. During the test period, gaskets or other jointing material shall be protected from extreme temperatures which might adversely affect the performance of such materials. Performance requirements for joints in reinforced and nonreinforced concrete pipe shall conform to AASHTO M 198 or ASTM C443. Test requirements for joints in clay pipe shall conform to ASTM C425. Test requirements for joints in PVC and PE plastic pipe shall conform to ASTM D3212 / ASTM F1417 or ASTM F2487.
2.8 EROSION CONTROL RIPRAP

Provide nonerodible rock not exceeding 15 inches in its greatest dimension and choked with sufficient small rocks to provide a dense mass with a minimum thickness of as indicated.

PART 3 EXECUTION

3.1 EXCAVATION FOR PIPE CULVERTS, STORM DRAINS, AND DRAINAGE STRUCTURES

Excavation of trenches, and for appurtenances and backfilling for culverts and storm drains, shall be in accordance with the applicable portions of Section 31 00 00 EARTHWORK and the requirements specified below.

3.1.1 Trenching

The width of trenches at any point below the top of the pipe shall be not greater than the outside diameter of the pipe plus 24 inches to permit satisfactory jointing and thorough tamping of the bedding material under and around the pipe. Sheeting and bracing, where required, shall be placed within the trench width as specified, without any overexcavation. Where trench widths are exceeded, redesign with a resultant increase in cost of stronger pipe or special installation procedures will be necessary. Cost of this redesign and increased cost of pipe or installation shall be borne by the Contractor without additional cost to the Government.

3.1.2 Removal of Rock

Rock in either ledge or boulder formation shall be replaced with suitable materials to provide a compacted earth cushion having a thickness between unremoved rock and the pipe of at least 8 inches or 1/2 inch for each foot of fill over the top of the pipe, whichever is greater, but not more than three-fourths the nominal diameter of the pipe. Where bell-and-spigot pipe is used, the cushion shall be maintained under the bell as well as under the straight portion of the pipe. Rock excavation shall be as specified and defined in Section 31 00 00 EARTHWORK.

3.1.3 Removal of Unstable Material

Where wet or otherwise unstable soil incapable of properly supporting the pipe, as determined by the Contracting Officer, is unexpectedly encountered in the bottom of a trench, such material shall be removed to the depth required and replaced to the proper grade with select granular material, compacted as provided in paragraph BACKFILLING. When removal of unstable material is due to the fault or neglect of the Contractor while performing shoring and sheeting, water removal, or other specified requirements, such removal and replacement shall be performed at no additional cost to the Government.

3.2 BEDDING

The bedding surface for the pipe shall provide a firm foundation of uniform density throughout the entire length of the pipe.

3.2.1 Plastic Pipe

Bedding for PVC and PE pipe shall meet the requirements of ASTM D2321. Bedding, haunching, and initial backfill shall be either Class IB or II material.
3.3 PLACING PIPE

Submit printed copies of the manufacturer's recommendations for installation procedures of the material being placed, prior to installation.

Each pipe shall be thoroughly examined before being laid; defective or damaged pipe shall not be used. Plastic pipe shall be protected from exposure to direct sunlight prior to laying, if necessary to maintain adequate pipe stiffness and meet installation deflection requirements. Pipelines shall be laid to the grades and alignment indicated. Proper facilities shall be provided for lowering sections of pipe into trenches. Lifting lugs in vertically elongated metal pipe shall be placed in the same vertical plane as the major axis of the pipe. Pipe shall not be laid in water, and pipe shall not be laid when trench conditions or weather are unsuitable for such work. Diversion of drainage or dewatering of trenches during construction shall be provided as necessary. Deflection of installed flexible pipe shall not exceed the following limits:

<table>
<thead>
<tr>
<th>TYPE OF PIPE</th>
<th>MAXIMUM ALLOWABLE DEFLECTION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic (PVC & HDPE)</td>
<td>5</td>
</tr>
</tbody>
</table>

Note post installation requirements of paragraph 'Deflection Testing' in PART 3 of this specification for all pipe products including deflection testing requirements for flexible pipe.

3.3.1 Concrete, Clay, PVC, Ribbed PVC, Ductile Iron and Cast-Iron Pipe

Laying shall proceed upgrade with spigot ends of bell-and-spigot pipe and tongue ends of tongue-and-groove pipe pointing in the direction of the flow.

3.3.2 HDPE Pipe

All HDPE pipe installation shall be in accordance with the manufacturer's recommendations. See Trench installation detail on plans.

Backfill material used to install HDPE pipe shall be Select Material, Class I-III, as defined by ASTM D2321:
- A-2 AASHTO with the exception of A-2-7
- A-4 and A-6 soil based on greater than (>) 30% retained on the No. 200 sieve.

Upon submittal of written certification of material suitability by a licensed geotechnical engineer, select material may be used. All backfill shall be approved by the ROICC prior to placement.

3.3.3 PolyProplene (PP) Pipe

All PP pipe installation shall be in accordance with the manufacturer's recommendations. See Trench installation detail on plans.

Backfill material used to install PP pipe shall be Select Material, Class I-IV, as defined by ASTM D2321:
- A-1 and A-3 AASHTO Soils. (Class II)
- A-2 AASHTO (Class III) with the exception of A-2-7
- A-4 and A-6 soil based on greater than (>) 30% retained on the No. 200 sieve. (Class III)
o A-2-7; A-4 and A-6 soil based with less than (> 30%) retained on the No. 200 sieve. (Class IV)

o Upon submittal of written certification of material suitability by a licensed geotechnical engineer, select material may be used. All backfill shall be approved by the ROICC prior to placement.

3.3.4 Multiple Culverts

Where multiple lines of pipe are installed, adjacent sides of pipe shall be at least half the nominal pipe diameter or 3 feet apart, whichever is less.

3.3.5 Jacking Pipe Through Fills

Methods of operation and installation for jacking pipe through fills shall conform to requirements specified in Volume 1, Chapter 1, Part 4 of AREMA Eng Man.

3.4 JOINTING

3.5 DRAINAGE STRUCTURES

3.5.1 Manholes and Inlets

Construction shall be of reinforced concrete, plain concrete, brick, precast reinforced concrete, precast concrete segmental blocks, prefabricated corrugated metal, or bituminous coated corrugated metal; complete with frames and covers or gratings; and with fixed galvanized steel ladders where indicated. Pipe studs and junction chambers of prefabricated corrugated metal manholes shall be fully bituminous-coated and paved when the connecting branch lines are so treated. Pipe connections to concrete manholes and inlets shall be made with flexible, watertight connectors.

3.5.2 Walls and Headwalls

Construction shall be as indicated.

3.6 STEEL LADDER INSTALLATION

Ladder shall be adequately anchored to the wall by means of steel inserts spaced not more than 6 feet vertically, and shall be installed to provide at least 6 inches of space between the wall and the rungs. The wall along the line of the ladder shall be vertical for its entire length.

3.7 BACKFILLING

3.7.1 Backfilling Pipe in Trenches

After the pipe has been properly bedded, selected material from excavation or borrow, at a moisture content that will facilitate compaction, shall be placed along both sides of pipe in layers not exceeding 6 inches in compacted depth. The backfill shall be brought up evenly on both sides of pipe for the full length of pipe. The fill shall be thoroughly compacted under the haunches of the pipe. Each layer shall be thoroughly compacted with mechanical tampers or rammers. This method of filling and compacting shall continue until the fill has reached an elevation equal to the midpoint (spring line) of RCP or has reached an elevation of at least 12 inches above the top of the pipe for flexible pipe. The remainder of the trench shall be backfilled and compacted by spreading and rolling or
compacted by mechanical rammers or tampers in layers not exceeding 8 inches. Tests for density shall be made as necessary to ensure conformance to the compaction requirements specified below. Where it is necessary, in the opinion of the Contracting Officer, that sheeting or portions of bracing used be left in place, the contract will be adjusted accordingly. Untreated sheeting shall not be left in place beneath structures or pavements.

3.7.2 Backfilling Pipe in Fill Sections

For pipe placed in fill sections, backfill material and the placement and compaction procedures shall be as specified below. The fill material shall be uniformly spread in layers longitudinally on both sides of the pipe, not exceeding 6 inches in compacted depth, and shall be compacted by rolling parallel with pipe or by mechanical tamping or ramming. Prior to commencing normal filling operations, the crown width of the fill at a height of 12 inches above the top of the pipe shall extend a distance of not less than twice the outside pipe diameter on each side of the pipe or 12 feet, whichever is less. After the backfill has reached at least 12 inches above the top of the pipe, the remainder of the fill shall be placed and thoroughly compacted in layers not exceeding 8 inches. Use select granular material for this entire region of backfill for flexible pipe installations.

3.7.3 Movement of Construction Machinery

When compacting by rolling or operating heavy equipment parallel with the pipe, displacement of or injury to the pipe shall be avoided. Movement of construction machinery over a culvert or storm drain at any stage of construction shall be at the Contractor's risk. Any damaged pipe shall be repaired or replaced.

3.7.4 Compaction

3.7.4.1 General Requirements

Cohesionless materials include gravels, gravel-sand mixtures, sands, and gravelly sands. Cohesive materials include clayey and silty gravels, gravel-silt mixtures, clayey and silty sands, sand-clay mixtures, clays, silts, and very fine sands. When results of compaction tests for moisture-density relations are recorded on graphs, cohesionless soils will show straight lines or reverse-shaped moisture-density curves, and cohesive soils will show normal moisture-density curves.

3.7.4.2 Minimum Density

Backfill over and around the pipe and backfill around and adjacent to drainage structures shall be compacted at the approved moisture content to the following applicable minimum density, which will be determined as specified below.

a. Under airfield and heliport pavements, paved roads, streets, parking areas, and similar-use pavements including adjacent shoulder areas, the density shall be not less than 90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material, up to the elevation where requirements for pavement subgrade materials and compaction shall control.

b. Under unpaved or turfed traffic areas, density shall not be less than
90 percent of maximum density for cohesive material and 95 percent of maximum density for cohesionless material.

c. Under nontraffic areas, density shall be not less than that of the surrounding material.

3.7.5 Determination of Density

Testing is the responsibility of the Contractor and performed at no additional cost to the Government. Testing shall be performed by an approved commercial testing laboratory or by the Contractor subject to approval. Tests shall be performed in sufficient number to ensure that specified density is being obtained. Laboratory tests for moisture-density relations shall be made in accordance with ASTM D1557 except that mechanical tampers may be used provided the results are correlated with those obtained with the specified hand tamper. Field density tests shall be determined in accordance with ASTM D2167 or ASTM D6938. When ASTM D6938 is used, the calibration curves shall be checked and adjusted, if necessary, using the sand cone method as described in paragraph Calibration of the referenced publications. ASTM D6938 results in a wet unit weight of soil and ASTM D6938 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall be checked along with density calibration checks as described in ASTM D6938. Test results shall be furnished the Contracting Officer. The calibration checks of both the density and moisture gauges shall be made at the beginning of a job on each different type of material encountered and at intervals as directed.

3.8 PIPELINE TESTING

3.8.1 Leakage Tests

Lines shall be tested for leakage by low pressure air or water testing or exfiltration tests, as appropriate. Low pressure air testing for plastic pipe shall conform to ASTM F1417. Testing of individual joints for leakage by low pressure air or water shall conform to ASTM C1103. Prior to exfiltration tests, the trench shall be backfilled up to at least the lower half of the pipe. If required, sufficient additional backfill shall be placed to prevent pipe movement during testing, leaving the joints uncovered to permit inspection. Visible leaks encountered shall be corrected regardless of leakage test results. When the water table is 2 feet or more above the top of the pipe at the upper end of the pipeline section to be tested, infiltration shall be measured using a suitable weir or other device acceptable to the Contracting Officer. An exfiltration test shall be made by filling the line to be tested with water so that a head of at least 2 feet is provided above both the water table and the top of the pipe at the upper end of the pipeline to be tested. The filled line shall be allowed to stand until the pipe has reached its maximum absorption, but not less than 4 hours. After absorption, the head shall be reestablished. The amount of water required to maintain this water level during a 2-hour test period shall be measured. Leakage as measured by the exfiltration test shall not exceed 0.2 gallons per inch in diameter per 100 feet of pipeline per hour. When leakage exceeds the maximum amount specified, satisfactory correction shall be made and retesting accomplished.

3.8.2 Deflection Testing

No sooner than 30 days after completion of installation and final backfill, an initial post installation inspection shall be accomplished. Clean or
flush all lines prior to inspection. Perform a deflection test on entire length of installed flexible pipeline on completion of work adjacent to and over the pipeline, including leakage tests, backfilling, placement of fill, grading, paving, concreting, and any other superimposed loads. Deflection of pipe in the installed pipeline under external loads shall not exceed limits in paragraph PLACING PIPE above as percent of the average inside diameter of pipe. Determine whether the allowable deflection has been exceeded by use of a laser profiler or mandrel.

a. Laser Profiler Inspection: If deflection readings in excess of the allowable deflection of average inside diameter of pipe are obtained, remove pipe which has excessive deflection, and replace with new pipe. Initial post installation inspections of the pipe interior with laser profiling equipment shall utilize low barrel distortion video equipment for pipe sizes 48 inches or less. Use a camera with lighting suitable to allow a clear picture of the entire periphery of the pipe interior. Center the camera in the pipe both vertically and horizontally and be able to pan and tilt to a 90 degree angle with the axis of the pipe rotating 360 degrees. Use equipment to move the camera through the pipe that will not obstruct the camera's view or interfere with proper documentation of the pipe's condition. The video image shall be clear, focused, and relatively free from roll static or other image distortion qualities that would prevent the reviewer from evaluating the condition of the pipe. For initial post installation inspections for pipe sizes larger than 48 inches, visual inspection shall be completed of the pipe interior.

b. Pull-Through Device Inspection: Pass the pull-through device through each run of pipe by pulling it by hand. If deflection readings in excess of the allowable deflection of average inside diameter of pipe are obtained, retest pipe by a run from the opposite direction. If retest continues to show excess allowable deflections of the average inside diameter of pipe, remove pipe which has excessive deflection, replace with new pipe, and completely retest in same manner and under same conditions. Pull-through device: The mandrel shall be rigid, nonadjustable having a minimum of 9 fins, including pulling rings at each end, engraved with the nominal pipe size and mandrel outside diameter. The mandrel shall be 5 percent less than the certified-actual pipe diameter for Plastic Pipe, 5 percent less than the certified-actual pipe diameter for Corrugated Steel and Aluminum Alloy, 3 percent less than the certified-actual pipe diameter for Concrete-Lined Corrugated Steel and Ductile Iron Culvert provided by manufacturer. When mandrels are utilized to verify deflection of flexible pipe products, the Government will verify the mandrel OD through the use of proving rings that are manufactured with an opening that is certified to be as shown above.

c. Deflection measuring device: Shall be approved by the Contracting Officer prior to use.

d. Warranty period test: Pipe found to have a deflection of greater than allowable deflection in paragraph PLACING PIPE above, just prior to end of one-year warranty period shall be replaced with new pipe and tested as specified for leakage and deflection. Inspect 100 percent of all pipe systems under the travel lanes, including curb and gutter. Random inspections of the remaining pipe system outside of the travel lanes shall represent at least 10 percent of the total pipe footage of each pipe size. Inspections shall be made, depending on the pipe size, with video camera or visual observations. In addition, for flexible pipe
installations, perform deflection testing on 100 percent of all pipes under the travel lanes, including curb and gutter, with either a laser profiler or 9-fin mandrel. For flexible pipe, random deflection inspections of the pipe system outside of the travel lanes shall represent at least 10 percent of the total pipe footage of each pipe size. When mandrels are utilized to verify deflection of flexible pipe products during the final post installation inspection, the Government will verify the mandrel OD through the use of proving rings.

3.8.3 Post-Installation Inspection

One hundred percent of all reinforced concrete pipe installations shall be checked for joint separations, soil migration through the joint, cracks greater than 0.01 inches, settlement and alignment. One hundred percent of all flexible pipes (HDPE, PVC, CMP) shall be checked for rips, tears, joint separations, soil migration through the joint, cracks, localized bucking, bulges, settlement and alignment.

a. Replace pipes having cracks greater than 0.1 inches in width or deflection greater than 5 percent deflection. An engineer shall evaluate all pipes with cracks greater than 0.01 inches but less than 0.10 inches to determine if any remediation or repair is required. RCP with crack width less than 0.10 inches and located in a non-corrosive environment (pH 5.5) are generally acceptable. Repair or replace any pipe with crack exhibiting displacement across the crack, exhibiting bulges, creases, tears, spalls, or delamination.

b. Reports: The deflection results and final post installation inspection report shall include: a copy of all video taken, pipe location identification, equipment used for inspection, inspector name, deviation from design, grade, deviation from line, deflection and deformation of flexible pipe systems, inspector notes, condition of joints, condition of pipe wall (e.g. distress, cracking, wall damage dents, bulges, creases, tears, holes, etc.).

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASSOCIATION OF EDISON ILLUMINATING COMPANIES (AEIC)

AEIC CS8 (2000) Extruded Dielectric Shielded Power Cables Rated 5 Through 46 kV

ASTM INTERNATIONAL (ASTM)

ASTM B 3 (2001; R 2007) Standard Specification for Soft or Annealed Copper Wire

ASTM B 8 (1999) Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE C37.20.3 (2001; R 2006) Metal-Enclosed Interrupter Switchgear

IEEE Std 100 (1996) Dictionary of Electrical and Electronics Terms (IEEE)

IEEE Std 386 (1995; R 2001) Separable Insulated
Connection

IEEE Std 404 (2006) Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V Through 500 000 V

IEEE Std 48 (2009) Test Procedures and Requirements for Alternating-Current Cable Terminations 2.5 kV through 765 kV

INTERNATIONAL ELECTRICAL TESTING ASSOCIATION (NETA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA RN 1 (2005; R 2013) Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)

U.S. DEPARTMENT OF AGRICULTURE (USDA)

UNDERWRITERS LABORATORIES (UL)

UL 1072 (2006; Rev thru Sep 2007) Medium-Voltage Power Cables

UL 1242 (2006; Reprint Mar 2014) Standard for Electrical Intermediate Metal Conduit -- Steel

UL 467 (2007) Grounding and Bonding Equipment

UL 510 (2005; Reprint Jul 2013) Polyvinyl Chloride, Polyethylene and Rubber Insulating Tape

UL 514A (2013) Metallic Outlet Boxes

UL 514B (2012; Reprint Nov 2014) Conduit, Tubing and Cable Fittings

UL 6 (2007; Reprint Nov 2014) Electrical Rigid Metal Conduit-Steel

UL 651 (2011; Reprint May 2014) Standard for Schedule 40 and 80 Rigid PVC Conduit and Fittings

UL 83 (2014) Thermoplastic-Insulated Wires and Cables

1.2 DEFINITIONS

a. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, shall be as defined in IEEE Std 100.

b. In the text of this section, the words conduit and duct are used interchangeably and have the same meaning.

1.3 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Medium voltage cable
Medium voltage cable joints
Medium voltage cable terminations
Live end caps

SD-06 Test Reports

Medium voltage cable qualification and production tests
Field Acceptance Checks and Tests
Arc-proofing test for cable fireproofing tape

Cable Installation Plan and Procedure

Six copies of the information described below in 8-1/2 by 11 inch binders having a minimum of three rings from which material may readily be removed and replaced, including a separate section for each cable pull. Sections shall be separated by heavy plastic dividers with tabs, with all data sheets signed and dated by the person supervising the pull.

a. Site layout drawing with cable pulls numerically identified.

b. A list of equipment used, with calibration certifications. The manufacturer and quantity of lubricant used on pull.

c. The cable manufacturer and type of cable.

d. The dates of cable pulls, time of day, and ambient temperature.

e. The length of cable pull and calculated cable pulling tensions.

f. The actual cable pulling tensions encountered during pull.

SD-07 Certificates

Cable Installer Qualifications

1.4 QUALITY ASSURANCE

1.4.1 Cable Installer Qualifications

Provide at least one onsite person in a supervisory position with a documentable level of competency and experience to supervise all cable pulling operations. Provide a resume showing the cable installers' experience in the last three years, including a list of references complete with points of contact, addresses and telephone numbers.
1.4.2 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.4.3 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.4.3.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.4.3.2 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site shall not be used, unless specified otherwise.

PART 2 PRODUCTS

2.1 CONDUIT, DUCTS, AND FITTINGS

2.1.1 Rigid Metal Conduit

UL 6, galvanized steel, threaded type.

2.1.1.1 Rigid Metallic Conduit, PVC Coated

UL 6, galvanized steel, threaded type, coat with polyvinyl chloride (PVC) sheath bonded to galvanized exterior surface, nominal 40 mil thick conforming to NEMA RN 1, Type A40, except that hardness shall be nominal 85 Shore A durometer, dielectric strength shall be minimum 400 volts per mil at 60 Hz, and tensile strength shall be minimum 3500 psi and aging shall be minimum 1000 hours in an Atlas Weatherometer.

2.1.2 Intermediate Metal Conduit

UL 1242, galvanized steel, threaded type.
2.1.2.1 Intermediate Metal Conduit, PVC Coated

UL 1242, galvanized steel, threaded type, coated with polyvinyl chloride (PVC) sheath bonded to the galvanized exterior surface, nominal 40 mil think, conforming to NEMA RN 1, Type A40, except that hardness shall be nominal 85 Shore A durometer, dielectric strength shall be minimum 400 volts per mil at 60 Hz, and tensile strength shall be minimum 3500 psi and aging shall be minimum 1000 hours in an Atlas Weatherometer.

2.1.3 Plastic Duct for Concrete Encasement

NEMA TC 6 & 8 and ASTM F 512, UL 651, EPC-40-PVC.

2.1.4 Innerduct

Provide corrugated or solid wall polyethylene (PE) or PVC innerducts with pullwire. Size as indicated.

2.1.5 Conduit Sealing Compound

Compounds for sealing ducts and conduit shall have a putty-like consistency workable with the hands at temperatures as low as 35 degrees F, shall neither slump at a temperature of 300 degrees F, nor harden materially when exposed to the air. Compounds shall adhere to clean surfaces of fiber or plastic ducts; metallic conduits or conduit coatings; concrete, masonry, or lead; any cable sheaths, jackets, covers, or insulation materials; and the common metals. Compounds shall form a seal without dissolving, noticeably changing characteristics, or removing any of the ingredients. Compounds shall have no injurious effect upon the hands of workmen or upon materials. Inflatable bladders may be used as an option.

2.1.6 Fittings

2.1.6.1 Metal Fittings

UL 514B, threaded type.

2.1.6.2 PVC Conduit Fittings

UL 514B, UL 651.

2.1.6.3 PVC Duct Fittings

NEMA TC 9.

2.1.6.4 Outlet Boxes for Steel Conduit

Outlet boxes for use with rigid or flexible steel conduit shall be cast-metal cadmium or zinc-coated if of ferrous metal with gasketed closures and shall conform to UL 514A.
2.2 LOW VOLTAGE INSULATED CONDUCTORS AND CABLES

Insulated conductors shall be rated 600 volts and conform to the requirements of NFPA 70, including listing requirements. Wires and cables manufactured more than 12 months prior to date of delivery to the site shall not be accepted. Service entrance conductors shall conform to UL 854, type USE.

2.2.1 Conductor Types

Cable and duct sizes indicated are for copper conductors and THHN/THWN unless otherwise noted. Conductors No. 10 AWG and smaller shall be solid copper. Conductors No. 8 AWG and larger shall be stranded copper. All conductors shall be copper.

2.2.2 Conductor Material

Unless specified or indicated otherwise or required by NFPA 70, wires in conduit, other than service entrance, shall be 600-volt, Type THWN/THHN conforming to UL 83 or Type XHHW or RHW conforming to UL 44. Copper conductors shall be annealed copper complying with ASTM B 3 and ASTM B 8. Intermixing of copper and aluminum conductors is not permitted.

2.2.3 Jackets

Multiconductor cables shall have an overall PVC outer jacket.

2.2.4 Cable Marking

Insulated conductors shall have the date of manufacture and other identification imprinted on the outer surface of each cable at regular intervals throughout the cable length.

Each cable shall be identified by means of a fiber, laminated plastic, or non-ferrous metal tags, or approved equal, in each manhole, handhole, junction box, and each terminal. Each tag shall contain the following information; cable type, conductor size, circuit number, circuit voltage, cable destination and phase identification.

Conductors shall be color coded. Conductor identification shall be provided within each enclosure where a tap, splice, or termination is made. Conductor identification shall be by color-coded insulated conductors, plastic-coated self-sticking printed markers, colored nylon cable ties and plates, heat shrink type sleeves, or colored electrical tape. Control circuit terminations shall be properly identified. Color shall be green for grounding conductors and white for neutrals; except where neutrals of more than one system are installed in same raceway or box, other neutrals shall be white with a different colored (not green) stripe for each. Color of ungrounded conductors in different voltage systems shall be as follows

a. 208/120 volt, three-phase
 (1) Phase A - black
(2) Phase B - red
(3) Phase C - blue

b. 480/277 volt, three-phase
 (1) Phase A - brown
 (2) Phase B - orange
 (3) Phase C - yellow

2.3 LOW VOLTAGE WIRE CONNECTORS AND TERMINALS

Shall provide a uniform compression over the entire conductor contact surface. Use solderless terminal lugs on stranded conductors.

 a. For use with copper conductors: UL 486A-486B.

2.4 LOW VOLTAGE SPLICES

Provide splices in conductors with a compression connector on the conductor and by insulating and waterproofing using one of the following methods which are suitable for continuous submersion in water and comply NEMA C119.1.

2.4.1 Heat Shrinkable Splice

Provide heat shrinkable splice insulation by means of a thermoplastic adhesive sealant material which shall be applied in accordance with the manufacturer's written instructions.

2.4.2 Cold Shrink Rubber Splice

Provide a cold-shrink rubber splice which consists of EPDM rubber tube which has been factory stretched onto a spiraled core which is removed during splice installation. The installation shall not require heat or flame, or any additional materials such as covering or adhesive. It shall be designed for use with inline compression type connectors, or indoor, outdoor, direct-burial or submerged locations.

2.5 MEDIUM VOLTAGE CABLE

Cable (conductor) sizes are designated by American Wire Gauge (AWG) and Thousand Circular Mils (Kcmil). Conductor and conduit sizes indicated are for copper conductors unless otherwise noted. Insulated conductors shall have the date of manufacture and other identification imprinted on the outer surface of each cable at regular intervals throughout cable length. Wires and cables manufactured more than 12 months prior to date of delivery to the site shall not be accepted. Provide single conductor type cables unless otherwise indicated.

2.5.1 Cable Configuration

Provide Type MV cable, conforming to NEMA WC 74 and UL 1072. Provide cables manufactured for use in duct applications. Cable shall be rated 15
kV with 133 percent insulation level.

2.5.2 Conductor Material

Provide concentric-lay-stranded, Class B conductors. Provide soft drawn copper cables complying with ASTM B 3 and ASTM B 8 for regular concentric and compressed stranding or ASTM B 496 for compact stranding.

2.5.3 Insulation

Provide ethylene-propylene-rubber (EPR) insulation conforming to the requirements of NEMA WC 71 and AEIC CS8.

2.5.4 Shielding

Cables rated for 2 kV and above shall have a semiconducting conductor shield, a semiconducting insulation shield, and an overall copper tape shield for each phase.

2.5.5 Neutrals

Neutral conductors shall be copper, employing the same insulation and jacket materials as phase conductors, except that a 600-volt insulation rating is acceptable.

2.5.6 Jackets

Cables shall be provided with a LLDPE jacket. Direct buried cables shall be rated for direct burial.

2.6 MEDIUM VOLTAGE CABLE TERMINATIONS

IEEE Std 48 Class 1; of the molded elastomer, prestretched elastomer, or heat-shrinkable elastomer. Acceptable elastomers are track-resistant silicone rubber or track-resistant ethylene propylene compounds, such as ethylene propylene rubber or ethylene propylene diene monomer. Separable insulated connectors may be used for apparatus terminations, when such apparatus is provided with suitable bushings. Terminations, where required, shall be provided with mounting brackets suitable for the intended installation and with grounding provisions for the cable shielding, metallic sheath, or armor. Terminations shall be provided in a kit, including: skirts, stress control terminator, ground clamp, connectors, lugs, and complete instructions for assembly and installation. Terminations shall be the product of one manufacturer, suitable for the type, diameter, insulation class and level, and materials of the cable.
terminated. Do not use separate parts of copper or copper alloy in contact with aluminum alloy parts in the construction or installation of the terminator.

2.6.1 Cold-Shrink Type

Terminator shall be a one-piece design, utilizing the manufacturer's latest technology, where high-dielectric constant (capacitive) stress control is integrated within a skirted insulator made of silicone rubber. Termination shall not require heat or flame for installation. Termination kit shall contain all necessary materials (except for the lugs). Termination shall be designed for installation in low or highly contaminated indoor and outdoor locations and shall resist ultraviolet rays and oxidative decomposition.

2.6.2 Heat Shrinkable Type

Terminator shall consist of a uniform cross section heat shrinkable polymeric construction stress relief tubing and environmentally sealed outer covering that is nontracking, resists heavy atmospheric contaminants, ultraviolet rays and oxidative decomposition. Provide heat shrinkable sheds or skirts of the same material. Termination shall be designed for installation in low or highly contaminated indoor or outdoor locations.

2.6.3 Separable Insulated Connector Type

IEEE Std 386. Provide connector with steel reinforced hook-stick eye, grounding eye, test point, and arc-quenching contact material. Provide connectors of the loadbreak or deadbreak type as indicated, of suitable construction for the application and the type of cable connected, and that include cable shield adaptors. Provide external clamping points and test points.

a. 200 Ampere loadbreak connector ratings: Voltage: 15 kV, 95 kV BIL. Short time rating: 10,000 rms symmetrical amperes.

2.7 MEDIUM VOLTAGE CABLE JOINTS

Provide joints (splices) in accordance with IEEE Std 404 suitable for the rated voltage, insulation level, insulation type, and construction of the cable. Joints shall be certified by the manufacturer for waterproof, submersible applications. Upon request, supply manufacturer's design qualification test report in accordance with IEEE Std 404. Connectors for joint shall be tin-plated electrolytic copper, having ends tapered and having center stops to equalize cable insertion.

2.7.1 Heat-Shrinkable Joint

Consists of a uniform cross-section heat-shrinkable polymeric construction with a linear stress relief system, a high dielectric strength insulating material, and an integrally bonded outer conductor layer for shielding. Replace original cable jacket with a heavy-wall heat-shrinkable sleeve with hot-melt adhesive coating.
2.7.2 Cold-Shrink Rubber-Type Joint

Joint shall be of a cold shrink design that does not require any heat source for its installation. Splice insulation and jacket shall be of a one-piece factory formed cold shrink sleeve made of black EPDM rubber. Splice shall be packaged three splices per kit, including complete installation instructions.

2.8 TELECOMMUNICATIONS CABLELING

Provide telecommunications cabling in accordance with Section 33 82 00 TELECOMMUNICATIONS OUTSIDE PLANT (OSP).

2.9 LIVE END CAPS

Provide live end caps using a "kit" including a heat-shrinkable tube and a high dielectric strength, polymeric plug overlapping the conductor. End cap shall conform to applicable portions of IEEE Std 48.

2.10 TAPE

2.10.1 Insulating Tape

UL 510, plastic insulating tape, capable of performing in a continuous temperature environment of 80 degrees C.

2.10.2 Buried Warning and Identification Tape

Provide detectable tape in accordance with Section 31 00 00 EARTHWORK

2.10.3 Fireproofing Tape

Provide tape composed of a flexible conformable unsupported intumescent elastomer. Tape shall be not less than .030 inch thick, noncorrosive to cable sheath, self-extinguishing, noncombustible, and shall not deteriorate when subjected to oil, water, gases, salt water, sewage, and fungus.

2.11 PULL ROPE

Shall be plastic or flat pull line (bull line) having a minimum tensile strength of 200 pounds. Leave a minimum of 24 inches of slack at each end of the pull wires.

2.12 GROUNDING AND BONDING

2.12.1 Driven Ground Rods

Provide copper-clad steel ground rods conforming to UL 467 not less than 3/4 inch in diameter by 10 feet in length. Sectional type rods may be used for rods 20 feet or longer.

2.12.2 Grounding Conductors

Stranded-bare copper conductors shall conform to ASTM B 8, Class B, soft-drawn unless otherwise indicated. Solid-bare copper conductors shall conform to ASTM B 1 for sizes No. 8 and smaller. Insulated conductors shall be of the same material as phase conductors and green color-coded,
except that conductors shall be rated no more than 600 volts. Aluminum is not acceptable.

2.13 CAST-IN-PLACE CONCRETE

Provide concrete in accordance with Section 03 30 50 CAST-IN-PLACE CONCRETE. In addition, provide concrete for encasement of underground ducts with 3000 psi minimum 28-day compressive strength. Concrete associated with electrical work for other than encasement of underground ducts shall be 4000 psi minimum 28-day compressive strength unless specified otherwise.

2.14 CABLE TERMINATING CABINETS

Cable terminating cabinets shall be hook-stick operable, deadfront construction conforming to the requirements of IEEE C37.20.3, Category A. Cabinets shall be provided with 200 A, loadbreak junctions and elbow-type separable loadbreak connectors, cable parking stands, and grounding lugs. Provide cable terminating equipment in conformance with IEEE Std 386.

Ratings at 60 Hz shall be:

Nominal voltage (kV)... 14.4
Rated maximum voltage (kV)................................. 15
Rated continuous current (A)................................. 200

Three-second short-time current-carrying capacity (kA)........ 3.5
BIL (kV)... 95

2.15 SOURCE QUALITY CONTROL

2.15.1 Arc-Proofing Test for Cable Fireproofing Tape

Manufacturer shall test one sample assembly consisting of a straight lead tube 12 inches long with a 2 1/2 inch outside diameter, and a 1/8 inch thick wall, and covered with one-half lap layer of arc and fireproofing material per manufacturer's instructions. The arc and fireproofing tape shall withstand extreme temperature of a high-current fault arc 13,000 degrees K for 70 cycles as determined by using an argon directed plasma jet capable of constantly producing and maintaining an arc temperature of 13,000 degrees K. Temperature (13,000 degrees K) of the ignited arc between the cathode and anode shall be obtained from a dc power source of 305 (plus or minus 5) amperes and 20 (plus or minus 1) volts. The arc shall be directed toward the sample assembly accurately positioned 5 (plus or minus 1) millimeters downstream in the plasma from the anode orifice by fixed flow rate of argon gas (0.18 g per second). Each sample assembly shall be tested at three unrelated points. Start time for tests shall be taken from recorded peak current when the specimen is exposed to the full test temperature. Surface heat on the specimen prior to that time shall be minimal. The end point is established when the plasma or conductive arc penetrates the protective tape and strikes the lead tube. Submittals for
arc-proofing tape shall indicate that the test has been performed and passed by the manufacturer.

2.15.2 Medium Voltage Cable Qualification and Production Tests

Results of AEIC CS8 qualification and production tests as applicable for each type of medium voltage cable.

PART 3 EXECUTION

3.1 INSTALLATION

Install equipment and devices in accordance with the manufacturer's published instructions and with the requirements and recommendations of NFPA 70 and IEEE C2 as applicable. In addition to these requirements, install telecommunications in accordance with TIA-758-A and RUS Bull 1751F-644.

3.2 CABLE INSPECTION

Prior to installation, each cable reel shall be inspected for correct storage positions, signs of physical damage, and broken end seals. If end seal is broken, moisture shall be removed from cable prior to installation in accordance with the cable manufacturer's recommendations.

3.3 CABLE INSTALLATION PLAN AND PROCEDURE

The Contractor shall obtain from the manufacturer an installation manual or set of instructions which addresses such aspects as cable construction, insulation type, cable diameter, bending radius, cable temperature limits for installation, lubricants, coefficient of friction, conduit cleaning, storage procedures, moisture seals, testing for and purging moisture, maximum allowable pulling tension, and maximum allowable sidewall bearing pressure. The Contractor shall then prepare a checklist of significant requirements which shall be submitted along with the manufacturers instructions in accordance with SUBMITTALS. Cable shall be installed strictly in accordance with the cable manufacturer's recommendations and the approved installation plan.

Calculations and pulling plan shall include:

a. Site layout drawing with cable pulls identified in numeric order of expected pulling sequence and direction of cable pull.

b. List of cable installation equipment.

c. Lubricant manufacturer's application instructions.

d. Procedure for resealing cable ends to prevent moisture from entering cable.

e. Cable pulling tension calculations of all cable pulls.

f. Cable percentage conduit fill.
g. Cable sidewall bearing pressure.

h. Cable minimum bend radius and minimum diameter of pulling wheels used.

i. Cable jam ratio.

j. Maximum allowable pulling tension on each different type and size of conductor.

k. Maximum allowable pulling tension on pulling device.

3.4 UNDERGROUND FEEDERS SUPPLYING BUILDINGS

Terminate underground feeders supplying building at a point 5 feet outside the building and projections thereof, except that conductors shall be continuous to the terminating point indicated. Coordinate connections of the feeders to the service entrance equipment with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Conduit shall be PVC, Type EPC-40 from the supply equipment to a point 5 feet outside the building and projections thereof. Protect ends of underground conduit with plastic plugs until connections are made.

Encase the underground portion of the conduit in a concrete envelope and bury as specified for underground duct with concrete encasement.

3.5 UNDERGROUND CONDUIT AND DUCT SYSTEMS

3.5.1 Requirements

Depths to top of the conduit shall be in accordance with NFPA 70. Run conduit in straight lines except where a change of direction is necessary. Numbers and sizes of ducts shall be as indicated. Ducts shall have a continuous slope downward toward underground structures and away from buildings, laid with a minimum slope of 3 inches per 100 feet. Depending on the contour of the finished grade, the high-point may be at a terminal, a manhole, a handhole, or between manholes or handholes. Short-radius manufactured 90-degree duct bends may be used only for pole or equipment risers, unless specifically indicated as acceptable. The minimum manufactured bend radius shall be 18 inches for ducts of less than 3 inch diameter, and 36 inches for ducts 3 inches or greater in diameter. Otherwise, long sweep bends having a minimum radius of 25 feet shall be used for a change of direction of more than 5 degrees, either horizontally or vertically. Both curved and straight sections may be used to form long sweep bends, but the maximum curve used shall be 30 degrees and manufactured bends shall be used. Ducts shall be provided with end bells whenever duct lines terminate in structures.

3.5.2 Treatment

Ducts shall be kept clean of concrete, dirt, or foreign substances during construction. Field cuts requiring tapers shall be made with proper tools and match factory tapers. A coupling recommended by the duct manufacturer shall be used whenever an existing duct is connected to a duct of different material or shape. Ducts shall be stored to avoid warping and deterioration with ends sufficiently plugged to prevent entry of any water or solid substances. Ducts shall be thoroughly cleaned before being laid.
Plastic ducts shall be stored on a flat surface and protected from the direct rays of the sun.

3.5.3 Conduit Cleaning

As each conduit run is completed, for conduit sizes 3 inches and larger, draw a flexible testing mandrel approximately 12 inches long with a diameter less than the inside diameter of the conduit through the conduit. After which, draw a stiff bristle brush through until conduit is clear of particles of earth, sand and gravel; then immediately install conduit plugs. For conduit sizes less than 3 inches, draw a stiff bristle brush through until conduit is clear of particles of earth, sand and gravel; then immediately install conduit plugs.

3.5.4 Jacking and Drilling Under Roads and Structures

Conduits to be installed under existing paved areas which are not to be disturbed, and under roads and railroad tracks, shall be zinc-coated, rigid steel, jacked into place. Where ducts are jacked under existing pavement, rigid steel conduit will be installed because of its strength. To protect the corrosion-resistant conduit coating, predrilling or installing conduit inside a larger iron pipe sleeve (jack-and-sleeve) is required. For crossings of existing railroads and airfield pavements greater than 50 feet in length, the predrilling method or the jack-and-sleeve method will be used. Separators or spacing blocks shall be made of steel, concrete, plastic, or a combination of these materials placed not farther apart than 4 feet on centers. Hydraulic jet method shall not be used.

3.5.5 Galvanized Conduit Concrete Penetrations

Galvanized conduits which penetrate concrete (slabs, pavement, and walls) in wet locations shall be PVC coated and shall extend from at least 2 inches within the concrete to the first coupling or fitting outside the concrete (minimum of 6 inches from penetration).

3.5.6 Multiple Conduits

Separate multiple conduits by a minimum distance of 2 1/2 inches, except that light and power conduits shall be separated from control, signal, and telephone conduits by a minimum distance of 3 inches. Stagger the joints of the conduits by rows (horizontally) and layers (vertically) to strengthen the conduit assembly. Provide plastic duct spacers that interlock vertically and horizontally. Spacer assembly shall consist of base spacers, intermediate spacers, ties, and locking device on top to provide a completely enclosed and locked-in conduit assembly. Install spacers per manufacturer's instructions, but provide a minimum of two spacer assemblies per 10 feet of conduit assembly.

3.5.7 Conduit Plugs and Pull Rope

New conduit indicated as being unused or empty shall be provided with plugs on each end. Plugs shall contain a weep hole or screen to allow water drainage. Provide a plastic pull rope having 3 feet of slack at each end of unused or empty conduits.
3.5.8 Duct Encased in Concrete

Construct underground duct lines of individual conduits encased in concrete. Do not mix different kinds of conduit in any one duct bank. Concrete encasement surrounding the bank shall be rectangular in cross-section and shall provide at least 3 inches of concrete cover for ducts. Separate conduits by a minimum concrete thickness of 2 1/2 inches, except separate light and power conduits from control, signal, and telecommunications conduits by a minimum concrete thickness of 3 inches. Before pouring concrete, anchor duct bank assemblies to prevent the assemblies from floating during concrete pouring. Anchoring shall be done by driving reinforcing rods adjacent to duct spacer assemblies and attaching the rods to the spacer assembly. Provide color, type and depth of warning tape as specified in Section 31 00 00 EARTHWORK.

3.5.8.1 Connections to Manholes

Duct bank envelopes connecting to underground structures shall be flared to have enlarged cross-section at the manhole entrance to provide additional shear strength. Dimensions of the flared cross-section shall be larger than the corresponding manhole opening dimensions by no less than 12 inches in each direction. Perimeter of the duct bank opening in the underground structure shall be flared toward the inside or keyed to provide a positive interlock between the duct bank and the wall of the structure. Use vibrators when this portion of the encasement is poured to assure a seal between the envelope and the wall of the structure.

3.5.8.2 Connections to Existing Ducts

Where connections to existing duct banks are indicated, excavate the banks to the maximum depth necessary. Cut off the banks and remove loose concrete from the conduits before new concrete-encased ducts are installed. Provide a reinforced concrete collar, poured monolithically with the new duct bank, to take the shear at the joint of the duct banks.

3.5.8.3 Partially Completed Duct Banks

During construction wherever a construction joint is necessary in a duct bank, prevent debris such as mud, and, dirt from entering ducts by providing suitable conduit plugs. Fit concrete envelope of a partially completed duct bank with reinforcing steel extending a minimum of 2 feet back into the envelope and a minimum of 2 feet beyond the end of the envelope. Provide one No. 4 bar in each corner, 3 inches from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately one foot apart. Restrain reinforcing assembly from moving during concrete pouring.

3.5.8.4 Removal of Ducts

Where duct lines are removed from existing underground structures, close the openings to waterproof the structure. Chip out the wall opening to provide a key for the new section of wall.

3.6 CABLE PULLING

Test existing duct lines with a mandrel and thoroughly swab out to remove foreign material before pulling cables. Pull cables down grade with the
feed-in point at the manhole or buildings of the highest elevation. Use flexible cable feeds to convey cables through manhole opening and into duct runs. Do not exceed the specified cable bending radii when installing cable under any conditions, including turnups into switches, transformers, switchgear, switchboards, and other enclosures. Cable with tape or wire shield shall have a bending radius not less than 12 times the overall diameter of the completed cable. If basket-grip type cable-pulling devices are used to pull cable in place, cut off the section of cable under the grip before splicing and terminating.

3.6.1 Cable Lubricants

Use lubricants that are specifically recommended by the cable manufacturer for assisting in pulling jacketed cables.

3.7 CABLES IN UNDERGROUND STRUCTURES

Do not install cables utilizing the shortest path between penetrations, but route along those walls providing the longest route and the maximum spare cable lengths. Form cables to closely parallel walls, not to interfere with duct entrances, and support on brackets and cable insulators. Support cable splices in underground structures by racks on each side of the splice. Locate splices to prevent cyclic bending in the spliced sheath. Install cables at middle and bottom of cable racks, leaving top space open for future cables, except as otherwise indicated for existing installations. Provide one spare three-insulator rack arm for each cable rack in each underground structure.

3.7.1 Cable Tag Installation

Install cable tags in each manhole as specified, including each splice. Tag wire and cable provided by this contract. Install cable tags over the fireproofing, if any, and locate the tags so that they are clearly visible without disturbing any cabling or wiring in the manholes.

3.8 CONDUCTORS INSTALLED IN PARALLEL

Conductors shall be grouped such that each conduit of a parallel run contains 1 Phase A conductor, 1 Phase B conductor, 1 Phase C conductor, and 1 neutral conductor.

3.9 LOW VOLTAGE CABLE SPlicing AND TERMINATING

Make terminations and splices with materials and methods as indicated or specified herein and as designated by the written instructions of the manufacturer. Do not allow the cables to be moved until after the splicing material has completely set. Make splices in underground distribution systems only in aboveground termination cabinets.

3.10 MEDIUM VOLTAGE CABLE TERMINATIONS

Make terminations in accordance with the written instruction of the termination kit manufacturer.

3.11 MEDIUM VOLTAGE CABLE JOINTS

Provide power cable joints (splices) suitable for continuous immersion in
water. Make joints only in accessible locations in manholes or handholes by using materials and methods in accordance with the written instructions of the joint kit manufacturer.

3.11.1 Joints in Shielded Cables

Cover the joined area with metallic tape, or material like the original cable shield and connect it to the cable shield on each side of the splice. Provide a bare copper ground connection brought out in a watertight manner and grounded to the manhole grounding loop as part of the splice installation. Ground conductors, connections, and rods shall be as specified elsewhere in this section. Wire shall be trained to the sides of the enclosure to prevent interference with the working area.

3.12 CABLE END CAPS

Cable ends shall be sealed at all times with coated heat shrinkable end caps. Cables ends shall be sealed when the cable is delivered to the job site, while the cable is stored and during installation of the cable. The caps shall remain in place until the cable is spliced or terminated. Sealing compounds and tape are not acceptable substitutes for heat shrinkable end caps. Cable which is not sealed in the specified manner at all times will be rejected.

3.13 LIVE END CAPS

Provide live end caps for single conductor medium voltage cables where indicated.

3.14 FIREPROOFING OF CABLES IN UNDERGROUND STRUCTURES

Fireproof (arc proof) wire and cables which will carry current at 2200 volts or more in underground structures.

3.14.1 Fireproofing Tape

Tightly wrap strips of fireproofing tape around each cable spirally in half-lapped wrapping. Install tape in accordance with manufacturer's instructions.

3.14.2 Tape-Wrap

Tape-wrap metallic-sheathed or metallic armored cables without a nonmetallic protective covering over the sheath or armor prior to application of fireproofing. Wrap shall be in the form of two tightly applied half-lapped layers of a pressure-sensitive 10 mil thick plastic tape, and shall extend not less than one inch into the duct. Even out irregularities of the cable, such as at splices, with insulation putty before applying tape.

3.15 GROUNDING SYSTEMS

Provide grounding system as indicated, in accordance with NFPA 70 and IEEE C2, and as specified herein.

Noncurrent-carrying metallic parts associated with electrical equipment shall have a maximum resistance to solid earth ground not exceeding the
following values:

<table>
<thead>
<tr>
<th>Description</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pad-mounted transformers without protective fences</td>
<td>5 ohms</td>
</tr>
<tr>
<td>Ground in manholes</td>
<td>5 ohms</td>
</tr>
<tr>
<td>Grounding other metal enclosures of primary voltage electrical and electrically-operated equipment</td>
<td>5 ohms</td>
</tr>
</tbody>
</table>

3.15.1 Grounding Electrodes

Provide cone pointed driven ground rods driven full depth plus 6 inches, installed to provide an earth ground of the appropriate value for the particular equipment being grounded. If the specified ground resistance is not met, an additional ground rod shall be provided in accordance with the requirements of NFPA 70 (placed not less than 6 feet from the first rod). Should the resultant (combined) resistance exceed the specified resistance, measured not less than 48 hours after rainfall, the Contracting Officer shall be notified immediately.

3.15.2 Grounding Connections

Make grounding connections which are buried or otherwise normally inaccessible, by exothermic weld or compression connector.

a. Make exothermic welds strictly in accordance with the weld manufacturer's written recommendations. Welds which are "puffed up" or which show convex surfaces indicating improper cleaning are not acceptable. Mechanical connectors are not required at exothermic welds.

b. Make compression connections using a hydraulic compression tool to provide the correct circumferential pressure. Tools and dies shall be as recommended by the manufacturer. An embossing die code or other standard method shall provide visible indication that a connector has been adequately compressed on the ground wire.

3.15.3 Grounding Conductors

Provide bare grounding conductors, except where installed in conduit with associated phase conductors. Ground cable sheaths, cable shields, conduit, and equipment with No. 6 AWG. Ground other noncurrent-carrying metal parts and equipment frames of metal-enclosed equipment. Ground metallic frames and covers of handholes and pull boxes with a braided, copper ground strap with equivalent ampacity of No. 6 AWG.

3.15.4 Ground Cable Crossing Expansion Joints

Protect ground cables crossing expansion joints or similar separations in structures and pavements by use of approved devices or methods of installation which provide the necessary slack in the cable across the joint to permit movement. Use stranded or other approved flexible copper cable across such separations.
3.16 EXCAVATING, BACKFILLING, AND COMPACTING

Provide in accordance with NFPA 70 and Section 31 00 00 EARTHWORK.

3.16.1 Reconditioning of Surfaces

3.16.1.1 Unpaved Surfaces

Restore to their original elevation and condition unpaved surfaces disturbed during installation of duct. Preserve sod and topsoil removed during excavation and reinstall after backfilling is completed. Replace sod that is damaged by sod of quality equal to that removed. When the surface is disturbed in a newly seeded area, re-seed the restored surface with the same quantity and formula of seed as that used in the original seeding, and provide topsoiling, fertilizing, liming, seeding, sodding, sprigging, or mulching. Provide work in accordance with Section 32 92 19 SEEDING.

3.16.1.2 Paving Repairs

Where trenches, pits, or other excavations are made in existing roadways and other areas of pavement where surface treatment of any kind exists Make repairs as specified in Section 32 16 13 CONCRETE SIDEWALKS AND CURBS AND GUTTERS.

3.17 CAST-IN-PLACE CONCRETE

Provide concrete in accordance with Section 03 30 50 CAST-IN-PLACE CONCRETE.

3.17.1 Concrete Slabs for Equipment

Unless otherwise indicated, the slab shall be at least 8 inches thick, reinforced with a 6 by 6 - W2.9 by W2.9 mesh, placed uniformly 4 inches from the top of the slab. Slab shall be placed on a 6 inch thick, well-compacted gravel base. Top of concrete slab shall be approximately 4 inches above finished grade with gradual slope for drainage. Edges above grade shall have 1/2 inch chamfer. Slab shall be of adequate size to project at least 8 inches beyond the equipment.

Stub up conduits, with bushings, 2 inches into cable wells in the concrete pad. Coordinate dimensions of cable wells with transformer cable training areas.

3.18 FIELD QUALITY CONTROL

3.18.1 Performance of Field Acceptance Checks and Tests

Perform in accordance with the manufacturer's recommendations, and include the following visual and mechanical inspections and electrical tests, performed in accordance with NETA ATS.

3.18.1.1 Medium Voltage Cables

Perform tests after installation of cable, splices, and terminators and before terminating to equipment or splicing to existing circuits.
a. Visual and Mechanical Inspection

(1) Inspect exposed cable sections for physical damage.

(2) Verify that cable is supplied and connected in accordance with contract plans and specifications.

(3) Inspect for proper shield grounding, cable support, and cable termination.

(4) Verify that cable bends are not less than ICEA or manufacturer's minimum allowable bending radius.

(5) Inspect for proper fireproofing.

(6) Visually inspect jacket and insulation condition.

(7) Inspect for proper phase identification and arrangement.

b. Electrical Tests

(1) Perform a shield continuity test on each power cable by ohmmeter method. Record ohmic value, resistance values in excess of 10 ohms per 1000 feet of cable must be investigated and justified.

(2) Perform acceptance test on new cables before the new cables are connected to existing cables and placed into service, including terminations and joints. Perform maintenance test on complete cable system after the new cables are connected to existing cables and placed into service, including existing cable, terminations, and joints. Tests shall be very low frequency (VLF) alternating voltage withstand tests in accordance with IEEE Std 400.2. VLF test frequency shall be 0.05 Hz minimum for a duration of 60 minutes using a sinusoidal waveform. Test voltages shall be as follows:

<table>
<thead>
<tr>
<th>Cable Rating</th>
<th>AC Test Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kV</td>
<td>10 kV rms (peak)</td>
</tr>
<tr>
<td>8 kV</td>
<td>13 kV rms (peak)</td>
</tr>
<tr>
<td>15 kV</td>
<td>20 kV rms (peak)</td>
</tr>
<tr>
<td>25 kV</td>
<td>31 kV rms (peak)</td>
</tr>
<tr>
<td>35 kV</td>
<td>44 kV rms (peak)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable Rating</th>
<th>AC Test Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kV</td>
<td>7 kV rms (peak)</td>
</tr>
<tr>
<td>8 kV</td>
<td>10 kV rms (peak)</td>
</tr>
<tr>
<td>15 kV</td>
<td>16 kV rms (peak)</td>
</tr>
<tr>
<td>25 kV</td>
<td>23 kV rms (peak)</td>
</tr>
<tr>
<td>35 kV</td>
<td>33 kV rms (peak)</td>
</tr>
</tbody>
</table>

3.18.1.2 Grounding System

a. Visual and mechanical inspection

Inspect ground system for compliance with contract plans and specifications
b. Electrical tests

Perform ground-impedance measurements utilizing the fall-of-potential method in accordance with IEEE Std 81. On systems consisting of interconnected ground rods, perform tests after interconnections are complete. On systems consisting of a single ground rod perform tests before any wire is connected. Take measurements in normally dry weather, not less than 48 hours after rainfall. Use a portable megohmmeter tester in accordance with manufacturer's instructions to test each ground or group of grounds. The instrument shall be equipped with a meter reading directly in ohms or fractions thereof to indicate the ground value of the ground rod or grounding systems under test.

3.18.2 Follow-Up Verification

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that circuits and devices are in good operating condition and properly performing the intended function. As an exception to requirements stated elsewhere in the contract, the Contracting Officer shall be given 5 working days advance notice of the dates and times of checking and testing.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM B 8 (1999) Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
ASTM D 1557 (2012; E 2015) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3) (2700 kN-m/m3)

ELECTRONIC INDUSTRIES ALLIANCE (EIA)

EIA TIA/EIA-455-107A (1999) Component Reflectance or Link/System Return Loss using a Loss Test Set
EIA TIA/EIA-455-204 (2000) FOTP-204 Measurement of Bandwidth on Multimode Fiber
EIA TIA/EIA-455-61A (2000) FOTP-61 Measurement of Fiber or Cable Attenuation Using an OTDR
EIA TIA/EIA-472D000-A (1993) Fiber Optic Communications Cable for Outside Plant Use
EIA TIA/EIA-492CAAA (1998; R 2002) Class IVA
Dispersion-Unshifted Single-Mode Optical Fibers

EIA TIA/EIA-590-A (1997) Standard for Physical Location and Protection of Below Ground Fiber Optic Cable Plant

EIA TIA/EIA-598-B (2001) Optical Fiber Cable Color Coding

TIA J-STD-607-A (2002) Commercial Building Grounding (Earthen) and Bonding Requirements for Telecommunications

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE Std 100 (1996) Dictionary of Electrical and Electronics Terms (IEEE)

INSULATED CABLE ENGINEERS ASSOCIATION (ICEA)

ICEA S-87-640 (1999) Fiber Optic Outside Plant
Communications Cable

ICEA S-98-688
(1997) Broadband Twisted Pair,
Telecommunications Cable Aircore,
Polyolefin Insulated Copper Conductors

ICEA S-99-689
(1997) Broadband Twisted Pair
Telecommunications Cable Filled,
Polyolefin Insulated Copper Conductors

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA C62.61
(1993) Gas Tube Surge Arresters on Wire
Line Telephone Circuits

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70
(2017) National Electrical Code

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC SP 6
(2000) Commercial Blast Cleaning

U.S. DEPARTMENT OF AGRICULTURE (USDA)

RUS 1755.200
Standard for Splicing Copper and Fiber
Optic Cables

RUS 1755.390
Specification for Filled Telephone Cables

RUS 1755.910
Specification for Outside Plant Housing
and Serving Area Interface Systems.

RUS Bul 1751F-630

RUS Bul 1751F-640
Considerations

RUS Bul 1751F-643
(1996) Design of Aerial Plant

RUS Bul 1751F-815
(1979) Electrical Protection of Outside
Plant

RUS Bul 1753F-201
(1997) Acceptance Tests of
Telecommunications Plant (PC-4)

RUS Bul 1753F-401
(1995) Splicing Copper and Fiber Optic
Cables (PC-2)

RUS Bul 345-50
(1979) Trunk Carrier Systems (PE-60)

RUS Bul 345-65
(1985) Shield Bonding Connectors (PE-65)

RUS Bul 345-72
(1985) Filled Splice Closures (PE-74)

RUS Bul 345-83
(1979; Rev Oct 1982) Gas Tube Surge
Arrestors (PE-80)
1.2 RELATED REQUIREMENTS

Section 27 10 00, "Building Telecommunications Cabling System" and Section 33 71 02, "Underground Electrical Distribution" apply to this section with additions and modifications specified herein.

1.3 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in this specification shall be as defined in EIA TIA/EIA-568-B.1, EIA TIA/EIA-568-B.2, EIA TIA/EIA-568-B.3, EIA TIA/EIA-569-A, EIA TIA/EIA-606-A, and IEEE Std 100 and herein.

1.3.1 Campus Distributor (CD)

A distributor from which the campus backbone cabling emanates. International expression for main cross-connect - (MC).

1.3.2 Entrance Facility (EF)

An entrance to the building for both private and public network service cables (including antennae) including the entrance point at the building wall and continuing to the entrance room or space.

1.3.3 Entrance Room (ER)

A centralized space for telecommunications equipment that serves the occupants of a building. Equipment housed therein is considered distinct from a telecommunications room because of the nature of its complexity.

1.3.4 Building Distributor (BD)

A distributor in which the building backbone cables terminate and at which connections to the campus backbone cables may be made. International expression for intermediate cross-connect - (IC).

1.3.5 Pathway

A physical infrastructure utilized for the placement and routing of telecommunications cable.

1.4 SYSTEM DESCRIPTION

The telecommunications outside plant consists of cable, conduit, manholes, poles, etc. required to provide signal paths from the closest point of presence to the new facility, including free standing frames or backboards, interconnecting hardware, terminating cables, lightning and surge protection modules at the entrance facility. The work consists of providing, testing and making operational cabling, interconnecting hardware and lightning and surge protection necessary to form a complete outside plant telecommunications system for continuous use. The telecommunications
contractor must coordinate with Base Telephone concerning layout and configuration of the EF telecommunications and OSP. The telecommunications contractor may be required to coordinate work effort for access to the EF telecommunications and OSP with Base Telephone.

1.5 SUBMITTALS

The following shall be submitted in accordance with Section 01 33 00 "Submittal Procedures":

a. Submittals shall include the manufacturer's name, trade name, place of manufacture, and catalog model or number. Submittals shall also include applicable federal, military, industry, and technical society publication references. Should manufacturer's data require supplemental information for clarification, the supplemental information shall be submitted as specified in paragraph "Regulatory Requirements" and as required for certificates in Section 01 33 00 "Submittal Procedures".

b. Commercial off-the-shelf manuals shall be provided for operation, installation, configuration, and maintenance of products provided as a part of the telecommunications outside plant (OSP). Submit operations and maintenance data in accordance with Section 01 78 23, "Operation and Maintenance Data" and as specified herein not later than 2 months prior to the date of beneficial occupancy. In addition to requirements of Data package 5, include the requirements of paragraphs "Telecommunications Outside Plant Shop Drawings" and "Telecommunications Entrance Facility Drawings".

SD-02 Shop Drawings
 - Telecommunications Outside Plant
 - Telecommunications Entrance Facility Drawings

SD-03 Product Data
 - Wire and cable
 - Cable splices, and connectors
 - Closures
 - Building protector assemblies
 - Protector modules
 - Cross-connect terminal cabinets
 - Spare Parts

SD-06 Test Reports
 - Pre-installation tests
 - Acceptance tests
 - Outside Plant Test Plan
1.5.1 ADDITIONAL SUBMITTAL REQUIREMENTS

All submittals of material, equipment and design must be approved by the Telecommunications Support Division (TSD) prior to installing any telecommunications wiring and equipment.

1.6 QUALITY ASSURANCE

1.6.1 Shop Drawings

Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Wiring diagrams shall identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Drawings shall indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices. Submittals shall include the nameplate data, size, and capacity. Submittals shall also include applicable federal, military, industry, and technical society publication references.

1.6.1.1 Telecommunications Outside Plant Shop Drawings

Provide Outside Plant Design in accordance with EIA TIA/EIA-758, RUS Bul 1751F-630 for aerial system design, RUS Bul 1751F-643 for underground duct system design and for direct buried system design.
Provide T0 shop drawings that show the physical and logical connections from the perspective of an entire campus, such as actual building locations, exterior pathways and campus backbone cabling on plan view drawings, major system nodes, and related connections on the logical system drawings in accordance with EIA TIA/EIA-606-A. Drawings shall include wiring and schematic diagrams for fiber optic and copper cabling and splices, copper conductor gauge and pair count, fiber pair count and type, pathway duct and innerduct arrangement, associated construction materials, and any details required to demonstrate that cable system has been coordinated and will properly support the switching and transmission system identified in specification and drawings. Provide Registered Communications Distribution Designer (RCDD) approved drawings of the telecommunications outside plant. Update existing telecommunication Outside Plant T0 drawings to include information modified, deleted or added as a result of this installation in accordance with EIA TIA/EIA-606-A. The telecommunications outside plant (OSP) shop drawings shall be included in the operation and maintenance manuals.

1.6.1.2 Telecommunications Entrance Facility Drawings

Provide T3 drawings for EF Telecommunications in accordance with EIA TIA/EIA-606-A that include telecommunications entrance facility plan views, pathway layout (cable tray, racks, ladder-racks, etc.), mechanical/electrical layout, and cabinet, rack, backboard, and wall elevations. Drawings shall show layout of applicable equipment including building protector assembly, incoming cable connector blocks, patch panels and equipment spaces, and cabinet/racks. Drawings shall include a complete list of equipment and material, equipment rack details, proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearance for maintenance and operation. Drawings may also be an enlargement of a congested area of T1 or T2 drawings. Provide T3 drawings for EF Telecommunications as specified in the paragraph "Telecommunication Space Drawings" of Section 27 10 00, "Building Telecommunications Cabling Systems". The telecommunications entrance facility shop drawings shall be included in the operation and maintenance manuals.

1.6.2 Telecommunications Qualifications

Work under this section shall be performed by and the equipment shall be provided by the approved telecommunications contractor and key personnel. Qualifications shall be provided for: the telecommunications system contractor, the telecommunications system installer, the supervisor (if different from the installer), and the cable splicing and terminating personnel. A minimum of 30 days prior to installation, submit documentation of the experience of the telecommunications contractor and of the key personnel.

1.6.2.1 Telecommunications Contractor Qualifications

The telecommunications contractor shall be a firm which is regularly and professionally engaged in the business of the applications, installation, and testing of the specified telecommunications systems and equipment. The telecommunications contractor shall demonstrate experience in providing successful telecommunications systems that include outside plant and broadband cabling within the past 3 years. Submit documentation for a minimum of three and a maximum of five successful telecommunication system installations for the telecommunications contractor. Each of the key personnel shall demonstrate experience in providing successful
telecommunications systems in accordance with EIA TIA/EIA-758 within the past 3 years.

1.6.2.2 Key Personnel Qualifications

Provide key personnel who are regularly and professionally engaged in the business of the application, installation and testing of the specified telecommunications systems and equipment. There may be one key person or more key persons proposed for this solicitation depending upon how many of the key roles each has successfully provided. Each of the key personnel shall demonstrate experience in providing successful telecommunications systems within the past 3 years.

Cable splicing and terminating personnel assigned to the installation of this system or any of its components shall have training in the proper techniques and have a minimum of 3 years experience in splicing and terminating the specified cables. Modular splices shall be performed by factory certified personnel or under direct supervision of factory trained personnel for products used.

Supervisors and installers assigned to the installation of this system or any of its components shall have factory or factory approved certification from each equipment manufacturer indicating that they are qualified to install and test the provided products.

Submit documentation for a minimum of three and a maximum of five successful telecommunication system installations for each of the key personnel. Documentation for each key person shall include at least two successful system installations provided that are equivalent in system size and in construction complexity to the telecommunications system proposed for this solicitation. Include specific experience in installing and testing telecommunications outside plant systems, including broadband cabling, and provide the names and locations of at least two project installations successfully completed using optical fiber and copper telecommunications cabling systems. All of the existing telecommunications system installations offered by the key persons as successful experience shall have been in successful full-time service for at least 18 months prior to the issuance date for this solicitation. Provide the name and role of the key person, the title, location, and completed installation date of the referenced project, the referenced project owner point of contact information including name, organization, title, and telephone number, and generally, the referenced project description including system size and construction complexity.

Indicate that all key persons are currently employed by the telecommunications contractor, or have a commitment to the telecommunications contractor to work on this project. All key persons shall be employed by the telecommunications contractor at the date of issuance of this solicitation, or if not, have a commitment to the telecommunications contractor to work on this project by the date that the bid was due to the Contracting Officer.

Note that only the key personnel approved by the Contracting Officer in the successful proposal shall do work on this solicitation's telecommunications system. Key personnel shall function in the same roles in this contract, as they functioned in the offered successful experience. Any substitution for the telecommunications contractor's key personnel requires approval from the Contracting Officer.
1.6.2.3 Minimum Manufacturer Qualifications

Cabling, equipment and hardware manufacturers shall have a minimum of 3 years experience in the manufacturing, assembly, and factory testing of components which comply with, EIA TIA/EIA-568-B.1, EIA TIA/EIA-568-B.2 and EIA TIA/EIA-568-B.3. In addition, cabling manufacturers shall have a minimum of 3 years experience in the manufacturing and factory testing of cabling which comply with ICEA S-87-640, ICEA S-98-688, and ICEA S-99-689.

1.6.3 Outside Plant Test Plan

Prepare and provide a complete and detailed test plan for field tests of the outside plant including a complete list of test equipment for the copper conductor and optical fiber cables, components, and accessories for approval by the Contracting Officer. Include a cut-over plan with procedures and schedules for relocation of facility station numbers without interrupting service to any active location. Submit the plan at least 30 days prior to tests for Contracting Officer approval. Provide outside plant testing and performance measurement criteria in accordance with EIA TIA/EIA-568-B.1 and RUS Bul 1753F-201. Include procedures for certification, validation, and testing that includes fiber optic link performance criteria.

1.6.4 Standard Products

Provide materials and equipment that are standard products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship and shall be the manufacturer's latest standard design that has been in satisfactory commercial or industrial use for at least 2 years prior to bid opening. The 2 year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturer's catalogs, or brochures during the 2 year period. Products supplied shall be specifically designed and manufactured for use with outside plant telecommunications systems. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.6.4.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, is provided.

1.6.4.2 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site shall not be used, unless specified otherwise.

1.6.5 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials,
installation, and workmanship shall be in accordance with the mandatory and
advisory provisions of NFPA 70 unless more stringent requirements are
specified or indicated.

1.6.5.1 Independent Testing Organization Certificate

In lieu of the label or listing, submit a certificate from an independent
testing organization, competent to perform testing, and approved by the
Contracting Officer. The certificate shall state that the item has been
tested in accordance with the specified organization's test methods and
that the item complies with the specified organization's reference standard.

1.7 DELIVERY, STORAGE, AND HANDLING

Ship cable on reels in 5000 foot lengths for 25, 50, or 100 pair
configuration and 1250 feet length for larger cables. Radius of the reel
drum shall not be smaller than the minimum bend radius of the cable. Wind
cable on the reel so that unwinding can be done without kinking the cable.
Two meters of cable at both ends of the cable shall be accessible for
testing. Attach permanent label on each reel showing length, cable
identification number, cable size, cable type, and date of manufacture.
Provide water resistant label and the indelible writing on the labels.
Apply end seals to each end of the cables to prevent moisture from entering
the cable. Reels with cable shall be suitable for outside storage
conditions when temperature ranges from minus 40 degrees C to plus 65
degrees C, with relative humidity from 0 to 100 percent. Equipment, other
than cable, delivered and placed in storage shall be stored with protection
from weather, humidity and temperature variation, dirt and dust, or other
contaminants in accordance with manufacturer's requirements.

1.8 MAINTENANCE

1.8.1 Record Documentation

Provide the activity responsible for telecommunications system maintenance
and administration a single complete and accurate set of record
documentation for the entire telecommunications system with respect to this
project.

Provide record documentation as specified in Section 27 10 00, "Building
Telecommunications Cabling Systems".

Provide T5 drawings including documentation on cables and termination
hardware in accordance with EIA TIA/EIA-606-A. T5 drawings shall include
schedules to show information for cut-over and cable plant management,
patch panel layouts, cross-connect information and connecting terminal
layout as a minimum. T5 drawings shall be provided in both hard copy
format and on electronic media using Windows based computer cable
management software. A licensed copy of the cable management software
including documentation shall be provided. Update existing record
documentation to reflect campus distribution T0 drawings and T3 drawing
schedule information modified, deleted or added as a result of this
installation. Provide the following T5 drawing documentation as a minimum:

a. Cables - A record of installed cable shall be provided in
accordance with EIA TIA/EIA-606-A. The cable records shall
include only the required data fields on the hard copy and the
required data fields for each cable and complete end-to-end
circuit report for each complete circuit from the assigned outlet
1.8.2 Spare Parts

In addition to the requirements of Section 01 78 23, "Operation and Maintenance Data", provide a complete list of parts and supplies, with current unit prices and source of supply, and a list of spare parts recommended for stocking. Spare parts shall be provided no later than the start of field testing.

1.9 WARRANTY

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Products supplied shall be specifically designed and manufactured for use with outside plant telecommunications systems.

2.2 TELECOMMUNICATIONS ENTRANCE FACILITY

2.2.1 Building Protector Assemblies

Building protector assembly shall be self-contained and have interconnecting hardware for connection to exterior cabling at full capacity. Provide manufacturer's instructions for building protector assembly installation. Provide copper cable interconnecting hardware as specified in Section 27 10 00, "Building Telecommunications Cabling System".

2.2.2 Protector Modules

Provide in accordance with UL 497 3-electrode gas tube or solid state type 5 pin rated for the application. Provide gas tube protection modules in accordance with RUS Bul 345-83 and shall be heavy duty, 400 volt where A is the maximum single impulse discharge current, B is the impulse life and C is the AC discharge current in accordance with NEMA C62.61. The gas modules shall shunt high voltage to ground, fail short, and be equipped with an external spark gap and heat coils in accordance with UL 497. Provide the number of surge protection modules equal to the number of pairs of exterior cable of the building protector assembly.

2.2.3 Fiber Optic Terminations

Provide fiber optic cable terminations as specified in Section 27 10 00, "Building Telecommunications Cabling System".
2.2.4 Pathways

Underground applications for single buildings: provide a minimum of two (2) four inch ducts, one of which contains 2- three cell fabric inner ducts. The underground ducts must have 3" concrete encasing, 24 inches below grade minimum from the Telecommunications Entrance Facility to the maintenance hole that will be providing service to the building (Demarcation point). For campus distribution between maintenance holes ducts may need to be 5" or 6" to support larger cables also there will be no less that 4 and up to 50 ducts as needed for distribution to the area serviced. All new ducts will be plugged at both ends and visibly marked or provided on area map with GPS coordinates.

For direct buried applications, provide a minimum of two (2) four inch ducts from the Telecommunications Entrance Facility to five feet outside the bldg, 24 inches below grade. The ducts will be plugged at both ends and clearly marked on outside end. For distribution to demarcation, between Hand Holes, and Riser points cables need to be 36" below grade with metal locating tape at 24" below grade. Cables need to be in HDDPE direct bored, concrete encased in conduit, or concrete encased split duct under all roadways and pavement. All new cables need to be provided on area map with GPS coordinates for riser points or hand holes.

Handholes and maintenance holes shall be traffic rated (MIN tier 15). Hand hole size min 4'x4'x4'. Maintenance hole size min 6'x7'x8'.

2.3 CLOSURES

2.3.1 Copper Conductor Closures

2.3.1.1 Aerial Cable Closures

Provide cable closure assembly consisting of a frame with clamps, a lift-off polyethylene cover, cable nozzles, and drop wire rings. Closure shall be suitable for use on Figure 8 cables. Closures shall be free breathing and suitable for housing either straight-through or branch type splices of non-pressurized communications cables and shall be sized as indicated. The closure shall be constructed with ultraviolet resistant PVC.

NOTE: The installation of aerial cabling aboard Marine Corps Base, Camp Lejeune and Marine Corps Air Station, New River is not authorized.

2.3.1.2 Underground Cable Closures

a. Aboveground. Provide aboveground closures constructed of not less than 14 gauge steel and acceptable pole or stake mounting in accordance with RUS 1755.910. Closures shall be sized and contain a marker as indicated. Covers shall be secured to prevent unauthorized entry. PVC type closures are to be used in beach areas. All pedestals shall contain a minimum 4 foot x 3/8 inch pigtailed ground rod.

b. Direct burial. Provide buried closure suitable for enclosing a straight, butt, and branch splice in a container into which can be poured an encapsulating compound. Closure shall have adequate strength to protect the splice and maintain cable shield electrical continuity in the buried environment. Encapsulating compound shall be re-enterable and shall not alter the chemical stability of the closure. Provide filled splice cases in
accordance with RUS Bul 345-72.

c. In vault or manhole. Provide underground closure suitable to house a straight, butt, and branch splice in a protective housing into which can be poured an encapsulating compound. Closure shall be of suitable thermoplastic, thermoset, or stainless steel material supplying structural strength necessary to pass the mechanical and electrical requirements in a vault or manhole environment. Encapsulating compound shall be re-enterable and shall not alter the chemical stability of the closure. Provide filled splice cases in accordance with RUS Bul 345-72.

2.3.2 Fiber Optic Closures

2.3.2.1 Aerial

Provide aerial closure that is free breathing and suitable for housing splice organizer of non-pressurized cables. Closure shall be constructed from heavy PVC with ultraviolet resistance.

NOTE: The installation of aerial cabling aboard Marine Corps Base, Camp Lejeune and Marine Corps Air Station, New River is not authorized.

2.3.2.2 Direct Burial

Provide buried closure suitable to house splice organizer in protective housing into which can be poured an encapsulating compound. Closure shall have adequate strength to protect the splice and maintain cable shield electrical continuity, when metallic, in buried environment. Encapsulating compound shall be re-enterable and shall not alter chemical stability of the closure.

2.3.2.3 Vaults or Manholes

Provide underground closure suitable to house splice organizer in a protective housing into which can be poured an encapsulating compound. Closure shall be of thermoplastic, thermoset, or stainless steel material supplying structural strength necessary to pass the mechanical and electrical requirements in a vault or manhole environment. Encapsulating compound shall be re-enterable and shall not alter the chemical stability of the closure.

2.4 PAD MOUNTED CROSS-CONNECT TERMINAL CABINETS

Provide in accordance with RUS 1755.910 and the following:

a. Constructed of 14 gauge steel.

b. Equipped with a double set of hinged doors with closed-cell foam weather-stripping. Doors shall be locked and contain a marker as indicated.

c. Equipped with spool spindle bracket, mounting frames, binding post log, jumper instruction label and load coil mounting provisions.

d. Complete with cross connect modules to terminate number of pairs as indicated.

e. Sized as indicated.
2.5 CABLE SPLICES, AND CONNECTORS

2.5.1 Copper Cable Splices

Provide multi-pair, in-line fold back or single pair, in-line splices of a moisture resistant, three-wire insulation displacement connector held rigidly in place to assure maximum continuity in accordance with RUS Bul 1753F-401. Cables greater than 25 pairs shall be spliced using multi-pair splicing connectors, which accommodate 25 pairs of conductors at a time. Provide correct connector size to accommodate the cable gauge of the supplied cable. Provide enough cable slack suitable for splicing operations, but in no case less than 10 feet.

2.5.2 Copper Cable Splice Connector

Provide splice connectors with a polycarbonate body and cap and a tin-plated brass contact element. Connector shall accommodate 19 to 26 AWG solid wire with a maximum insulation diameter of 1.65 mm (0.065 inch). Fill connector with sealant grease to make a moisture resistant connection, in accordance with RUS Bul 1753F-401.

2.5.3 Fiber Optic Cable Splices

Provide fiber optic cable splices and splicing materials for fusion methods at locations shown on the construction drawings. The splice insertion loss shall be 0.3 dB maximum when measured in accordance with EIA TIA/EIA-455-59A using an Optical Time Domain Reflectometer (OTDR). Splices shall be designed for a return loss of 40.0 db max for single mode fiber when tested in accordance with EIA TIA/EIA-455-107A. Physically protect each fiber optic splice by a splice kit specially designed for the splice. Provide enough cable slack suitable for splicing operations, but in no case less than 30 feet.

2.5.4 Fiber Optic Splice Organizer

Provide splice organizer suitable for housing fiber optic splices in a neat and orderly fashion. Splice organizer shall allow for a minimum of 1 m (3 feet) of fiber for each fiber within the cable to be neatly stored without kinks or twists. Splice organizer shall accommodate individual strain relief for each splice and allow for future maintenance or modification, without damage to the cable or splices. Provide splice organizer hardware, such as splice trays, protective glass shelves, and shield bond connectors in a splice organizer kit.

2.5.5 Shield Connectors

Provide connectors with a stable, low-impedance electrical connection between the cable shield and the bonding conductor in accordance with RUS Bul 345-65.

2.6 CONDUIT

Provide conduit as specified in Section 33 71 02, "Underground Transmission and Distribution."

2.7 PLASTIC INSULATING TAPE

UL 510.
2.8 WIRE AND CABLE

2.8.1 Copper Conductor Cable

Solid copper conductors, covered with an extruded solid insulating compound. Insulated conductors shall be twisted into pairs which are then stranded or oscillated to form a cylindrical core. For special high frequency applications, the cable core shall be separated into compartments. Cable shall be completed by the application of a suitable core wrapping material, a corrugated copper or plastic coated aluminum shield, and an overall extruded jacket. Telecommunications contractor shall verify distances between splice points prior to ordering cable in specific cut lengths. Gauge of conductor shall determine the range of numbers of pairs specified; 19 gauge (6 to 400 pairs), 22 gauge (6 to 1200 pairs), 24 gauge (6 to 2100 pairs), and 26 gauge (6 to 3000 pairs). Copper conductors shall conform to the following: All copper conductor cable from 6 to 1800 pair shall be PE-39 type, 1801-2400 pair shall be PE-89.

NOTE: 26 AWG is not used on Camp Lejeune.

2.8.1.1 Underground

Provide filled cable (type PE-39) meeting the requirements of ICEA S-99-689 and RUS 1755.390. Provide enough cable slack suitable for splicing operations, but in no case less than 10 feet.

2.8.1.2 Aerial

Provide filled cable meeting the requirements of ICEA S-99-689, ICEA S-98-688, and RUS 1755.390 except that it shall be suitable for aerial installation and shall be Figure 8 distribution wire with 26,700 N (6,000 pound) Class A galvanized steel or 26,700 N (6,000 pound) aluminum-clad steel strand.

NOTE: The installation of aerial cabling aboard Marine Corps Base, Camp Lejeune and Marine Corps Air Station, New River is not authorized.

2.8.1.2 Screen

Provide screen-compartmental core cable filled cable meeting the requirements of ICEA S-99-689 and RUS 1755.390.

2.8.2 Fiber Optic Cable

Provide single-mode, 8/125-um, 0.10 aperture 1310 nm fiber optic cable in accordance with EIA TIA/EIA-492CAAA, EIA TIA/EIA-472D000-A, and ICEA S-87-640 including any special requirements made necessary by a specialized design. Provide 12 optical fibers as indicated. Fiber optic cable shall be specifically designed for outside use with loose buffer construction. Provide fiber optic color code in accordance with EIA TIA/EIA-598-B

2.8.2.1 Strength Members

Provide central/non-central, and non-metallic/metallic strength members with sufficient tensile strength for installation and residual rated loads to meet the applicable performance requirements in accordance with
ICEA S-87-640. The strength member is included to serve as a cable core foundation to reduce strain on the fibers, and shall not serve as a pulling strength member.

2.8.2.2 Shielding or Other Metallic Covering

Provide bare aluminum or coated aluminum, single tape covering or shield in accordance with ICEA S-87-640.

2.8.2.3 Performance Requirements

Provide fiber optic cable with optical and mechanical performance requirements in accordance with ICEA S-87-640.

2.8.3 Grounding and Bonding Conductors

Provide grounding and bonding conductors in accordance with RUS 1755.200, TIA J-STD-607-A, IEEE C2, and NFPA 70. Solid bare copper wire meeting the requirements of ASTM B 1 for sizes number 8 AWG and smaller and stranded bare copper wire meeting the requirements of ASTM B 8, for sizes number 6 AWG and larger. Insulated conductors shall have 600-volt, Type TW insulation meeting the requirements of UL 83.

2.9 T-SPAN LINE TREATMENT REPEATERS

Provide as indicated. Repeaters shall be pedestal mounted with pressurized housings, sized as indicated and shall meet the requirements of RUS Bul 345-50.

2.10 CABLE TAGS IN MANHOLES, HANDHOLES, AND VAULTS

Provide tags for each telecommunications cable or wire located in manholes, handholes, and vaults. Cable tags shall be stainless steel or polyethylene and labeled in accordance with EIA TIA/EIA-606-A. Handwritten labeling is unacceptable.

2.10.1 Stainless Steel

Provide stainless steel, cable tags 41.25 mm (1 5/8 inches) in diameter 1.58 mm (1/16 inch) thick minimum, and circular in shape. Tags shall be die stamped with numbers, letters, and symbols not less than 6.35 mm (0.25 inch) high and approximately 0.38 mm (0.015 inch) deep in normal block style.

2.10.2 Polyethylene Cable Tags

Provide tags of polyethylene that have an average tensile strength of 22.4 MPa (3250 pounds per square inch); and that are two millimeter (0.08 inch) thick minimum, non-corrosive non-conductive; resistive to acids, alkalis, organic solvents, and salt water; and distortion resistant to 77 degrees C (170 degrees F). Provide 1.3 mm (0.05 inch) minimum thick black polyethylene tag holder. Provide a one-piece nylon, self-locking tie at each end of the cable tag. Ties shall have a minimum loop tensile strength of 778.75 N (175 pounds). The cable tags shall have black block letters, numbers, and symbols 25 mm (one inch) high on a yellow background. Letters, numbers, and symbols shall not fall off or change positions regardless of cable tag orientation.
2.11 BURIED WARNING AND IDENTIFICATION TAPE

Provide fiber optic media marking and protection in accordance with EIA TIA/EIA-590-A. Provide color, type and depth of tape as specified in paragraph "Buried Warning and Identification Tape" in Section 31 00 00, "Earthwork".

2.12 GROUNDING BRAID

Provide grounding braid that provides low electrical impedance connections for dependable shield bonding in accordance with RUS 1755.200. Braid shall be made from flat tin-plated copper.

2.13 MANUFACTURER'S NAMEPLATE

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.14 FIELD FABRICATED NAMEPLATES

Provide laminated plastic nameplates in accordance with ASTM D 709 for each patch panel, protector assembly, rack, cabinet and other equipment or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 3 mm (0.125 inch) thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be 25 by 65 mm (one by 2.5 inches). Lettering shall be a minimum of 6.35 mm (0.25 inch) high, and of normal block style.

2.15 TESTS, INSPECTIONS, AND VERIFICATIONS

2.15.1 Factory Reel Test Data

Test 100 percent OTDR test of FO media at the factory in accordance with EIA TIA/EIA-568-B.1 and EIA TIA/EIA-568-B.3. Use EIA TIA/EIA-526-7 for single mode optic fiber and EIA TIA/EIA-526-14A Method B for multi mode optic fiber measurements. Calibrate OTDR to show anomalies of 0.2 dB minimum. Enhanced performance filled OSP copper cables, referred to as Broadband Outside Plant (BBOSP), shall meet the requirements of ICEA S-99-689. Enhanced performance air core OSP copper cables shall meet the requirements of ICEA S-98-688. Submit test reports, including manufacture date for each cable reel and receive approval before delivery of cable to the project site.

PART 3 EXECUTION

3.1 INSTALLATION

Install all system components and appurtenances in accordance with manufacturer's instructions IEEE C2, NFPA 70, and as indicated. Provide all necessary interconnections, services, and adjustments required for a complete and operable telecommunications system.

3.1.1 Contractor Damage

Promptly repair indicated utility lines or systems damaged during site
preparation and construction. Damages to lines or systems not indicated, which are caused by Contractor operations, shall be treated as "Changes" under the terms of the Contract Clauses. When Contractor is advised in writing of the location of a non-indicated line or system, such notice shall provide that portion of the line or system with "indicated" status in determining liability for damages. In every event, immediately notify the Contracting Officer of damage.

3.1.2 Cable Inspection and Repair

Handle cable and wire provided in the construction of this project with care. Inspect cable reels for cuts, nicks or other damage. Damaged cable shall be replaced or repaired to the satisfaction of the Contracting Officer. Reel wraps shall remain intact on the reel until the cable is ready for placement.

3.1.3 Direct Burial System

Installation shall be in accordance with RUS Bul 1751F-640. Under railroad tracks, paved areas, and roadways install cable in conduit encased in concrete. Slope ducts to drain. Excavate trenches by hand or mechanical trenching equipment. Provide a minimum cable cover of 610 mm (24 inches) below finished grade. Trenches shall be not less than 155 mm (6 inches) wide and in straight lines between cable markers. Do not use cable plows. Bends in trenches shall have a radius of not less than 915 mm (36 inches). Where two or more cables are laid parallel in the same trench, space laterally at least 78 mm (3 inches) apart. When rock is encountered, remove it to a depth of at least 78 mm (3 inches) below the cable and fill the space with sand or clean earth, free from particles larger than 6 mm (1/4 inch). Do not unreel and pull cables into the trench from one end. Cable may be unreeled on grade and lifted into position. Provide color, type and depth of warning tape as specified in paragraph "Buried Warning and Identification Tape" in Section 31 00 00, "Earthwork".

3.1.3.1 Cable Placement

a. Prior to design and installation of any copper or optical fiber cable systems, cable routes and pathways must be approved by the Base Telephone Officer.

b. Separate cables crossing other cables or metal piping from the other cables or pipe by not less than 78 mm (3 inches) of well tamped earth. Do not install circuits for communications under or above traffic signal loops.

c. Cables shall be in one piece without splices between connections except where the distance exceeds the lengths in which the cable is furnished.

d. Avoid bends in cables of small radii and twists that might cause damage. Do not bend cable and wire in a radius less than 10 times the outside diameter of the cable or wire.

e. Leave a horizontal slack of approximately 3048 mm (10 feet) in the ground on each end of cable runs, on each side of connection boxes, and at points where connections are brought aboveground. Where cable is brought above ground, leave additional slack to make necessary connections.
3.1.3.2 Identification Markers

Provide a marker at each change of direction of the cable, over the ends of ducts or conduits which are installed under paved areas and roadways and over each splice. Identification markers shall be of concrete, approximately 508 mm (20 inches) square by 155 mm (6 inches) thick.

3.1.3.3 Backfill for Rocky Soil

When placing cable in a trench in rocky soil, the cable shall be cushioned by a fill of sand or selected soil at least 53 mm (2 inches) thick on the floor of the trench before placing the cable or wire. The backfill for at least 103 mm (4 inches) above the wire or cable shall be free from stones, rocks, or other hard or sharp materials which might damage the cable or wire. If the buried cable is placed less than 610 mm (24 inches) in depth, a protective cover of concrete shall be used.

3.1.4 Cable Protection

Provide direct burial cable protection in accordance with NFPA 70 and as specified in Section 33 71 02, "Understand Transmission and Distribution". Galvanized conduits which penetrate concrete (slabs, pavement, and walls) shall be PVC coated and shall extend from the first coupling or fitting outside either side of the concrete minimum of 155 mm per 305 mm (6 inches per 12 inches) burial depth beyond the edge of the surface where cable protection is required; all conduits shall be sealed on each end. Where additional protection is required, cable may be placed in galvanized iron pipe (GIP) sized on a maximum fill of 40% of cross-sectional area, or in concrete encased 103 mm (4 inches) PVC pipe. Conduit may be installed by jacking or trenching. Trenches shall be backfilled with earth and mechanically tamped at 155 mm (6 inches) lift so that the earth is restored to the same density, grade and vegetation as adjacent undisturbed material.

3.1.4.1 Cable End Caps

Cable ends shall be sealed at all times with coated heat shrinkable end caps. Cables ends shall be sealed when the cable is delivered to the job site, while the cable is stored and during installation of the cable. The caps shall remain in place until the cable is spliced or terminated. Sealing compounds and tape are not acceptable substitutes for heat shrinkable end caps. Cable which is not sealed in the specified manner at all times will be rejected.

3.1.5 Underground Duct

Provide underground duct and connections to existing manholes, handholes, as specified in Section 33 71 02, "Underground Transmission and Distribution" with any additional requirements as specified herein.

3.1.6 Reconditioning of Surfaces

Provide reconditioning of surfaces as specified in Section 33 71 02, "Underground Transmission and Distribution".

3.1.7 Penetrations

Caulk and seal cable access penetrations in walls, ceilings and other parts of the building. Seal openings around electrical penetrations through fire resistance-rated wall, partitions, floors, or ceilings in accordance with
3.1.8 Cable Pulling

Test duct lines with a mandrel and swab out to remove foreign material before the pulling of cables. Avoid damage to cables in setting up pulling apparatus or in placing tools or hardware. Do not step on cables when entering or leaving the manhole. Do not place cables in ducts other than those shown without prior written approval of the Contracting Officer or Base Telephone Officer. Roll cable reels in the direction indicated by the arrows painted on the reel flanges. Set up cable reels on the same side of the manhole as the conduit section in which the cable is to be placed. Level the reel and bring into proper alignment with the conduit section so that the cable pays off from the top of the reel in a long smooth bend into the duct without twisting. Under no circumstances shall the cable be paid off from the bottom of a reel. Check the equipment set up prior to beginning the cable pulling to avoid an interruption once pulling has started. Use a cable feeder guide of suitable dimensions between cable reel and face of duct to protect cable and guide cable into the duct as it is paid off the reel. As cable is paid off the reel, lubricate and inspect cable for sheath defects. When defects are noticed, stop pulling operations and notify the Contracting Officer to determine required corrective action. Cable pulling shall also be stopped when reel binds or does not pay off freely. Rectify cause of binding before resuming pulling operations. Provide cable lubricants recommended by the cable manufacturer. Avoid bends in cables of small radii and twists that might cause damage. Do not bend cable and wire in a radius less than 10 times the outside diameter of the cable or wire.

3.1.8.1 Cable Tensions

Obtain from the cable manufacturer and provide to the Contracting Officer, the maximum allowable pulling tension. This tension shall not be exceeded.

3.1.8.2 Pulling Eyes

Equip cables 32 mm (1.25 inches) in diameter and larger with cable manufacturer's factory installed pulling-in eyes. Provide cables with diameter smaller than 32 mm (1.25 inches) with heat shrinkable type end caps or seals on cable ends when using cable pulling grips. Rings to prevent grip from slipping shall not be beaten into the cable sheath. Use a swivel of 19 mm (3/4 inch) links between pulling-in eyes or grips and pulling strand.

3.1.8.3 Installation of Cables in Manholes, Handholes, and Vaults

Do not install cables utilizing the shortest route, but route along those walls providing the longest route and the maximum spare cable lengths. Form cables to closely parallel walls, not to interfere with duct entrances, and support cables on brackets and cable insulators at a maximum of 1220 mm (4 feet). Install cable or cables in corresponding ducts entering and exiting the manholes. In existing manholes, handholes, and vaults where new ducts are to be terminated, or where new cables are to be installed, modify the existing installation of cables, cable supports, and grounding as required with cables arranged and supported as specified for new cables. Identify each cable with corrosion-resistant embossed metal tags.
3.1.9 Cable Splicing

3.1.9.1 Copper Conductor Splices

Perform splicing in accordance with requirements of RUS Bul 1753F-401 except that direct buried splices and twisted and soldered splices are not allowed. Exception does not apply for pairs assigned for carrier application.

3.1.9.2 Fiber Optic Splices

Fiber optic splicing shall be in accordance with manufacturer's recommendation and shall exhibit an insertion loss not greater than 0.3 dB for fusion splices.

3.1.10 Surge Protection

All cables and conductors, except fiber optic cable, which serve as communication lines through off-premise lines, shall have surge protection installed at each end which meets the requirements of RUS Bul 1751F-815.

3.1.11 Grounding

3.1.11.1 Telecommunications Main Ground Bar (TMGB)

The TMGB is the hub of the basic telecommunications grounding system providing a common point of connection for ground from outside cable, CD, and equipment. Establish a TMGB for connection point for cable stub shields to connector blocks and CD protector assemblies as specified in Section 26 51 00 "Interior Lighting". The TMGB will at a minimum be 4 inches by 10 inches by 1/4 inch.

3.1.11.2 Incoming Cable Shields

Shields shall not be bonded across the splice to the cable stubs. Ground shields of incoming cables in the EF Telecommunications to the TMGB.

3.1.11.3 Campus Distributor Grounding

a. Protection assemblies: Mount CD protector assemblies directly on the telecommunications backboard. Connect assemblies mounted on each vertical frame with number 6 AWG copper conductor to provide a low resistance path to TMGB.

b. TMGB connection: Connect TMGB to TGB with copper conductor with a total resistance of less than 0.01 ohms.

3.1.12 Cut-Over

All necessary transfers and cut-overs shall be accomplished by the telecommunications contractor.
3.2 LABELING

3.2.1 Labels

Provide labeling for new cabling and termination hardware located within the facility in accordance with EIA TIA/EIA-606-A. Handwritten labeling is unacceptable. Stenciled lettering for cable and termination hardware shall be provided using either hermal ink transfer process or laser printer.

3.2.2 Cable Tag Installation

Install cable tags for each telecommunications cable or wire located in manholes, handholes, and vaults including each splice. Tag only new wire and cable provided by this contract. Tag new wire and cable provided under this contract and existing wire and cable which are indicated to have splices and terminations provided by this contract. The labeling of telecommunications cable tag identifiers shall be in accordance with EIA TIA/EIA-606-A. Tag legend shall be as indicated. Do not provide handwritten letters. Install cable tags so that they are clearly visible without disturbing any cabling or wiring in the manholes, handholes, and vaults.

3.2.3 Termination Hardware

Label patch panels, distribution panels, connector blocks and protection modules using color coded labels with identifiers in accordance with EIA TIA/EIA-606-A.

3.3 FIELD APPLIED PAINTING

Provide ferrous metallic enclosure finishes in accordance with the following procedures. Ensure that surfaces are dry and clean when the coating is applied. Coat joints and crevices. Prior to assembly, paint surfaces which will be concealed or inaccessible after assembly. Apply primer and finish coat in accordance with the manufacturer's recommendations. Provide ferrous metallic enclosure finishes as specified in Section 09 90 00, "Paints and Coatings"

3.3.1 Cleaning

Clean surfaces in accordance with SSPC SP 6.

3.3.2 Priming

Prime with a two component polyamide epoxy primer which has a bisphenol-A base, a minimum of 60 percent solids by volume, and an ability to build up a minimum dry film thickness on a vertical surface of 0.127 mm (5.0 mils). Apply in two coats to a total dry film thickness of 0.127 to 0.2 mm (5 to 8 mils).

3.3.3 Finish Coat

Finish with a two component urethane consisting of saturated polyester polyol resin mixed with aliphatic isocyanate which has a minimum of 50 percent solids by volume. Apply to a minimum dry film thickness of 0.05 to 0.076 mm (2 to 3 mils). Color shall be the manufacturer's standard.
3.4 FIELD FABRICATED NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.5 FIELD QUALITY CONTROL

Provide the Contracting Officer 10 working days notice prior to each test. Provide labor, equipment, and incidentals required for testing. Correct defective material and workmanship disclosed as the results of the tests. Furnish a signed copy of the test results to the Contracting Officer within 3 working days after the tests for each segment of construction are completed. Perform testing as construction progresses and do not wait until all construction is complete before starting field tests.

3.5.1 Pre-Installation Tests

Perform the following tests on cable at the job site before it is removed from the cable reel. For cables with factory installed pulling eyes, these tests shall be performed at the factory and certified test results shall accompany the cable.

3.5.1.1 Cable Capacitance

Perform capacitance tests on at least 10 percent of the pairs within a cable to determine if cable capacitance is within the limits specified.

3.5.1.2 Loop Resistance

Perform DC-loop resistance on at least 10 percent of the pairs within a cable to determine if DC-loop resistance is within the manufacturer's calculated resistance.

3.5.1.3 Pre-Installation Test Results

Provide results of pre-installation tests to the Contracting Officer at least 5 working days before installation is to start. Results shall indicate reel number of the cable, manufacturer, size of cable, pairs tested, and recorded readings. When pre-installation tests indicate that cable does not meet specifications, remove cable from the job site.

3.5.2 Acceptance Tests

Perform acceptance testing in accordance with RUS Bul 1753F-201 and as further specified in this section. Provide personnel, equipment, instrumentation, and supplies necessary to perform required testing. Notification of any planned testing shall be given to the Contracting Officer at least 14 days prior to any test unless specified otherwise. Testing shall not proceed until after the Contractor has received written Contracting Officer's approval of the test plans as specified. Test plans shall define the tests required to ensure that the system meets technical, operational, and performance specifications. The test plans shall define milestones for the tests, equipment, personnel, facilities, and supplies required. The test plans shall identify the capabilities and functions to be tested. Provide test reports in booklet form showing all field tests performed, upon completion and testing of the installed system. Measurements shall be tabulated on a pair by pair or strand by strand basis.
3.5.2.1 Copper Conductor Cable

Perform the following acceptance tests in accordance with EIA TIA/EIA-758:

a. Wire map (pin to pin continuity)
b. Continuity to remote end
c. Crossed pairs
d. Reversed pairs
e. Split pairs
f. Shorts between two or more conductors
g. Grounded pairs.

3.5.2.2 Fiber Optic Cable

Test fiber optic cable in accordance with EIA TIA/EIA-455-B and as further specified in this section. Two optical tests shall be performed on all optical fibers: Optical Time Domain Reflectometry (OTDR) Test, and Attenuation Test. In addition, a Bandwidth Test shall be performed on all multimode optical fibers. These tests shall be performed on the completed end-to-end spans which include the near-end pre-connectorized single fiber cable assembly, outside plant as specified, and the far-end pre-connectorized single fiber cable assembly.

a. OTDR Test: The OTDR test shall be used to determine the adequacy of the cable installations by showing any irregularities, such as discontinuities, micro-bendings or improper splices for the cable span under test. Hard copy fiber signature records shall be obtained from the OTDR for each fiber in each span and shall be included in the test results. The OTDR test shall be measured in both directions. A reference length of fiber, 1000 feet minimum, used as the delay line shall be placed before the new end connector and after the far end patch panel connectors for inspection of connector signature. Conduct OTDR test and provide calculation or interpretation of results in accordance with EIA TIA/EIA-526-7 for single-mode fiber and EIA TIA/EIA-526-14A for multimode fiber. Splice losses shall not exceed 0.3 db.

b. Attenuation Test: End-to-end attenuation measurements shall be made on all fibers, in both directions, using a 850 and 1300 for 62.5 multi-mode fiber and 1310 and 1550 for single mode nanometer light source at one end and the optical power meter on the other end to verify that the cable system attenuation requirements are met in accordance with EIA TIA/EIA-455-46A for multimode and EIA TIA/EIA-526-7 for single-mode fiber optic cables. The measurement method shall be in accordance with EIA TIA/EIA-455-61A. Attenuation losses shall not exceed 0.5 db/km at 1310 nm and 1550 nm for single-mode fiber. Attenuation losses shall not exceed 5.0 db/km at 850 nm and 1.5 db/km at 1300 nm for multimode fiber.

c. Bandwidth Test: The end-to-end bandwidth of all multimode fiber span links shall be measured by the frequency domain method. The bandwidth shall be measured in both directions on all fibers. The bandwidth measurements shall be in accordance with
3.5.3 Soil Density Tests

a. Determine soil-density relationships for compaction of backfill material in accordance with ASTM D 1557, Method D.

b. Determine soil-density relationships as specified for soil tests in Section 31 00 00, "Earthwork".

-- End of Section --
This Page is Intentionally Left Blank
Marine Corps Base (MCB) Camp Lejeune Contractor Environmental Guide

Prepared For:
Marine Corps Installations East-Marine Corps Base Camp Lejeune
Version Number 3

Prepared By:
Michael Baker International, Inc.
TABLE OF CONTENTS

Table of Contents ... i

Record of Changes .. ix

Certification Page ... xi

List of Acronyms and Abbreviations ... xiii

Contractor’s Phone Directory ... xix

1.0 Contractor Environmental Guide Overview ... 1-1
 1.1. Key Definitions and Concepts ... 1-3
 1.1.1. Key Definitions ... 1-3
 1.1.2. Key Concepts .. 1-4
 1.2. Installation Background ... 1-5
 1.2.1. Environmental Management Division and Environmental Affairs Department .. 1-6
 1.2.2. Expectations ... 1-7
 1.3. Overview of Requirements .. 1-8
 1.3.1. Contractor Environmental Guide ... 1-9
 1.3.2. Environmental and EMS Training ... 1-10
 1.4. Points of Contact ... 1-12
 1.5. Overview Map .. 1-13

2.0 Environmental Management System .. 2-1
 2.1. Key Definition and Concepts ... 2-2
 2.1.1. Key Definitions ... 2-2
 2.1.2. Key Concepts .. 2-3
 2.2. Overview of Requirements .. 2-5
 2.3. Environmental Management System .. 2-6
 2.4. EMS Responsibilities ... 2-8
 2.5. Contractor Environmental Guide and EMS 2-9
6.1.1. Key Definitions ..6-1
6.1.2. Key Concepts ..6-3
6.1.3. Environmental Management System6-3
6.2. Overview of Requirements6-4
6.3. Procedures ...6-7

7.0 Hazardous Materials/Hazardous Waste Management 7-1
7.1. Key Definitions and Concepts7-1
 7.1.1. Key Definitions7-2
 7.1.2. Key Concepts ...7-5
 7.1.3. Environmental Management System7-8
7.2. Overview of Requirements7-11
7.3. Hazardous Materials Requirements7-14
7.4. Universal Waste Requirements7-16
7.5. Hazardous Waste Requirements7-18
 7.5.1. Storage ..7-19
 7.5.2. Manifesting and Disposal7-21
 7.6.1. Used Oil and Oil Filters7-22
 7.6.2. Used Antifreeze7-24
 7.6.3. Petroleum-Contaminated Wipes and Oily Rags .7-25
 7.6.4. Used Electronic Equipment7-25
 7.6.5. New and Used Batteries (Not Regulated as
 Universal Waste)7-25

8.0 Asbestos ..8-1
8.1. Key Definitions and Concepts8-1
 8.1.1. Key Definitions8-1
 8.1.2. Key Concepts ...8-3
 8.1.3. Environmental Management System8-4
8.2. Overview of Requirements8-5
8.3. Responsibilities Before a Demolition or Renovation
 Project ...8-6
 8.3.1. Identification of ACM and PACM8-7
11.0 Stormwater ... 11-1
 11.1. Key Definitions and Concepts................................. 11-1
 11.1.1. Key Definitions .. 11-2
 11.1.2. Key Concepts ... 11-5
 11.1.3. Environmental Management System 11-8
 11.2. Overview of Requirements 11-9
 11.3. Prior to Site Work ... 11-11
 11.3.1. Construction Notifications 11-12
 11.3.2. Familiarity with the Stormwater Phase I Industrial
 Permit ... 11-12
 11.3.3. Familiarity with the Stormwater Phase II
 Municipal Permit ... 11-13
 11.3.4. Project-Specific Construction Permits 11-13
 11.4. Responsibilities During Site Work 11-16

12.0 Solid Waste, Recycling, and Pollution Prevention (P2). 12-
 1
 12.1. Key Definitions and Concepts............................... 12-1
 12.1.1. Key Definitions .. 12-2
 12.1.2. Key Concepts ... 12-3
 12.1.3. Environmental Management System 12-4
 12.2. Overview of Requirements 12-5
 12.3. Solid Waste Requirements 12-7
 12.3.1. MCB Camp Lejeune Landfill Acceptable Waste
 Streams ... 12-9
 12.4. Recycling Requirements 12-14
 12.4.1. Recycling Center ... 12-15
 12.4.2. Other Recyclables 12-16
 12.5. Pollution Prevention and Green Procurement 12-17

13.0 Potential Discovery of Undocumented Contaminated
 Sites .. 13-1
 13.1.1. Key Definitions .. 13-2
 13.1.2. Key Concepts ... 13-3
13.2. Overview of Requirements................................. 13-3
13.3. Unforeseen Site Condition Procedures............... 13-4
 13.3.1. Petroleum, Oil, and Lubricants..................... 13-5
 13.3.2. Munitions and Ordnance............................. 13-6

14.0 Permitting .. 14-1
14.1. Key Definitions and Concepts................................. 14-1
 14.1.1. Key Definitions 14-1
 14.1.2. Key Concepts .. 14-2
 14.1.3. Environmental Management System 14-3
14.2. Overview of Requirements................................. 14-3
14.3. Project Permits and Approvals 14-3
 14.3.1. Stormwater (Section 11.0) 14-4
 14.3.2. Asbestos (Section 8.0) 14-5
 14.3.3. Lead-Based Paint (Section 9.0).................. 14-5
 14.3.4. Air Quality (Section 4.0) 14-6
 14.3.5. Wetlands (Section 10.6) 14-7
 14.3.6. Drinking Water/Wastewater 14-8
List of Tables

Table 1-1. Contacts in Case of a Spill... 1-13
Table 2-1. Practices Identified Under MCB Camp Lejeune’s EMS ... 2-10
Table 5-1. Environmental Emergency Response Contacts...... 5-3
Table 12-1. Base Landfill Requirements 12-11

List of Figures

Figure 1-1. Environmental Management Division (MCB Camp Lejeune) Organization Chart 1-7
Figure 1-2. Environmental Affairs Department (MCAS New River) Organization Chart 1-7
Figure 1-3. Overview Map.. 1-14
Figure 2-1. Plan, Do, Check, Act Cycle 2-4
Figure 2-2. Potential Interactions of Construction and Demolition Activities with the Environment............... 2-7
Figure 6-1. Possible Cultural Resource Discovery Flow Chart 6-8
Figure 7-1. Diamond Hazard Label 7-7

Attachments and Appendix

Attachment 2-1 MCB Camp Lejeune’s Environmental Policy Statement
Attachment 3-1 Spill Reporting Form
Attachment 4-1 Weekly Hazardous Waste (HW) Site Inspection Form MCB Camp Lejeune
Attachment 4-2 Weekly Hazardous Waste (HW) Site Inspection Form MCAS New River
Appendix General EMS & Environmental Awareness Training for Contractors & Vendors
RECORD OF CHANGES

<table>
<thead>
<tr>
<th>Date</th>
<th>Description of Changes</th>
<th>Page #</th>
<th>Name/Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATION PAGE

I certify that I have read, understood, and accept this document and all attachments, and that all those within my party working on a job site within Marine Corps Base Camp Lejeune and/or Marine Corps Air Station New River will comply with the environmental policies and regulations herein. I am aware that there are penalties for not complying with this Guide.

__
Signature

__
Date
PAGE INTENTIONALLY BLANK
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>Asbestos-Containing Material</td>
</tr>
<tr>
<td>AHERA</td>
<td>Asbestos Hazard and Emergency Response Act</td>
</tr>
<tr>
<td>AHPA</td>
<td>Archaeological and Historic Preservation Act</td>
</tr>
<tr>
<td>ARPA</td>
<td>Archeological Resource Protection Act</td>
</tr>
<tr>
<td>ASHARA</td>
<td>Asbestos School Hazard Abatement Reauthorization Act</td>
</tr>
<tr>
<td>ASD</td>
<td>Accumulation Start Date</td>
</tr>
<tr>
<td>ASO</td>
<td>Air Station Order</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>BO</td>
<td>Base Order</td>
</tr>
<tr>
<td>C&D</td>
<td>Construction and Demolition</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAMA</td>
<td>Coastal Area Management Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability</td>
</tr>
<tr>
<td>CETEP</td>
<td>Comprehensive Environmental Training and Education Program</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorocarbon</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CG</td>
<td>Commanding General</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>CZMA</td>
<td>Coastal Zone Management Act</td>
</tr>
<tr>
<td>DHHS</td>
<td>Department of Health and Human Services</td>
</tr>
<tr>
<td>DLADS</td>
<td>Defense Logistics Agency Disposition Services</td>
</tr>
<tr>
<td>DM</td>
<td>Decision Memorandum</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>DMM</td>
<td>Discarded Military Munitions</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DoN</td>
<td>Department of Navy</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DRMS</td>
<td>Defense Reutilization and Marketing Service</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EAD</td>
<td>Environmental Affairs Department</td>
</tr>
<tr>
<td>ECON</td>
<td>Environmental Conservation Branch</td>
</tr>
<tr>
<td>EISA</td>
<td>Energy Independence and Security Act</td>
</tr>
<tr>
<td>EHS</td>
<td>Extremely Hazardous Substances</td>
</tr>
<tr>
<td>ELLAP</td>
<td>Environmental Lead Laboratory Accreditation Program</td>
</tr>
<tr>
<td>EMD</td>
<td>Environmental Management Division</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>EO</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EOD</td>
<td>Explosives and Ordnance Disposal</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPR</td>
<td>Extended Producer Responsibility</td>
</tr>
<tr>
<td>EPCRA</td>
<td>Emergency Planning and Community Right-to-Know Act</td>
</tr>
<tr>
<td>EPEAT</td>
<td>Electronic Product Environmental Assessment Tool</td>
</tr>
<tr>
<td>FAR</td>
<td>Federal Acquisition Regulation</td>
</tr>
<tr>
<td>FIFRA</td>
<td>Federal Insecticide, Fungicide, and Rodenticide Act</td>
</tr>
<tr>
<td>FSC</td>
<td>Facilities Support Contracts</td>
</tr>
<tr>
<td>FWS</td>
<td>Fish and Wildlife Service</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GP</td>
<td>Green Procurement</td>
</tr>
<tr>
<td>HAP</td>
<td>Hazardous Air Pollutants</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HCFC</td>
<td>Hydrochlorofluorocarbon</td>
</tr>
<tr>
<td>HCS</td>
<td>Hazard Communication Standard</td>
</tr>
<tr>
<td>HHCU</td>
<td>Health Hazards Control Unit (North Carolina)</td>
</tr>
<tr>
<td>HM</td>
<td>Hazardous Material</td>
</tr>
<tr>
<td>HMTA</td>
<td>Hazardous Materials Transportation Act</td>
</tr>
<tr>
<td>HQMC</td>
<td>Headquarters Marine Corps</td>
</tr>
<tr>
<td>HQW</td>
<td>High Quality Water</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation, and Air Conditioning</td>
</tr>
<tr>
<td>HW</td>
<td>Hazardous Waste</td>
</tr>
<tr>
<td>HWMP</td>
<td>Hazardous Waste Management Plan</td>
</tr>
<tr>
<td>IGI&S</td>
<td>Installation Geospatial Information & Services</td>
</tr>
<tr>
<td>INRMP</td>
<td>Integrated Natural Resources Management Plan</td>
</tr>
<tr>
<td>IRP</td>
<td>Installation Restoration Program</td>
</tr>
<tr>
<td>LBP</td>
<td>Lead-Based Paint</td>
</tr>
<tr>
<td>LDA</td>
<td>Land-Disturbing Activities</td>
</tr>
<tr>
<td>LQG</td>
<td>Large Quantity Generator</td>
</tr>
<tr>
<td>MAG</td>
<td>Marine Aircraft Group</td>
</tr>
<tr>
<td>MCAS</td>
<td>Marine Corps Air Station</td>
</tr>
<tr>
<td>MCB</td>
<td>Marine Corps Base</td>
</tr>
<tr>
<td>MCM</td>
<td>Minimum Control Measure</td>
</tr>
<tr>
<td>MCIEAST</td>
<td>Marine Corps Installations East</td>
</tr>
<tr>
<td>MCO</td>
<td>Marine Corps Order</td>
</tr>
<tr>
<td>MEC</td>
<td>Munitions and Explosives of Concern</td>
</tr>
<tr>
<td>MEF</td>
<td>Marine Expeditionary Force</td>
</tr>
<tr>
<td>MRF</td>
<td>Materials Recovery Facility</td>
</tr>
<tr>
<td>MS4</td>
<td>Municipal Separate Storm Sewer Systems</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal Solid Waste</td>
</tr>
<tr>
<td>NAPL</td>
<td>Non-Aqueous Phase Liquid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NC</td>
<td>North Carolina</td>
</tr>
<tr>
<td>NCAC</td>
<td>North Carolina Administrative Code</td>
</tr>
<tr>
<td>NCDAQ</td>
<td>North Carolina Department of Air Quality</td>
</tr>
<tr>
<td>NCDCM</td>
<td>North Carolina Division of Coastal Management</td>
</tr>
<tr>
<td>NCDEQ</td>
<td>North Carolina Department of Environmental Quality</td>
</tr>
<tr>
<td>NCDFR</td>
<td>North Carolina Division of Forest Resources</td>
</tr>
<tr>
<td>NCDMS</td>
<td>North Carolina Division of Mitigation Services</td>
</tr>
<tr>
<td>NCDWR</td>
<td>North Carolina Division of Water Resources</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NESHAP</td>
<td>National Emission Standards for Hazardous Air Pollutants</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>NRC</td>
<td>National Response Center</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>ODS</td>
<td>Ozone-Depleting Substance</td>
</tr>
<tr>
<td>OPA</td>
<td>Oil Pollution Act</td>
</tr>
<tr>
<td>ORW</td>
<td>Outstanding Resource Water</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>OWS</td>
<td>Oil-Water Separator</td>
</tr>
<tr>
<td>P2</td>
<td>Pollution Prevention</td>
</tr>
<tr>
<td>PACM</td>
<td>Presumed Asbestos-Containing Material</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated biphenyl</td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact</td>
</tr>
<tr>
<td>POL</td>
<td>Petroleum, Oil, and Lubricant</td>
</tr>
<tr>
<td>PPA</td>
<td>Pollution Prevention Act</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PPV</td>
<td>Public-Private Venture</td>
</tr>
<tr>
<td>PWD</td>
<td>Public Works Division</td>
</tr>
<tr>
<td>QRP</td>
<td>Qualified Recycling Program</td>
</tr>
<tr>
<td>RACM</td>
<td>Regulated Asbestos-Containing Material</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RCRS</td>
<td>Resource Conservation and Recovery Section</td>
</tr>
<tr>
<td>ROICC</td>
<td>Resident Officer in Charge of Construction</td>
</tr>
<tr>
<td>RRP</td>
<td>Renovation, Repair, and Painting</td>
</tr>
<tr>
<td>SAA</td>
<td>Satellite Accumulation Area</td>
</tr>
<tr>
<td>SARA</td>
<td>Superfund Amendments & Reauthorization Act</td>
</tr>
<tr>
<td>SDS</td>
<td>Safety Data Sheet</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SPCC</td>
<td>Spill Prevention Control and Countermeasures</td>
</tr>
<tr>
<td>SSPP</td>
<td>Strategic Sustainability Performance Plan</td>
</tr>
<tr>
<td>SWDA</td>
<td>Solid Waste Disposal Act</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Stormwater Pollution Prevention Plan (Also referred to as SPPP in NC)</td>
</tr>
<tr>
<td>T&P</td>
<td>Treatment and Processing</td>
</tr>
<tr>
<td>TCLP</td>
<td>Toxic Characteristic Leaching Procedure</td>
</tr>
<tr>
<td>TSD</td>
<td>Treatment, Storage, and Disposal</td>
</tr>
<tr>
<td>TSI</td>
<td>Thermal System Insulation</td>
</tr>
<tr>
<td>ULCP</td>
<td>Unit Level Contingency Plan</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>USMC</td>
<td>United States Marine Corps</td>
</tr>
<tr>
<td>UW</td>
<td>Universal Waste</td>
</tr>
</tbody>
</table>
UXO Unexploded Ordnance

XRF X-Ray Fluorescence
CONTRACTOR’S PHONE DIRECTORY

In the event of an emergency, refer to the emergency numbers below. All non-emergency contractor inquiries regarding the operations at Marine Corps Base (MCB) Camp Lejeune and Marine Corps Air Station New River should be directed to the Resident Officer in Charge of Construction (ROICC) or Contract Representative. The ROICC or Contract Representative will either directly contact or refer contractors to the appropriate Division or Organization.

Emergency and Important Non-Emergency Numbers

Fire and Emergency Services Division ... 911
Ambulance .. 911
Hearing Impaired .. (910) 451-4444
CHEMTREC (Emergency 24-hour/Outside MCB Camp Lejeune) ... (800) 424-9300
Hazardous Chemical Spill ... 911
Military Police .. 911
National Response Center (Outside MCB Camp Lejeune) (202) 372-2428
Toll Free ... (800) 424-8802
Provost Marshall Office ... 911

Marine Corps Base Camp Lejeune

Operator/ Directory Assistance .. (910) 451-1113
Confined Space Program Manager ... (910) 451-5725
Environmental Management Division (910) 451-5003
-Environmental Compliance Branch ... (910) 451-5837
Asbestos Management
Resource Conservation and Recovery Section
(910) 451-1482
Hazardous Material Consolidation Site/Free Issue
(910) 451-1482
Recycling Center, Building 982........(910) 451-4214
-Environmental Conservation Branch........(910) 451-5063
Fish & Wildlife
Forestry Management
NEPA
Conservation Law Enforcement
..(910) 451-2196/5226
-Environmental Quality Branch.............(910) 451-5068
 Air Quality
 Underground Storage Tanks
 Water Quality
Explosives and Ordnance Disposal.........(910) 451-0558
Public Works Division........................(910) 451-5307
-Construction Project Managers.........(910) 451-2583
-Contracts Branch...........................(910) 451-2582
-Officer In Charge of Construction (Main)..(910) 451-2581
-Public Works Base Utility Director.......(910) 451-5024
 Water Line Break/Wastewater Line Break....(910) 451-7190 (x225)
 -Public Works Solid Waste Division/Landfill
...(910) 451-2946
Range Control..................................(910) 451-3064
Regional Geospatial Information & Services (Installation Manager)..................(910) 451-8915
Safety Department.........................(910) 451-5725
Marine Corps Air Station New River

Confined Space Program..(910) 449-4964
Consolidated Hazardous Material Reutilization and
Inventory Management Program........(910) 449-4531/4533

Environmental Affairs Department
(Director)...(910) 449-5441
-Environmental Affairs Department (Environmental
 Manager)..(910) 449-5442
-Environmental Affairs Department (GIS
 Manager)..(910) 449-6144
-Environmental Affairs Department (Hazardous
 Waste)..(910) 449-5997
-Conservation Law Enforcement.................(910) 449-0108

Explosives Safety Officer.................................(910) 449-5443
Military Police (Non-Emergency).................(910) 449-4248/4249
Public Works Division.................................(910) 449-6506
-Officer In Charge of Construction..........(910) 449-5587
Safety Department...(910) 449-4527
1.0 CONTRACTOR ENVIRONMENTAL GUIDE OVERVIEW

Environmental protection is an integral part of the Marine Corps mission in order to protect public health, preserve environmental quality, comply with regulatory requirements, and develop and strengthen relationships between the Marine Corps community and external stakeholders. The purpose of the MCB Camp Lejeune Contractor Environmental Guide is to assist contractors working aboard Marine Corps Installations East’s (MCIEAST’s) Marine Corps Base (MCB) Camp Lejeune and Marine Corps Air Station (MCAS) New River in maintaining the mission by complying with Federal and State environmental laws and regulations, as well as the United States Marine Corps (USMC) and installation environmental policies. This guide is written in accordance with Marine Corps Order (MCO) P5090.2A and designed to answer many of the environmental questions that arise, as well as to provide pertinent information on environmental topics and training requirements.

NOTE: This document should be used only as a guide to the environmental issues contractors may face while working aboard MCB Camp Lejeune and MCAS New River.
aboard MCB Camp Lejeune and MCAS New River. It is expected that contractors will work closely with the Environmental Management Division (EMD) at MCB Camp Lejeune, the Environmental Affairs Department (EAD) at MCAS New River, and Contract Representatives regarding environmental management issues, concerns, and/or questions. Should the need arise, this guide provides contractors with EMD, EAD, and emergency response points of contact (POCs). All initial inquiries should be directed to the Resident Officer in Charge of Construction (ROICC) or Contract Representative, who will either direct the contractor or contact the appropriate environmental office if additional clarification regarding an environmental issue is necessary.

NOTE: It is very important to note that this guide is designed to provide requirements specific to MCB Camp Lejeune-issued contracts. It is the contractor’s responsibility to know and comply with all Federal, State, and local regulations. MCB Camp Lejeune environmental personnel will assist contractors with compliance issues; however, the primary burden of regulatory identification, familiarity, and compliance lies with the contractor. This training does not replace any required regulatory environmental training or certification as per contract requirements. All required environmental training should be completed prior to working at MCIEAST installations.
NOTE: It is the contractor’s responsibility to review the project-specific contract and specifications. Additional environmental requirements, submissions, and/or meetings not documented in this guide may be required.

1.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are used throughout this guide. If you have any questions about these definitions or concepts, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

1.1.1. Key Definitions

- **Environment.** Surroundings, to include all surface water, groundwater, drinking water supply, land surface or subsurface area, or ambient air within the United States or under the jurisdiction of the United States, including manmade structures, indoor air environments, natural resources, and archeological and cultural resources.

- **Environmental Management Division.** MCB Camp Lejeune’s division responsible for environmental issues and compliance at MCB Camp Lejeune.

- **Environmental Affairs Department.** MCAS New River’s department responsible for environmental issues and compliance at MCAS New River.

- **Environmental Management System (EMS).** A systematic approach for integrating environmental
considerations and accountability into day-to-day decisionmaking and long-term planning processes across all missions, practices, and functions. The EMS institutionalizes processes for continual environmental improvement and reducing risks to mission through ongoing planning, review, and preventive or corrective action.

1.1.2. Key Concepts

- **Environmental Requirement.** A defined standard pertaining to environmental compliance, pollution prevention (P2), or natural/cultural resources, subject to uniform application. Environmental requirements may be in the form of a law, regulation, Executive Order (EO), policy, ordinance, permit, Base Order (BO), or other form that prescribes a standard.

- **Executive Order.** Legally binding orders given by the President, as head of the Executive Branch, to direct Federal agencies and officials in their execution of congressionally established laws or policies.

- **MCB Camp Lejeune.** Throughout this document, MCB Camp Lejeune includes all MCB Camp Lejeune real property and contracts for work performed at MCAS New River and all outlying fields associated with MCB Camp Lejeune.

- **Marine Corps Order.** A directive of continuing authority or information, meant to be a permanent reference and requiring continuing action, issued by Headquarters Marine Corps (HQMC). In accordance
with MCO 5215.1K (10 May 2007), all MCOs shall, where applicable: establish, describe, or change existing policy, programs and major activities, and organizations; define missions; assign responsibilities; issue procedural guidance; and be written in standardized format.

- **Resident Officer In Charge of Construction.** The ROICC administers construction contracts and is the contractor’s first line of contact with the government.

- **Regulatory Requirements.** Government (including Federal, State, and local) environmental regulations implemented by environmental statutes. Federal regulations often establish minimum standards for State and local governments’ implementing programs.

- **Statutory Requirements.** Federal environmental statutes are laws that generally require compliance by U.S. Department of Defense (DoD) installations.

1.2. INSTALLATION BACKGROUND

MCB Camp Lejeune was established in 1941 in Onslow County, along the southern coast of North Carolina (NC). MCB Camp Lejeune is just south of MCAS New River. MCB Camp Lejeune takes advantage of 156,000 acres and 11 miles of beach capable of supporting amphibious operations, 32 gun positions, 48 tactical landing zones, three state-of-the-art training facilities, and 80 live fire ranges for its training mission.
The primary function of MCB Camp Lejeune is national defense, providing a home installation for the II Marine Expeditionary Force (MEF), 2nd Marine Division, 2nd Force Service Support Group, and other combat units and support commands. MCB Camp Lejeune’s mission is to maintain combat-ready units for expeditionary deployment. MCB Camp Lejeune maintains and utilizes supply warehouses, maintenance shops, hazardous material storage, nonhazardous and hazardous waste storage, bulk fuel storage and transfer facilities, fleet parking, housing areas, recreational areas, two golf courses, and a marina.

MCAS New River is the principal USMC helicopter operating location on the East Coast and supports aircrew training in the H-53 helicopter. It is also the evaluation and prospective bed-down site for the V-22 Osprey. The mission of MCAS New River is to provide the necessary support for its Marine Aircraft Group (MAG) tenant units, MAG-26 and MAG-29.

1.2.1. **Environmental Management Division and Environmental Affairs Department**

MCB Camp Lejeune’s EMD, within the Installation and Environment Department, is responsible for all natural resource and environmental matters aboard the installation. EMD works closely with MCB Camp Lejeune personnel, educating and training them to comply with environmental laws while accomplishing the military mission.

The EAD at MCAS New River works closely with the EMD on environmental compliance and protection matters. Due to
various joint operations, MCB Camp Lejeune and MCAS New River participate together in one EMS. See Figure 1-1 and Figure 1-2 for organization charts of EMD and EAD.

1.2.2. Expectations

Contractors aboard the installation, which are committed to strict compliance with environmental laws and regulations,
assist MCB Camp Lejeune in providing the best possible training facilities for today’s Marines and Sailors, while honoring our environmental responsibilities and objectives. Violation of environmental laws may result in severe civil or criminal penalties and fines.

1.3. OVERVIEW OF REQUIREMENTS

Contractors operating aboard MCB Lejeune and MCAS New River must be aware of and adhere to all applicable environmental regulations and requirements, which include but may not be limited to the following:

- **EO 12088, Federal Compliance with Pollution Control Standards (October 13, 1978).** Requires all facilities owned by or leased to or by the military to be designed, operated, and maintained in compliance with all applicable environmental standards. Military and civilian personnel must cooperate with Federal, State, and local environmental protection agencies and comply with applicable standards and criteria issued by these agencies to the extent permitted by law.

- **EO 13423, Strengthening Federal Environmental, Energy, and Transportation Management.** Requires Federal agencies to comply with applicable Federal, State, local, and host nation environmental laws and regulations. Additionally, requirements include more widespread use of EMSs as the framework for sustainability management.
• **EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance.** Requires Federal agencies to meet various sustainability goals, to include the reduction of greenhouse gas emissions. Applicable provisions for meeting these goals are to be included in acquisition and service contracts.

• **MCO P5090.2A, Environmental Compliance and Protection Manual (26 August 2013).** USMC policies and responsibilities for compliance with environmental statutes and regulations, as well as the management of USMC environmental programs.

1.3.1. Contractor Environmental Guide

This guide consists of the following information:

• MCB Camp Lejeune Contractor Environmental Guide
 o EMS overview and requirements
 o Environmental program-specific requirements

• MCB Camp Lejeune General EMS and Environmental Awareness Training for Contractors and Vendors

• Signature Page
Prior to beginning work onsite, or within 30 days of beginning work onsite, all contractors and their employees performing work aboard MCB Camp Lejeune must review these materials and complete EMS and General Environmental Awareness training. This guide summarizes the EMS and environmental programs at MCB Camp Lejeune, as well as key requirements associated with the various environmental issues contractors may encounter while performing work aboard the installation. Contractors are expected to work with their ROICC or Contract Representatives and EMD/EAD when environmental concerns or issues arise.

1.3.2. Environmental and EMS Training

In accordance with Department of Defense (DoD) instructions and MCOs, EMD has implemented a Comprehensive Environmental Training and Education Program (CETEP). The goal of the CETEP is to ensure that appropriate environmental instruction and related information are provided to all levels of the Marine Corps in the most effective and efficient manner to achieve full compliance with all applicable environmental training.
requirements. A major component of the CETEP is to provide general environmental awareness training to all individuals associated with the installation, including contractors.

In addition to CETEP requirements, MCB Camp Lejeune has implemented an installation-wide EMS. The EMS highlights the fact that the authority and principal responsibility for controlling environmental impacts belong to those commands, units, offices, and personnel (including contractors) whose activities have the potential to impact the environment.

All contractors are required to receive both EMS and general environmental awareness training at the level necessary for their job function. This guide satisfies these training requirements (See the Appendix).

As such, contractors working aboard MCB Camp Lejeune will do the following:

- Conduct job responsibilities in compliance with environmental regulations and in conformance with EMS requirements.
- Complete all applicable environmental training and maintain associated records as per contract requirements.
• Complete EMS and general environmental awareness training, and be aware of and understand the MCB Camp Lejeune Environmental Policy.

• Contact their ROICC or Contract Representative immediately regarding environmental and/or EMS issues.

Prior to beginning work onsite or within 30 days, all contractors must sign and date the signature page and return it to the installation Contract Representative. Anyone who works on a contract at any point during the contract period must receive this information and training.

1.4. POINTS OF CONTACT

EMD Branches and phone numbers are found in the Contractor’s Phone Directory on pages xv and xvi of this Guide. All initial inquiries regarding an environmental issue should be directed to the ROICC or Contract Representative, who will either directly contact or refer the contractor to the appropriate environmental office if additional clarification is necessary. In the case of a spill or environmental emergency, immediately dial 911. Additional emergency response procedures are provided in Section 5.0 of this Guide.
Table 1-1. Contacts in Case of a Spill

<table>
<thead>
<tr>
<th>For spills of:</th>
<th>Call:</th>
<th>Follow-up:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste</td>
<td>911</td>
<td>Spill Report</td>
</tr>
<tr>
<td>Unknown materials</td>
<td>911</td>
<td>Spill Report</td>
</tr>
<tr>
<td>Material on a permeable surface</td>
<td>911</td>
<td>Spill Report</td>
</tr>
<tr>
<td>Any amount of a POL or Hazardous Material</td>
<td>911</td>
<td>Spill Report</td>
</tr>
<tr>
<td>Material that reaches stormwater inlets or waterways</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>Nonhazardous waste</td>
<td>(910) 451-1482</td>
<td>911</td>
</tr>
</tbody>
</table>

1.5. OVERVIEW MAP

Figure 1-3 provides an overview map that displays the locations of installation facilities discussed throughout this Guide.
Figure 1-3. Overview Map
2.0 ENVIRONMENTAL MANAGEMENT SYSTEM

MCB Camp Lejeune and MCAS New River jointly operate an EMS, which provides a systematic way of continually implementing environmental requirements and evaluating performance. The EMS is founded on the principles of MCB Camp Lejeune’s Environmental Policy, which is endorsed by the Commanding General (CG). Three key principles of the Environmental Policy are to:

- Comply with relevant environmental laws and regulations;
- Prevent pollution; and
- Continually improve the EMS.

The EMS promotes sustained mission readiness through actively identifying and implementing opportunities for efficient resource use. The USMC implements EMS at all levels to continually improve environmental compliance programs and meet evolving EOs and DoD requirements for mission sustainability. The EMS highlights the fact that the authority and principal responsibility for controlling environmental impacts belong to those commands, units,
offices, and personnel (including contractors and vendors) whose activities have the potential to impact the environment.

2.1. **KEY DEFINITION AND CONCEPTS**

The following key definitions and concepts are associated with an EMS. Please consult the ROICC or Contract Representative with any questions about these definitions or concepts.

2.1.1. **Key Definitions**

- **Environment.** Surroundings in which an organization operates, including air, water, land, natural resources, flora, fauna, humans, and their interrelation.

- **Environmental Aspect.** A characteristic of an organization’s activities, products, or services that may cause, in normal operation or upset mode, an impact to an environmental or other resource. Each practice may have several aspects.

- **Environmental Impact.** An effect, beneficial or adverse, of a practice’s aspect on an environmental or other resource. Each practice may have several impacts.

- **Environmental Resources.** Sensitive environmental receptors (e.g., air, water, natural

Please consult the ROICC or Contract Representative with any questions.
resources) or cultural or historic assets at MCB Camp Lejeune or MCAS New River, in the surrounding community, within the ecosystem, or beyond, that may be impacted by the operation of practices.

- **Practice.** A unit process that supports a military mission and may impact environmental resources. (It is the ability to impact an environmental resource that is key to defining a practice. However, practices may also impact other resources.)

- **Practice Owner.** Person(s) responsible for control of practices. EMS procedures use the term *practice owner* when the assignment of more specific responsibilities is left to the owning organizations.

- **Requirement.** Legislation, regulation, or policy issued by any Executive, Federal, State, local, DoD, Department of Navy (DoN), or USMC authority that addresses environmental considerations and requires action.

2.1.2. Key Concepts

- **Environmental Management System.** A systematic approach for integrating environmental considerations and accountability into day-to-day decisionmaking and long-term planning processes across all missions, activities, and functions. The EMS institutionalizes processes for continual environmental improvement and for reducing risks to mission through ongoing planning, review, and preventive or corrective action.
• **Environmental Policy.** Public commitment by senior leaders to the management of the installation’s environmental affairs, including environmental compliance, pollution prevention, natural/cultural resource management, cleanup, risk to mission, and continual improvement of the EMS.

• **Plan, Do, Check, Act.** Four-step model by which the EMS carries out change – **Plan:** establish objectives and processes; **Do:** implement and execute the plan; **Check:** study and analyze the results; **Act:** take action based on what you learned.

![Plan, Do, Check, Act Cycle](image)

Figure 2-1. Plan, Do, Check, Act Cycle
2.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard MCB Camp Lejeune and MCAS New River must be aware of and adhere to all applicable regulations and requirements concerning EMS, which include but may not be limited to the following:

- **EO 13148, Greening the Government Through Leadership in Environmental Management.** Mandates that environmental management considerations must be an integral component of Federal Government policies, operations, planning, and management, with the primary goal for each agency to promote the sustainable management of Federal facility lands through the implementation of cost-effective, environmentally sound practices, and programs to reduce adverse impacts to the natural environment.

- **EO 13423, Strengthening Federal Environmental, Energy, and Transportation Management.** Establishes the EMS as the primary management approach for addressing environmental aspects, including energy and transportation aspects, and as the reporting mechanism for communicating progress on meeting performance goals.

- **EO 13514, Leadership in Environmental, Energy, and Economic Performance.** Requires continuing implementation of formal EMSs at all appropriate organizational levels to support the sustainability performance requirements of the Order.
2.3. ENVIRONMENTAL MANAGEMENT SYSTEM

An EMS is a systematic way to identify and eliminate or minimize the installation’s environmental risk-to-mission. MCB Camp Lejeune’s EMS identifies practices and their aspects as a starting point for prioritizing environmental management initiatives. Each installation practice, such as construction/renovation/demolition, equipment operation/maintenance/disposal, landscaping, or pesticide/herbicide management and application, has one or more environmental aspects. Figure 2-2 illustrates the simplified potential interactions of one practice, construction/renovation/demolition, with the environment.
Figure 2-2. Potential Interactions of Construction and Demolition Activities with the Environment
2.4. EMS RESPONSIBILITIES

Contractors are expected to understand that the practices they support on the installation may interact with and have the potential to impact the environment. Therefore, it is expected that contractors will do the following:

- Review the Contractor Environmental Guide.
- Be aware of the Environmental Policy (Attachment 2-1).
- Conduct practices in a way that avoids and/or minimizes impacts to the environment by complying with all applicable Federal, State, and local environmental regulations and BOs.
- Be familiar with spill response procedures.
- Report all environmental emergencies and spills.
- Report any environmental problems or concerns promptly, and notify the ROICC or Contract Representative.
- Respond to data collection efforts upon request.
2.5. CONTRACTOR ENVIRONMENTAL GUIDE AND EMS

The sections of this Contractor Environmental Guide are categorized based on the type of environmental requirements routinely encountered by contractors at MCB Camp Lejeune. The following matrix is derived from MCB Camp Lejeune’s EMS Working Group sessions and relates the contents of this guide to the practices aboard MCB Camp Lejeune. It is provided to assist contractors in narrowing down specific requirements that may apply to onsite activities.
Table 2-1. Practices Identified Under MCB Camp Lejeune’s EMS

<table>
<thead>
<tr>
<th>MCB Camp Lejeune 2015 Practices</th>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery management</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Boat operation/ maintenance</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Boat, ramp, dock cleaning</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Boiler operation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Building operation/ maintenance/ repair</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Channel dredging</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Chlorination</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Composting</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Construction/demo/ renovation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cooling tower operation and maintenance</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>De-greasing</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Drinking water management</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Engine operation and maintenance</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Equipment operation/ maintenance/disposal</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Erosion/ runoff control</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fish stocking</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
MCB Camp Lejeune 2015 Practices

<table>
<thead>
<tr>
<th>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</th>
<th>Environmental Response/ Spill Response, Section 5.0</th>
<th>Potential Discovery of Undocumented Contaminated Sites, Section 13.0</th>
<th>Asbestos, Section 8.0</th>
<th>Lead-Based Paint, Section 9.0</th>
<th>Stormwater, Section 11.0</th>
<th>Solid Waste, Recycling, and P2, Section 12.0</th>
<th>Training, Section 3.0</th>
<th>Cultural Resources, Section 6.0</th>
<th>Permitting, Section 14.0</th>
<th>Air Quality, Section 4.0</th>
<th>Natural Resources, Section 10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fueling and fuel mgt./ storage</td>
<td>●</td>
</tr>
<tr>
<td>Grease traps</td>
<td>●</td>
</tr>
<tr>
<td>Habitat management</td>
<td>●</td>
</tr>
<tr>
<td>HCP operation</td>
<td>●</td>
</tr>
<tr>
<td>HM storage</td>
<td>●</td>
</tr>
<tr>
<td>HM transportation</td>
<td>●</td>
</tr>
<tr>
<td>HW disposal onsite transport</td>
<td>●</td>
</tr>
<tr>
<td>HW satellite accumulation area</td>
<td>●</td>
</tr>
<tr>
<td>HW storage (<90 days)</td>
<td>●</td>
</tr>
<tr>
<td>HW transportation</td>
<td>●</td>
</tr>
<tr>
<td>Land clearing</td>
<td>●</td>
</tr>
<tr>
<td>Landfill gas energy recovery system</td>
<td>●</td>
</tr>
<tr>
<td>Landscaping</td>
<td>●</td>
</tr>
<tr>
<td>Laundry</td>
<td>●</td>
</tr>
<tr>
<td>Live fire range operation</td>
<td>●</td>
</tr>
<tr>
<td>Livestock operation</td>
<td>●</td>
</tr>
<tr>
<td>Metal working</td>
<td>●</td>
</tr>
<tr>
<td>Non-destructive inspection</td>
<td>●</td>
</tr>
<tr>
<td>ODS/ halon management</td>
<td>●</td>
</tr>
<tr>
<td>Packaging/unpacking</td>
<td>●</td>
</tr>
</tbody>
</table>

Notes:
- ● indicates applicability of the practice.
<table>
<thead>
<tr>
<th>MCB Camp Lejeune 2015 Practices</th>
<th>Env. Emergency Response/Spill Response, Section 5.0</th>
<th>HMWV, Section 7.0</th>
<th>Potential Discovery of Undocumented Contaminated Sites, Section 13.0</th>
<th>Asbestos, Section 8.0</th>
<th>Lead-Based Paint, Section 9.0</th>
<th>Stormwater, Section 11.0</th>
<th>Solid Waste, Recycling, and P2, Section 12.0</th>
<th>Training, Section 3.0</th>
<th>Cultural Resources, Section 6.0</th>
<th>Permitting, Section 14.0</th>
<th>Air Quality, Section 4.0</th>
<th>Natural Resources, Section 10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB Camp Lejeune 2015 Practices</td>
<td>Env. Emergency Response/Spill Response, Section 5.0</td>
<td>HM/HW, Section 7.0</td>
<td>Potential Discovery of Undocumented Contaminated Sites, Section 13.0</td>
<td>Asbestos, Section 8.0</td>
<td>Lead-Based Paint, Section 9.0</td>
<td>Stormwater, Section 11.0</td>
<td>Solid Waste, Recycling, and P2, Section 12.0</td>
<td>Training, Section 3.0</td>
<td>Cultural Resources, Section 6.0</td>
<td>Permitting, Section 14.0</td>
<td>Air Quality, Section 4.0</td>
<td>Natural Resources, Section 10.0</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Stormwater collection/conveyance</td>
<td>Applicable to All Practices Conducted Aboard MCB Camp Lejeune</td>
<td></td>
</tr>
<tr>
<td>Surface washing</td>
<td></td>
</tr>
<tr>
<td>Swimming pool operation and maintenance</td>
<td></td>
</tr>
<tr>
<td>Timber management</td>
<td></td>
</tr>
<tr>
<td>Universal waste storage/collection</td>
<td></td>
</tr>
<tr>
<td>Urban wildlife management</td>
<td></td>
</tr>
<tr>
<td>UXO/EOD operations</td>
<td></td>
</tr>
<tr>
<td>Vehicle maintenance</td>
<td></td>
</tr>
<tr>
<td>Vehicle parking</td>
<td></td>
</tr>
<tr>
<td>Wash rack</td>
<td></td>
</tr>
</tbody>
</table>
Attachment 2-1

MCB Camp Lejeune’s Environmental Policy Statement
COMMANDING GENERAL'S ENVIRONMENTAL POLICY STATEMENT

The protection and enhancement of our natural environment is a valuable tool in sustaining the training and support mission of Marine Corps Installations East-Marine Corps Base Camp Lejeune (MCIEAST-MCB CAMLEJ). As MCIEAST-MCB CAMLEJ prepares for the increasing demands on facilities, training areas, ranges, and quality-of-life services that support the readiness of our forces, we are committed to protecting human health, conserving natural and cultural resources, and complying with regulatory requirements.

The MCIEAST-MCB CAMLEJ Environmental Management System (EMS) promotes sustained mission readiness through actively identifying and implementing solutions and opportunities for efficient resource use. Through the EMS, MCIEAST-MCB CAMLEJ will continually assess daily operations in order to identify and implement improvements to its practices that will ensure compliance with governing regulations and meet the sustainability objectives of Executive Orders 13514 and 13423. In this endeavor, MCIEAST-MCB CAMLEJ will:

- Continue proactive compliance with all environmental laws, regulations, and U.S. Marine Corps policies.
- Integrate natural and cultural resource management with the military mission whenever practical.
- Incorporate sound environmental practices into all of our operations and business decisions.
- Implement pollution prevention initiatives, waste diversion, recycling, and waste minimization programs.
- Assess and remediate contaminated sites aboard the Base that are the result of past disposal practices or spills and leaks of hazardous materials.
- Implement energy efficiency and water conservation management projects.
- Procure sustainable products, including biobased, environmentally preferable, energy efficient, water efficient, and recycled-content products.
- Collaborate with local communities and regulatory agencies to enhance stewardship of the environment, create goodwill and build trust.
- Educate our Marines, Sailors, and Civilian Marines about their responsibility to protect our natural environment, stressing the important role each individual plays in an effective EMS.

Join me in applying these environmental management principles to protect and enhance our natural environment, while strengthening the combat readiness of our forces and the quality-of-life services to our warriors and their families.

R. F. CASTELLLV
Brigadier General, U.S. Marine Corps
Commanding General
Marine Corps Installations East-Marine Corps Base Camp Lejeune
3.0 TRAINING

The contractor is responsible for ensuring that every employee completes a program of classroom instruction or on-the-job training that teaches the employee to perform his or her duties in compliance with Federal, State, and local regulatory requirements.

To minimize the environmental impact of MCB Camp Lejeune operations, all civilian and military personnel, including contractors, are required to receive both EMS and general environmental awareness training at the level necessary for their job function. Use of the Contractor Environmental Guide satisfies these training requirements. A training presentation is provided in the Appendix.

NOTE: The contractor is responsible for knowing and complying with Federal, State, and local regulations. MCB Camp Lejeune environmental personnel will assist contractors with compliance issues; however, the primary burden of regulatory identification, familiarity, and compliance lies with the contractor. This training does not
replace any required regulatory training as per contract requirements. Required training should be completed *prior* to working at MCB Camp Lejeune.

3.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with contractor training. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

3.1.1. Key Definitions

- **Explicitly Required Training.** Training expressly required by specific laws, regulations, or policies that apply due to the nature of work assignments, job functions, and/or specific licensing or certification requirements mandated by environmental laws, regulations, or policies.

- **Implicitly Required Training.** Instruction/information that is not expressly required by laws, regulations, or policies, but that may be reasonably inferred as being required to maintain compliance or is determined through EMS to reduce overall environmental risk.
3.1.2. Key Concepts

- **Comprehensive Environmental Training and Education Program (CETEP).** The USMC training program designed to ensure that high-quality, efficient, and effective environmental training, education, and information are provided at all levels of the USMC.

- **Environmental Management System (EMS).** The part of the overall management system that includes organizational structure, planning activities, responsibilities, practices, procedures, processes, and resources for developing, implementing, achieving, reviewing, and maintaining the Environmental Policy.

- **EMS Training.** All contractors are required to receive EMS training at the level necessary for their job function.

- **General Environmental Awareness Training.** Instruction designed to ensure that MCB Camp Lejeune and MCAS New River personnel become familiar with the installation environmental policies and programs for regulatory compliance, natural resource conservation, P2, and environmental protection. General EMS and Environmental Awareness Training for contractors and vendors is required for all MCB Camp Lejeune contractors. The training presentation is included as an Appendix to this document.
3.1.3. Environmental Management System

Training is potentially applicable to all EMS practices conducted aboard MCB Camp Lejeune.

3.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard MCB Lejeune and MCAS New River must be aware of and adhere to all applicable regulations and requirements concerning training, which include but may not be limited to the following:

- **Executive Order 13423.** Strengthening Federal Environmental, Energy, and Transportation Management. Requires implementation of an EMS at all appropriate organizational levels.

3.3. TRAINING REQUIREMENTS

3.3.1. General Environmental Awareness

In accordance with DoD instructions and MCO, the EMD at MCB Camp Lejeune has implemented a CETEP. A major component of the CETEP is to provide general environmental awareness training to all individuals associated with the installation, including contractors and vendors. Prior to or within 30 days of beginning work onsite, all contractors and their employees performing work aboard
MCB Camp Lejeune must receive general environmental awareness training.

3.3.2. Environmental Management System

In addition to CETEP requirements, MCB Camp Lejeune has implemented an installation-wide EMS per EO 13423, *Strengthening Federal Environmental, Energy, and Transportation Management*, and DoD and USMC EMS policy. The EMS highlights the fact that the authority and principal responsibility for controlling environmental impacts belong to those commands, units, offices, and personnel (including contractors and vendors) whose activities have the potential to impact the environment.

Prior to or within 30 days of beginning work onsite, all contractors and their employees performing work aboard MCB Camp Lejeune must receive EMS training.

3.3.3. Recordkeeping

Upon completion of the training materials included in the Appendix of the Contractor Environmental Guide, each employee must sign the Training Roster. The Contracting Representative must maintain these records in the contract file.

All training records, including other applicable environmental training, must be maintained onsite for review.
4.0 AIR QUALITY

The Air Quality Program is responsible for ensuring that the installation complies with all applicable Federal, State, and local air quality regulations. The ROICC or Contract Representative will provide a copy of BO 5090.6A, Air Quality Management, which has additional information.

4.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with air quality. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

4.1.1. Key Definitions

- **Criteria Pollutants.** Pollutants that the U.S. Environmental Protection Agency (EPA) Administrator has determined will cause or contribute to air pollution, that may reasonably be anticipated to endanger public health and welfare, and for which air quality criteria have been established (i.e., sulfur dioxide, nitrogen oxides,
ground-level ozone, carbon monoxide, lead, and particulate matter).

- **Dust-Causing Activity.** Any activity that has the potential to generate an excess level of dust, including but not limited to construction and demolition (C&D), blasting and sanding, construction of haul roads, land clearing, or fallow fields.

- **Hazardous Air Pollutants.** Air pollutants, as identified within 42 United States Code (USC) 7412, that cause or may cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental and ecological effects.

- **Ozone-Depleting Substance.** Chemicals, such as certain refrigerants, that cause depletion of the stratospheric ozone layer—primarily chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and their blends.

- **Particulate Matter.** A criteria air pollutant that includes dust, soot, and other small materials that are released into and transported by air.

- **Title V Operating Permit.** Permit issued under the Clean Air Act (CAA) Amendments of 1990 for all major sources of air pollution. All emission sources at the installation must be listed on the permit.

4.1.2. Key Concepts

- **Emission Sources.** Before beginning any emitting activity, please have the ROICC or Contract
Representative contact EMD to determine whether any permitting, monitoring, reporting, testing, and/or recordkeeping requirements apply.

- **Permitted Sources.** Ensure that construction/authorization permits are in place prior to beginning construction and/or prior to the arrival onsite of new or additional emission sources (emergency generators, paint booths, etc.).

4.1.3. Environmental Management System

Contractor activities associated with air quality include the following:

- Boat operation/maintenance
- Boiler operation
- Chlorination
- Degreasing
- Engine operation and maintenance
- Fueling and fuel management/storage
- Hazardous material (HM) storage/transportation
- Hazardous waste (HW) satellite accumulation area/HW transportation
- Live fire range operations
- Metal working
- Ozone-depleting substance (ODS)/halon management
- Paint booth operations/paint gun cleaning/paint removal
- Polishing
- Road construction and maintenance
- Rock-crushing operations
- Solid waste collection/transportation
- Storage tank management
- Unexploded ordnance (UXO)/explosives and ordnance disposal (EOD) operations
- Vehicle maintenance

The potential impacts of these activities on the environment include degradation of air quality, degradation of quality of life, and depletion of nonrenewable resources.

4.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard the installation must be aware of and adhere to all applicable regulations and requirements regarding air quality, which include but may not be limited to:

- **Clean Air Act Amendments of 1990.** Protect human health and clean air resources by establishing standards and regulations for the control of air pollutants.

- **Title V Operating Permit.** Operating permit required for any major stationary source that emits or
has the potential to emit 100 tons per year or more of any criteria air pollutant and outlines the requirements to address and ensure air quality compliance.

- **BO 5090.6A, Air Quality Management.** Implements policies and procedures at the installation level that all personnel must follow in order to demonstrate compliance with the Title V permit and USMC requirements.

- **Base Bulletin 5090, Open Burning of Vegetative Debris.** Outlines procedures for conducting open burning in accordance with State regulations and installation procedures.

- **North Carolina Department of Air Quality (NCDAQ) Rules.** Outlines all State-specific air quality rules, control requirements, procedures for permits, and approvals contained in 15A North Carolina Administrative Code (NCAC) 02D, 02H, and 02Q applicable to North Carolina entities.

4.3. PERMIT REQUIREMENTS

The installation has a single permit, the CAA Title V Construction and Operating Permit, which includes all stationary air emission sources at the facility; therefore, all permit application submittals to the NCDAQ must be coordinated through the EMD. The NCDAQ will review and process the application and then issue a permit to construct and operate or to modify the emission source(s). A permit is required prior to the construction of any emission source. Timely submittal of the permit application is required to
obtain the final permit prior to commencing construction. The most common types of emission sources at the installation are as follows:

- Boilers
- Generators
- Engine test stands
- Surface coating/painting operations
- Paint removal (chemical and mechanical), abrasive blasting, or other surface preparation activities
- Fuel storage and fuel dispensing
- Grinding
- Woodworking
- Welding
- ODS/refrigerant recovery and recycling operations (industrial chillers, refrigerators, air conditioning compressors, cleaning agents, etc.)
- Bulk chemical and flammable materials storage

A permit is required for the construction of any emission source. Timely submittal of the permit application is necessary to ensure the permit is available before commencing construction.

4.4. ADDITIONAL ACTIVITIES OF CONCERN

Contact the ROICC or Contract Representative for additional information regarding activities that do not
necessarily require modification to the Title V permit, but that must be coordinated with or tracked by EMD or the NCDAQ. Examples of these activities include, but are not limited to, the following:

- **Use, Maintenance, and Management of Refrigerants and other ODS.** Includes installation, recovery, replacement, conversion, or service of refrigerant-containing equipment (chillers, refrigerators, air conditioning condensers, etc.). All contractors will use Best Management Practices (BMPs) during refrigerant management activities. All Heating, Ventilation, and Air Conditioning (HVAC) technicians will maintain their appropriate State-specific licenses and present them to the ROICC or Contract Representative upon request.

- **Emergency Generators.** Includes the installation and temporary use of emergency generators during electrical failures and construction activities. All contractors will coordinate with the ROICC or Contract Representative to determine if the intended generator may be exempted or must be temporarily permitted for the intended use.

- **Open Burning (e.g., right-of-way clearing, storm debris burning).** Open burning activities aboard MCB Camp Lejeune and MCAS New River must coordinated through EMD and the Fire Department. Open burning activities are only permissible for land clearing and right-of-way maintenance when the following conditions are met:
The wind direction at the time the burning is initiated is away from any public transport roads within 250 feet so they are not affected by smoke, ash, or other air pollutants from the burning.

The location of the burning is at least 500 feet from any dwelling, group of dwellings, commercial or institutional establishment, or other occupied structure not located on the property on which the burning is conducted, unless an air curtain burner is used. If an air curtain burner is used, the regional office supervisor may grant exceptions to the setback requirements.

Heavy oils, asphaltic materials (e.g., shingles and other roofing materials), items containing natural or synthetic rubber, or any materials other than vegetative plant growth are not burned.

Initial burning must begin between 0800 and 1800. After 1800, no material may be added to the fire until 0800 the following day.

No fires may be started, and no vegetation may be added to existing fires, when the North Carolina Division of Forest Resources has banned burning for that area.

Burners that have the potential to burn more than 8,100 tons per year may be subject to Title V air quality permitting requirements.

Situations that require a regulatory exemption evaluation by the NCDAQ Regional Office
Supervisor are coordinated through EMD’s Environmental Quality Branch Air Quality Program Manager. The ROICC or Contract Representative will address any additional questions or provide a copy of Base Bulletin 5090, which contains a summary of the installation’s open burning requirements.

The four designated sites at MCB Camp Lejeune that are permitted for storing and/or burning storm debris are in the following areas: Mainside at the borrow pit near the Piney Green landfill, Courthouse Bay, Camp Johnson, and Camp Geiger. Only storm debris may be accumulated at these sites. EMD must notify the NCDAQ if the installation intends to burn the storm debris at one of these sites. Contact the ROICC or Contract Representative for more information.

- **Fire training outside of designated fire training pits.** State approval is required to conduct fire training outside of the designated fire training pits. First, complete the Notification of Open Burning for the Training of Firefighting Personnel form. The form is available at the following site: http://daq.state.nc.us/enf/openburn/ob_firetrain.pdf.

Before the training exercise, an accredited North Carolina Asbestos Inspector must inspect any structure to be burned to ensure that it is free from asbestos. Turn in the completed form to EMD for submittal to NCDAQ and the Division of Public Health, Health Hazards Control Unit. Contact the
ROICC or Contract Representative for additional information.

- **Dust-causing activities (e.g., concrete and rock crushing).** Wet suppression is required during the entire dust-causing operation. Ensure that an adequate water supply is available, and coordinate with the Fire and Emergency Services Division if access to a fire hydrant is necessary. Applicable wet suppression may be required during temporary concrete-crushing operations during C&D activities.

- **Noise Management.** USMC commands engaged in any activity resulting in noise emissions must comply with Federal, State, interstate, and local requirements for the control and management of environmental noise to minimize disruption to the local community. To the maximum extent practicable, personnel should limit the use of power tools, machinery, construction equipment, and other noisy devices to normal working hour
5.0 ENVIRONMENTAL EMERGENCY PLANNING AND RESPONSE

Environmental emergency planning and response can reduce injuries, protect employees, reduce asset losses, minimize downtime, and minimize environmental impacts of uncontrolled releases of pollutants to air, land, and water. The purpose of emergency planning is to prepare for, mitigate, respond to, and recover from environmental emergencies while minimizing any potential impacts to human health and the environment. Contractors operating aboard MCB Camp Lejeune must be aware of and adhere to all environmental emergency response procedures and notification requirements to minimize detrimental effects from inadvertent releases.

Procedures relating to emergencies caused by unforeseen site conditions are addressed in Section 5.0 of this guide. If an environmental emergency is identified, contact 911 immediately. Additional inquiries should be directed to the ROICC or Contract Representative.

5.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with environmental emergency response and spill response requirements. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative.
questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

5.1.1. **Key Definitions**

- **Berm.** A mound used to prevent the spread of a contaminant.

- **Discharge.** Any spilling, leaking, pumping, pouring, emitting, emptying, or dumping not explicitly permitted.

- **Navigable waters.** The waters of the United States and territorial seas, including waters that have been or may be used for commerce, waters subject to tidal flow, interstate waters and wetlands, and all other waters (intrastate lakes, rivers, streams, intermittent streams, flats, wetlands, sloughs, prairies, wet meadows, natural ponds, tributaries, etc.).

- **Petroleum, Oil, and Lubricant (POL).** A broad term that includes all petroleum and associated products or oil of any kind or in any form, including, but not limited to, petroleum, fuel oil, vegetable oil, animal oil, sludge, oil refuse, and oil mixed with wastes.

- **Release.** Pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment (including the abandonment or discarding of barrels, containers, and other closed receptacles) of any hazardous
chemical, hazardous substance, or extremely hazardous substance (EHS). Releases may be aboveground, belowground, or to water.

- **Spill Event.** The reportable discharge of oil into or upon the navigable waters of the United States or adjoining shorelines in harmful quantities, as defined by the Code of Federal Regulations (CFR) in 40 CFR 110.

5.1.2. Key Concepts

- **Environmental Emergency Response Contacts.** The following table identifies the emergency contact information for various spill scenarios. In addition to these emergency response contacts, the ROICC or Contract Representative should be notified immediately after an incident.

Table 5-1. Environmental Emergency Response Contacts

<table>
<thead>
<tr>
<th>For spills of:</th>
<th>Call:</th>
<th>Follow-up:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste</td>
<td>911</td>
<td>Spill Report</td>
</tr>
<tr>
<td>Unknown materials</td>
<td>911</td>
<td>Spill Report</td>
</tr>
<tr>
<td>Material on a permeable surface</td>
<td>911</td>
<td>Spill Report</td>
</tr>
</tbody>
</table>
Contractors have containment and cleanup responsibilities following a spill, and there may be additional follow-up reporting or requirements. Contact the ROICC or Contract Representative for additional guidance.

5.1.3. Environmental Management System

Environmental planning and response are potentially applicable to all EMS practices conducted aboard MCB Camp Lejeune.

5.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard MCB Lejeune and MCAS New River must be aware of and adhere to all applicable regulations and requirements regarding emergency response
and spill response procedures, which include but may not be limited to the following:

- **Clean Air Act of 1970, Section 112r** Mandates the prevention and control of air emissions and specifies emergency planning where the potential exists for accidental release of hazardous air pollutants.

- **Clean Water Act (CWA) of 1972.** Establishes the basic structure for regulating discharges of pollutants into the waters of the United States. The CWA establishes that there should be no discharges of oil or hazardous substances into or upon the navigable waters of the United States or adjoining shorelines, which may affect natural resources under the management of the United States.

- **Comprehensive Environmental Response, Compensation, and Liability (CERCLA) Act of 1980.** Authorizes a Federal response to any release or threatened release of a hazardous substance into the environment. This act defines hazardous substances by reference to substances that are listed or designated under other environmental statutes.

- **Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986, Section 304.** Establishes requirements for reporting a release to ensure a quick response by local emergency responders. Notification requirements apply to two chemical lists: the CERCLA Hazardous Substance list and the EHS list. The “List of Lists” provides a comprehensive identification of hazardous
substances and EHSs. In addition, facilities may be required to submit a list of their hazardous materials inventory maintained onsite or Safety Data Sheets (SDS) to response personnel.

- **Oil Pollution Act (OPA) of 1990.** Addresses oil storage at facilities and emphasizes preparedness and response activities. This act prohibits the harmful discharge of oil and hazardous substances into waters of the United States. The OPA requires contingency planning for “worst case” discharges and demonstrated response capabilities through planning, equipment, training, and exercises.

- **Resource Conservation and Recovery Act (RCRA) of 1976.** Protects human health and the environment from the hazards associated with hazardous waste handling, generation, transportation, treatment, storage, and disposal. Subtitle C of the RCRA requires owners and operators of hazardous waste facilities to develop comprehensive management plans that address spill prevention and cleanup.

5.3. SPILL NOTIFICATION

5.3.1. POL/Hazardous Materials Spill Notification Procedures

In accordance with MCB Camp Lejeune notification requirements, any discharge of oil or hazardous materials must be immediately reported to the MCB Camp Lejeune Fire Department at 911.
MCB Camp Lejeune maintains a Spill Prevention, Control, and Countermeasures (SPCC) Plan that establishes procedures to prevent oil spills and documents existing oil spill prevention structures, procedures, and equipment. The Installation SPCC Plan provides general information for any type of response actions needed for spills aboard MCB Camp Lejeune. Contractors engaged in the handling and transfer of POL or hazardous materials must develop a Unit-Level Contingency Plan (ULCP) that addresses the spill response for their specific sites and potential spill types. This ULCP must be maintained onsite, and all personnel working within that site must be made aware of its location and use.

In the event of a spill, contact the ROICC or Contract Representative (after contacting emergency responders) to obtain a spill report form. Return the completed spill report form to EMD (fax to (910) 451-3471) and to the ROICC or Contract Representative. A copy of the spill report form is included as Attachment 5-1. The following information must be provided when reporting a spill:

- Name and phone number
- Location of spill (building, number, street)
- Number and type of injuries, if any
- Type and amount of spilled material
• Source of the spill (container, vehicle, etc.)
• Action being taken, if any, to control the spill
• Estimated time of spill

Do not wait to report a spill, even if all of the required information is not immediately available.

5.3.2. **Wastewater Spill and Water Line Break Notification**

Contractors operating aboard MCB Camp Lejeune and MCAS New River must be aware of water and wastewater utilities in their specific work/project area.

Wastewater Spills

In the event of a wastewater spill, report the incident to the Public Works Base Utilities at (910) 451-7190 (x225). In addition, report the incident immediately to the ROICC or Contract Representative. The following information must be provided:

• Name and phone number
• Location of spill (building number, street address)
• Type and amount of spilled material
• Source of the spill
• Action being taken, if any, to control the spill
• Estimated time of spill
Water Line Breaks

In the event of a water line break, report the incident to the Public Works Base Utilities at (910) 451-7190 (x225). In addition, report the incident immediately to the ROICC or Contract Representative. The following information must be provided:

- Name and phone number
- Location of spill (building number, street address)
- Reason for the break
- Estimated time of the break

5.4. FOLLOW-UP

If surface run-off is contaminated, the contractor will, under the advisement of the Fire Department or EMD, construct a temporary berm or containment area. Contaminated surface water will be removed in accordance with all safety and environmental requirements for the installation. Notify the Resource Conservation and Recovery Section (RCRS) at (910) 451-1482; the RCRS will provide concurrence for temporary containment areas and removal of contaminated runoff.

If solid or hazardous waste was generated as the result of a spill, refer to Sections 12.0 and 7.0 of this guide for disposal requirements.
Attachment 5-1

Spill Reporting Form
MARINE CORPS INSTALLATIONS EAST
MARINE CORPS BASE CAMP LEJEUNE
UNIT LEVEL SPILL FORM

<table>
<thead>
<tr>
<th>Spill Date:</th>
<th>Spill Time:</th>
</tr>
</thead>
</table>

RESPONDERS

<table>
<thead>
<tr>
<th>Response Initiator:</th>
<th>Major Command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone Number:</td>
<td>Unit Name:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fire Department Response:</th>
<th>Responder Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMD Respond?</td>
<td>Responder Name:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GPS Coordinates: X:</th>
<th>Y:</th>
</tr>
</thead>
</table>

SPILL IDENTIFICATION

<table>
<thead>
<tr>
<th>Spilled Substance:</th>
<th>State:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source (Vehicle, drum, etc.):</td>
<td>Building:</td>
</tr>
<tr>
<td>Estimated Amount:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cause of Spill:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Containment/Clean-up: Action Taken:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parties Performing Spill Clean-up/Removal (EMD Turn-in Date):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional Assistance Required:</th>
</tr>
</thead>
</table>

REPORT CERTIFICATION

<table>
<thead>
<tr>
<th>Printed Name/Rank:</th>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

All spills must be reported to the Base Fire Department by calling 011. The Environmental Management Division can be reached by calling (910) 451-1482. Units are required to maintain a copy of all completed spill forms preferably in their ESOP Binder.

MCIEAST-MCB CAMLEJO 5090.9
(2/13) PREVIOUS EDITIONS ARE OBSOLETE
ADobe 9.0
6.0 CULTURAL RESOURCES

MCB Camp Lejeune enjoys a rich history, and remnants of our past may be found throughout the real properties that make up the installation. All personnel at MCB Camp Lejeune are responsible for ensuring the cultural resources entrusted to the USMC care remain intact and available for future generations. Contractors are responsible for notifying the ROICC or Contract Representative immediately if they encounter suspected archaeological sites, artifacts, or human remains.

6.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with cultural resource management. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

6.1.1. Key Definitions

- **Archaeological Resource.** Defined by the [Archaeological Resources Protection Act (ARPA)](https://www.archaeology.gov/arpa) as any material remains of past human life or activities.
that are at least 100 years old and are capable of providing scientific or human understanding of past human behavior and cultural adaptation, including the site on which the remains are located. Examples include pottery, basketry, bottles, weapons, weapon projectiles, tools, structures or portions of structures, pit houses, rock paintings, rock carvings, intaglios, graves, human skeletal materials/remains, or any portion or piece of any of the foregoing items or structures. Non-fossilized and fossilized paleontological specimens, or any portion or piece thereof, are not considered archaeological resources unless found in an archaeological context. (According to the National Historic Preservation Act (NHPA) of 1966, some historic properties built within the past 50 years can achieve significance if they are of exceptional importance [National Register Criteria Consideration G].)

- **Cultural Resource.** A generic term for the collective evidence of the past activities and accomplishments of people, including buildings, structures, districts, sites, features, and objects of significance in history, architecture, archaeology, engineering, or culture, per MCO P5090.2A.

- **Effect.** Any condition of a project that may cause a change in the quality of the historic, architectural, archaeological, or cultural character of a property that qualifies it for listing in the National Register of Historic Places (NRHP). A project is considered to have an effect on a historic or cultural property when any aspect of the project changes the integrity of the
location, design, setting, materials, workmanship, feeling, or association of the property that contributes to its significance.

- **Historic Property.** Any prehistoric or historic district, site, building, structure, or object significant in U.S. history, architecture, archaeology, engineering, or culture and included, or eligible for listing in, the NRHP, per the NHPA and MCO P5090.2A.

- **State Historic Preservation Officer.** The person designated to administer the State Historic Preservation Program, including identifying and nominating eligible properties to the NRHP and administering applications for listing historic properties in the NRHP.

6.1.2. Key Concepts

- **Notification.** Contractors must notify the ROICC or Contract Representative if they encounter any cultural resources.

- **Policy.** DoD policy is to preserve significant historic and archaeological resources.

6.1.3. Environmental Management System

Contractor practices associated with cultural resources include the following:

- Construction/demolition/renovation
- Land clearing
- Road construction and maintenance
- Soil excavation/grading

The potential impacts of these activities on the environment include damage, destruction, alteration, theft, or demolition of historic properties.

6.2. OVERVIEW OF REQUIREMENTS

It is DoD policy to integrate the archeological and historic preservation requirements of applicable laws with the planning and management of activities under DoD control; to minimize expenditures through judicious application of options available in complying with applicable laws; and to encourage practical, economically feasible rehabilitation and adaptive use of significant historical resources.

Contractors operating aboard MCB Lejeune and MCAS New River must be aware of and adhere to all applicable regulations and requirements regarding cultural resources, which include but may not be limited to the following:

- **BO 5090.8A.** Sets forth regulations and establishes responsibilities associated with management of archaeological and historic resources aboard MCB Camp Lejeune.

- **Archaeological and Historic Preservation Act (AHPA) of 1974 (16 USC 469 et seq.)** Amends the Reservoir Salvage Act to extend its provisions beyond the construction of dams to any terrain alteration resulting from any Federal construction
project or federally licensed project, activity, or program.

- **Archeological Resources Protection Act of 1979 (16 USC 470 et seq.)** Requires Federal land managers to issue permits for the excavation or removal of artifacts from lands under their jurisdiction. The ARPA requires that relevant Native American tribes be notified of permit issuance if significant religious or cultural sites will be affected. It prohibits the excavation, damage, alteration, theft, or defacement of an archaeological site or artifacts unless permitted by the Federal land manager.

- **DoD Directive 4710.1, Archaeological and Historic Resources Management.** Provides policy for the management of archaeological and historic resources on land and in water under DoD control.

- **EO 11593, May 13, 1971.** Requires all Federal agencies to administer cultural properties under their control. Agencies are required to direct their policies, plans, and programs so that significant sites and structures are preserved.

- **Historic Sites, Buildings, and Antiquities Act of 1935 (Public Law 74-292, 16 USC 461 et seq.).** States that it is Federal policy to preserve historic and prehistoric properties of national significance.

- **National Environmental Policy Act (NEPA) of 1969 (42 USC 4321 et seq.).** States that it is Federal government policy to preserve important historic, cultural, and natural aspects of our national heritage
and requires the consideration of environmental concerns during project planning and execution.

- **National Historic Preservation Act of 1966 (16 USC 470 et seq.).** Establishes historic preservation as a national policy and requires Federal agencies undertaking actions that may affect NRHP-eligible historic properties to consult State historic preservation offices and the Advisory Council on Historic Preservation. Section 110 of NHPA requires Federal agencies to inventory, evaluate, identify, and protect cultural resources that are determined eligible for listing in the NRHP.

- **Public Buildings Cooperative Use Act of 1976 (Public Law 94-541).** Encourages adaptive reuse of historic buildings as administrative facilities for Federal agencies.

- **Title 36 CFR Part 65, National Historic Landmarks Program.** Identifies and designates National Historic Landmarks, and encourages the long-range preservation of nationally significant properties that illustrate or commemorate the history and prehistory of the United States.
6.3. PROCEDURES

All contractors are expected to follow these procedures:

- Notify the ROICC or Contract Representative immediately concerning any encounter with suspected archaeological sites, artifacts, human remains, or any other suspected cultural resources during contractor activities.

- Stop work in the immediate area of the discovery until directed by the Contract Representative to resume work.

Be particularly aware of surroundings when working in a designated historic area. The Camp Lejeune Installation Geospatial Information & Services Office of the Geospatial Services Division can provide resource mapping of known cultural resource areas for all planners, project managers, contractors, and others, through formal request. The ROICC or Contract Representative will assist with making arrangements to request access for Geographic Information System mapping.
Discovery of possible cultural resource

Reservist site personnel and/or contractors cease ground-disturbing activity

Report observations to ROICC/Contract Representative

Secure discovery location with adequate buffer area

Do not resume activities at the discovery location until cleared by EMD/EAD

Figure 6-1. Possible Cultural Resource Discovery Flow Chart
7.0 HAZARDOUS MATERIALS/HAZARDOUS WASTE MANAGEMENT

All persons on a USMC installation are subject to compliance with Federal, State, and local regulations and permit conditions addressing the proper management of hazardous materials and waste. Mishandling these wastes and materials may result in violation notices, fines, and/or penalties. The EPA regulates hazardous wastes through the RCRA, which provides specific regulatory definitions for hazardous waste and its management. The RCRA governs all hazardous waste from the point of generation to ultimate disposal, including hazardous waste generated by contractors aboard MCB Camp Lejeune and MCAS New River. Hazardous materials, including those used by contractors aboard the installation, are also regulated by the EPCRA. Additionally, the North Carolina Department of Environmental Quality (NCDEQ) has issued more stringent rules and regulations governing hazardous materials and hazardous waste management that also apply to contractors.

7.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with hazardous materials (HM), hazardous wastes (HW), and their management. If you have any questions or concerns about the information in this section, Direct questions or concerns about the information in this section to the ROICC or Contract Representative.
please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

7.1.1. Key Definitions

- **90-day Accumulation Area.** These areas are used to store HW temporarily until it is either manifested and shipped off site for disposal or transferred to a permitted storage facility. HW may be accumulated for up to 90 days in these areas. MCB Camp Lejeune’s 90-day accumulation facility is located on Michael Road.

- **Generator.** Any person whose activity or process produces HW or whose activity or process subjects HW to regulation.

- **Hazardous Material.** A chemical compound, or a combination of compounds, posing or capable of posing a significant risk to public health, safety, or the environment as a result of its quantity, concentration, or physical/chemical/infectious properties.

- **Hazardous Waste.** Any discarded material (including solid, liquid, or gas) or combination of discarded materials which, due to quantity, concentration, or physical, chemical, or infectious characteristics may:
 - Cause or significantly contribute to an increase in mortality or cause a serious irreversible or incapacitating reversible illness; or
Pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, disposed of, or otherwise managed.

- **Manifest.** A document that allows all parties involved in HW management (e.g., generators, transporters, disposal facilities, EPA, State agencies) to track the movement of HW from the point of generation to the point of ultimate treatment, storage, or disposal. All HW manifests for waste generated aboard MCB Camp Lejeune must be reviewed and released by personnel from the Resource Conservation and Recovery Section, EMD, who can be contacted at (910) 451-1482.

- **Non–RCRA-Regulated Waste.** Waste that is not regulated or is exempt from regulation under RCRA HW requirements but has other regulatory requirements for proper management.

- **Satellite Accumulation Area (SAA).** Designated areas at or near the point of generation, where HW is accumulated. Generators may accumulate up to 55 gallons of HW or one quart of acute HW at a satellite area for an indefinite amount of time. When 55 gallons of HW (or 1 quart of acute HW) are exceeded, the generator must date the container and transfer it to an approved 90-day site or long-term HW storage facility within 72 hours. EMD authorization for an SAA must be obtained and posted at the site. EMD authorization will establish individual limits for each SAA. No SAA
authorizations will exceed 55 gallons of HW or 1 quart of acute HW. In accordance with installation policy, HW in an SAA should not be stored longer than 365 days, even if the container is not full.

- **Safety Data Sheet (SDS).** A document that provides information about (1) chemical properties, environmental hazards, and health hazards; and (2) protective measures, along with safety precautions, for handling, storing, and transporting hazardous chemical products. The Hazard Communication Standard (HCS), 29 CFR 1910.1200(g), was revised in 2012 to mandate the use of a single Globally Harmonized System of Classification and Labelling of Chemicals (GHS) by manufacturers, distributors and importers to communicate information on chemical-related hazards. The information contained in the SDS is standardized in a 16-section format. Employers must ensure that the SDSs for all hazardous chemicals in the workplace are readily accessible to employees.

- **Treatment.** Any method, technique, or process designed to change the physical, chemical, or biological character or composition of any HW to neutralize the waste; or to recover energy or material resources from the waste; or to render such waste nonhazardous or less hazardous, safer to transport, store, or dispose of, or amenable for recovery or storage, or reduction in volume.

- **Treatment, Storage, and Disposal (TSD) Facilities.** TSD facilities conduct HW treatment,
storage, or disposal operations and require an RCRA part B permit for final approval to operate. The part B permit is maintained to accurately identify the most current operations at the TSD facility. MCB Camp Lejeune does not have a TSD facility.

- **Universal Waste (UW).** UW regulations streamline HW management standards for batteries, pesticides, mercury-containing equipment, and fluorescent lamps. The regulations govern the collection and management of these widely generated wastes, thus facilitating environmentally sound collection and proper recycling or treatment. In North Carolina, batteries, thermostats, obsolete agricultural pesticides, and fluorescent lamps may be managed under the UW Rule. UW must be transferred off site within 1 year of the date when the material was first identified as waste.

- **Used Oil.** Any oil that has been refined from crude oil or synthetic oil and, as a result of use, storage, or handling, has become unsuitable for its original purpose due to the presence of impurities or loss of original properties. Used oil may be suitable for further use and is economically recyclable; therefore, it is managed as a separate category of material.

7.1.2 Key Concepts

- **HW Management.** The systematic control of the collection, source separation, storage, transportation, processing, treatment, recovery, and disposal of HW. In addition, HW Management includes processes to
reduce the HW’s effect on the environment and to recover resources from it.

- **HW Minimization.** The USMC policy is to reduce the quantity of HW disposed of by source reduction, recycling, treatment, and disposal. The highest priorities are reducing HW generation, and recycling. The goal of the USMC is to achieve continuous reduction of HW generation through P2 initiatives, BMPs, and use of the best available demonstrated technology.

- **National Fire Protection Association.** The U.S. trade association that creates and maintains private, copyrighted standards and codes, including the diamond hazard label in Figure 7-1, which is used by emergency personnel to quickly and easily identify the risks posed by hazardous materials.
Figure 7-1. Diamond Hazard Label
7.1.3 Environmental Management System

Contractor practices associated with HM and HW management include, but are not limited to, the following:

- Battery management
- Boat operation/ maintenance
- Boiler operation
- Building operation/ maintenance/repair
- Chlorination
- Cooling tower operation and maintenance
- Construction/renovation/ demolition
- Degreasing
- Drinking water management
- Engine operation and maintenance
- Equipment operation/ maintenance/disposal
- Fueling and fuel management/storage
- Habitat management
- HCP operation
- HM storage
- HM transportation
- HW disposal offsite transport
- HW satellite accumulation area
HW storage (<90 days)
HW transportation
Laboratory
Landscaping
Laundry
Live fire range operations
Metal working
Non-destructive inspection
ODS/halon management
Paint gun cleaning
Paint removal
Painting
Parts replacement
Pesticide/herbicide management and application
Polishing
Pumping station/force main
Range residue clearance
Recreational facilities operation
Roofing kettle
Sidewalk and road deicing
Storage tank management
Swimming pool operation and maintenance
Universal waste storage/collection

UXO/EOD operations

Vehicle maintenance

The potential impacts of these activities on the environment include depletion of the HW landfill, depletion of non-renewable resources, and degradation of soil quality.
7.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard MCB Lejeune and MCAS New River must be aware of and adhere to all applicable regulations and requirements regarding HM and HW, which include but may not be limited to the following:

- **BO 5090.9, Hazardous Material/Waste Management/Air Station Order (ASO) 5090.2, Environmental Compliance and Protection Program for MCAS New River.** Establishes procedures and general responsibilities for the disposal of HM and HW under environmental permits and authorizations.

- **Emergency Planning and Community Right-to-Know Act.** Establishes requirements regarding emergency planning and the reporting of hazardous chemical storage and use.

- **Hazardous Material Transportation Act (HMTA) of 1975.** The principal Federal law regulating the transportation of HM. Established to mitigate the risks to health, property, and the environment inherent in the transportation of HM in intrastate, interstate, and foreign commerce. The HMTA is administered by the U.S. Department of Transportation (DOT) and regulates the shipping, marking, labeling, placarding, and recordkeeping requirements for HM, including HW and military munitions.
- **Resource Conservation and Recovery Act of 1976.** Establishes standards for HW generators as necessary to protect human health and the environment by instituting statutory standards for generators and transporters of HW that will ensure the following: proper recordkeeping and reporting; use of a manifest system; use of appropriate labels and containers; containerization and accumulation time; and proper management of TSD facilities. In addition, it gives the EPA and State agencies authority to access facility premises and all records regarding HW management.

Because the installation is designated as a Large Quantity Generator (LQG) of HW, all HW generated aboard MCB Camp Lejeune must meet the regulatory requirements of this generator designation. An LQG may maintain three types of HW accumulation/storage areas: satellite, 90-day, and permitted. Typically, HW is accumulated at an SAA and later transferred to a 90-day or permitted storage area.

Both MCB Camp Lejeune and MCAS New River maintain Hazardous Waste Management Plans (HWMPs) that outline the specific requirements for managing HM and HW. The HWMP identifies and provides guidance to implement all regulatory HW management activities and is available to all
personnel who accumulate, generate, transport (including on-installation transportation), treat, store, or dispose of HW.

Contractors are responsible for the management of all HM and the ultimate disposition of any HW generated aboard MCB Camp Lejeune during a contract performance period. The ROICC or Contract Representative will contact Environmental personnel, who will provide additional guidance and oversight to verify compliance with applicable Federal, State, and local laws governing the generation, handling, and disposal of HM, HW, UW, used oil, petroleum-contaminated materials, RCRA-regulated HW, and non–RCRA-regulated waste.

Depending on the type of project, contractors may be required to submit a site-specific HWMP to the ROICC or the Contract Representative prior to beginning work. Additionally, the Contracting Officer may require a Contractor Hazardous Material Inventory Log and corresponding SDSs for all materials to be used during the execution of the contract. EMD/EAD will use the SDSs to help contractors establish their Hazardous Material Storage and SAAs.
7.3. HAZARDOUS MATERIALS REQUIREMENTS

If a project uses HM:

- Reduce/reuse/recycle when possible; meet contract requirements for recycling.

- Segregate incompatible materials. Consult the SDS or material manufacturers with questions about a material’s compatibility. Some examples of incompatible materials likely to be used by contractors are:
 - Corrosives (e.g., batteries, stripping and cleaning compounds containing acids or bases) and Flammables (e.g., fuels, oils, paints, and adhesives)
 - Corrosives and Oxidizers (e.g., peroxide, perchlorates, sodium hypochlorite/bleach, or calcium hypochlorite)
 - Oxidizers and Flammables

- All compatible materials should be segregated and stored within designated storage lockers or cabinets (i.e., flammable materials should be stored in designated flammable storage lockers or cabinets, and corrosives should be stored in designated corrosives storage lockers or cabinets).
• Do not store large quantities of materials. Keep on hand only what can be used.

• Maintain an inventory of all HM maintained onsite, with adequate controls in place to prevent unauthorized access.

• Do not dump any HM into floor drains, sinks, oil-water separators (OWSs), or storm drains, or onto the ground.

• Store containers that hold 55 gallons or more (including in-use electrical generators and portable equipment) in proper secondary containment. Permanent secondary containment must be inspected weekly, temporary secondary containment must be inspected daily; all inspections and drainage of stormwater from secondary containment must be documented.

• Maintain SDSs and appropriate spill control/cleanup materials onsite at all times.

• Provide HM storage and usage information for regulatory reporting to the appropriate environmental office upon request.

• Stop work immediately if a project unearths any unknown HM (e.g., munitions and explosives of
concern [MEC], discarded military munitions [DMM], or unexploded ordnance [UXO]), and immediately report the situation to the ROICC or Contract Representative.

- Do not leave HM (or HW) onsite once the contract is completed. Remove it from the installation or make arrangements through the ROICC or Contract Representative to contact RCRS or EAD for turn-in procedures upon completion of the contract.

7.4. UNIVERSAL WASTE REQUIREMENTS

The NCDEQ allows thermostats, obsolete agricultural pesticides, lamps, and certain types of batteries to be managed as UW. UW has less stringent requirements for storage, transport, and collection, but it must still comply with full HW requirements for final recycling, treatment, or disposal. Federal UW requirements are outlined in 40 CFR 273. Contact the ROICC or Contract Representative regarding any additional direction or questions on the handling of UW.

All UW must be properly containerized, stored, and labeled when the waste is first generated. Containers/areas for accumulating UW must be labeled as follows:

- Words: UNIVERSAL WASTE.
- Content: Noun name found on the specific Hazardous Waste Profile Sheet (DRMS Form 1930), which is available from EMD (e.g., batteries,
fluorescent lamps, pesticides, mercury-containing equipment).

- Accumulation Start Date (ASD): The ASD must be marked on the subject container as soon as the UW item is placed in the container. Storage of UW cannot exceed 365 days.

- Number of Containers: The number of containers marked reflects the total number of containers disposed of within the current document (i.e., 1 of 1, etc.).

Contractors who need UW accumulation areas should contact the ROICC or Contract Representative, who will contact RCRS or EAD personnel to help contractors establish an accumulation area for UW. Key points for this process:

- The containers must be under the control of the contractor generating the waste and must be closed at all times except when waste is being adding.

- Per installation policy, UW containers/areas must be inspected weekly using the Weekly Hazardous Waste (HW) Site Inspection Form, included as Attachment 7-1 and Attachment 7-2. Written records noting discrepancies and corrective actions must be maintained onsite for 3 years. Copies of inspection reports should be provided to the ROICC or Contract Representative.

- When the ASD reaches 1 year, or when the container is full, the waste generator has 72 hours (3 days) to arrange for the transportation of the UW to an RCRA.
Part B permitted storage area. Contact the ROICC or Contract Representative to coordinate the removal of the UW when the container is full or the contract is finished.

7.5. HAZARDOUS WASTE REQUIREMENTS

The appropriate environmental office must be notified before any HW is generated on projects managed by the ROICC or the Facilities Support Contracts (FSC). Have the ROICC or Contract Representative contact RCRS or EAD with questions regarding whether or not a waste meets the definition of HW. Installation personnel must approve all regulated waste and HW storage locations.

If a project generates HW:

- Minimize generation through waste minimization and P2 techniques.
- Have the ROICC or Contract Representative contact RCRS or EAD with questions regarding how to manage the waste. Do not mix waste types (e.g., used oil rags and solvent rags).
- Have the ROICC or Contract Representative contact RCRS or EAD for turn-in procedures as wastes are
generated, to determine if waste can be disposed of on the installation.

- Do not dump any HW into floor drains, sinks, OWSs, or storm drains, or onto the ground. Do not place HW into general/municipal trash dumpsters.
- Ensure that HW drums are properly labeled and lids are secured (wrench tight).
- Ensure that SAAs are managed properly and storage limits are not exceeded; have the ROICC or Contract Representative consult RCRS or EAD prior to creating a new SAA.

7.5.1. Storage

All HW must be properly containerized, stored, and labeled at the time the waste is first generated. HW must be stored in containers that meet applicable DOT specifications. HW labels, as required by the EPA and the NCDEQ, must contain the following information:

- **Words:** HAZARDOUS WASTE.
- **Content:** Noun name found on the specific Hazardous Waste Profile Sheet (DRMS Form 1930) provided by RCRS or EAD.
- **ASD:** For HW accumulated in an SAA, the ASD will be affixed once the container is filled or at the 1-year anniversary, whichever comes first.
- **Number of Containers:** Reflects the total number of containers (e.g., 1 of 1, etc.).
Any HW generated by contractors must be stored in an SAA. Contractors who need an SAA should contact the ROICC or Contract Representative, who will contact RCRS or EAD personnel to help the contractor establish each SAA. A summary of procedures follows:

- The HW generator may accumulate as much as 55 gallons of a specific HW stream (or up to one quart of acute HW) in a container at or near the point of generation.

- The containers must be under the control of the contractor generating the waste and must be kept closed (wrench tight) at all times except when waste is being added.

- HW containers must be inspected weekly using the *Weekly Hazardous Waste (HW) Site Inspection Form*, included as Attachment 7-1 and Attachment 7-2. Written records noting discrepancies and corrective actions must be maintained for a period of 3 years. Copies of inspection reports should be provided to the ROICC or Contract Representative.

- The generating contractor must monitor the level of waste in the SAA container and contact the ROICC or Contract Representative to coordinate disposal or determine if the contractor can turn in the HW to RCRS or EAD before the container is full. If the SAA container becomes full, the generating contractor has 72 hours (3 days) to arrange for the transport of the HW to an RCRA Part B permitted
storage area. Storage of HW in an SAA should not exceed 365 days, even if the container is not full.

7.5.2. Manifesting and Disposal

All disposal of HW generated by contractors must be coordinated with the installation. HW and UW generated aboard MCB Camp Lejeune and MCAS New River must be transported off the installation by a permitted HW transporter and must include a Uniform Hazardous Waste Manifest form (EPA Form 8700-22) or an equivalent approved manifest. The following procedures must be followed for disposal of HW:

- Use the MCB Camp Lejeune or MCAS New River EPA identification number for disposal of all contractor-generated HW.

- HW may only be transported by authorized personnel or permitted companies. Prior to transportation offsite, the HW generator must ensure that all DOT requirements for labeling, marking, placarding, and containerizing are met. The HW generator must also ensure that the transporter has obtained the installation’s EPA identification number for the transportation of HW and that an appropriate waste manifest accompanies each shipment.

Only personnel from EMD who have been designated in writing by the MCB Camp Lejeune Commanding General can sign the hazardous waste manifest.
• The HW manifest can only be signed by personnel from the installation who have been designated in writing by the CG. The ROICC or Contract Representative should contact RCRS or EAD about manifesting regulated and non-regulated wastes offsite. Under NO circumstances can a contractor, ROICC, or Contract Representative sign a HW manifest or use another EPA identification number for wastes generated at the installation.

• All HW must be submitted to a permitted TSD facility. HW generators must certify that the facility receiving the waste employs the most practical and current treatment, storage, or disposal methods for minimizing present and future threats to human health and the environment.

7.6. NON–RCRA–REGULATED WASTE REQUIREMENTS

Non-RCRA-regulated wastes include used oil (when recycled), non-terne (tin and lead alloy) plated oil filters (not mixed with listed waste), CFC refrigerants (from totally enclosed equipment), certain wastes containing Polychlorinated Biphenyl (PCB), asbestos, and batteries not managed as UW.

7.6.1. Used Oil and Oil Filters

Used motor oil itself is not regulated as HW in North Carolina if it is recycled or burned for energy recovery. If used oil is not recycled, the generator must determine prior to disposal whether it is HW. Used oil must be collected in
drums or another approved container marked “Used Oil.” If
the used oil storage container has a volume of 55 gallons or
more, it must be stored in secondary containment.

- Do not dump used oil into drains, sinks, or trash
 containers, or onto the ground.
- Do not store used oil in open buckets or drip pans,
damaged or rusted containers, or containers that
cannot be fully closed.
- Do not mix used oil with other waste materials.

Terne plated oil filters contain an alloy of tin and lead. They
are considered a hazardous waste due to their lead content
and are typically located on industrial and heavy duty
vehicles and equipment. All other used oil filters are not
regulated as HW in North Carolina, as long as they are not
mixed with listed HW. To qualify for this exclusion, the
following conditions must be met:

- Used oil filters must be gravity hot-drained by
 puncturing the filter anti-drain back valve or filter
dome and hot draining into a “Used Oil” storage
 drum. “Hot-drained” means that the oil filter is
 drained at a temperature that approximates the
temperature at which the engine operates.
- Any incidental spillage that occurs must be cleaned
 up with a dry sweep, rags, or “absorbent matting.”
- Drained used oil filters must be collected in a
 container that is in good condition and is labeled with
 the words “Drained Used Oil Filters.”
• No other waste streams should be deposited in containers collecting used oil filters for disposal.

• Coordinate with the ROICC or Contract Representative to determine if the drained used oil filters can be given to RCRS or EAD.

7.6.2. **Used Antifreeze**

Antifreeze is composed of regulated chemicals, including ethylene glycol and propylene glycol, and during typical use may become contaminated with traces of fuel or metal particles (i.e., lead, cadmium, or chromium). It may also become HW if it has been mixed with other wastes, such as gasoline or solvents. Additional characterization may be required to determine whether or not used antifreeze is HW. Used antifreeze that is not recycled may be regulated as HW if the results from the Toxic Characteristics Leaching Procedure (TCLP) indicate metal contents that meet or exceed RCRA thresholds.

The State of North Carolina does not regulate used antifreeze as HW, as long as it is recycled by reuse, distillation, filtration, or ion exchange. Used antifreeze must be stored in closed containers on an impermeable concrete surface with adequate spill controls (secondary containment, appropriate stocked spill kits, etc.). Contact the ROICC or Contract Representative to determine if used antifreeze can be given to RCRS or EAD.
7.6.3. **Petroleum-Contaminated Wipes and Oily Rags**

Petroleum-contaminated wipes and oily rags are to be managed as non-regulated waste. Follow these procedures:

- Store oil-contaminated wipes and oily rags in metal containers because of their flammability/combustibility and to protect them from the weather.
- Do not throw these non-regulated waste items into solid waste dumpsters or garbage cans.
- Contact the ROICC or Contract Representative to determine if petroleum-contaminated wipes and oily rags can be given to RCRS or EAD.

7.6.4. **Used Electronic Equipment**

Used electronic equipment may contain lead solder or PCB oils (e.g., light ballast). Turn in these items as they are generated. Have the ROICC or Contract Representative contact RCRS or EAD for proper handling and/or turn-in procedures.

7.6.5. **New and Used Batteries (Not Regulated as Universal Waste)**

- Store compatible batteries together (i.e., lithium batteries should be stored with other lithium batteries).
• Store batteries off the ground to prevent them from coming into contact with water.

• Store lead-acid batteries away from an open flame.

• Place rechargeable batteries in plastic bags before storing them with other rechargeable batteries.

• Do not dispose of batteries unless authorized.

• Have the ROICC or Contract Representative contact RCRS or EAD for proper handling and/or turn-in procedures.
Attachment 7-1
Weekly Hazardous Waste (HW) Site Inspection Form
MCB Camp Lejeune
MCB Camp Lejeune Weekly Hazardous Waste (HW) Site Inspection
Universal Waste (UW)/Satellite Accumulation Area (SAA)

Building Number/location of HW Site: ________________
Unit Evaluated: _________________________________
Evaluation Date: _____/_____/_____
Evaluation By (Site Manager): ___________________
Evaluation Time: _______________

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>YES</th>
<th>NO</th>
<th>Location of Discrepancy and Proposed Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is housekeeping maintained in acceptable manner?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Is any HW present at the site?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Are HW containers properly marked?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Are HW containers in serviceable condition?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Are container bungs, caps, and openings properly secured?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Is a unit spill plan/activation prominently posted?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Is 911 spill response sign posted?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Are "Danger-Unauthorized Personnel Keep Out" signs posted so they may be seen from any approach?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Are "No Smoking" signs posted?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUESTION</td>
<td>YES</td>
<td>NO</td>
<td>Location of Discrepancy and Proposed Corrective Action</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>10. Does the site have emergency communication system or two-man rule in effect? If the two-man rule is implemented, is a sign posted with the legend "Two-Man Rule in Effect"?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Are properly charged fire extinguishers, as well as eye wash stations, present and inspected at least monthly?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Is the post indicator valve in good operating condition and secured in the closed position, and are there any structural defects such as cracked concrete?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Is the proper spill response equipment readily available?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Is the site designated and recognizable, and is the EMD Authorization posted within the site as to be visible to personnel placing waste into the container? (SAA site only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Are all HWs properly segregated and stored in the designated site?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Are any hazardous materials being stored in the Satellite Accumulation Area or < 90-day storage site?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 7-2
Weekly Hazardous Waste (HW) Site Inspection Form
MCAS New River
Weekly Hazardous Waste Storage Area Inspection Form

Squadron: ____________ **Inspector:** ________________

Date: ____________ **Signature:** ________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Corrective Actions or N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the HW container located at or near the point of generation?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Is the HW container DOT approved?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Is the HW container marked correctly with the words “Hazardous Waste,” correct noun name of contents, NSN’S and unit designator?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Is the HW container closed and wrench tight when no one is adding to the container?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. If a funnel is left in place, does that funnel have a plug or ball valve to be considered closed or secured?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Is the HW container in good condition? (No excessive rust or dents in critical areas, seals are in place, no bulging or collapsing and no signs of spillage or leakage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Is the Spill Contingency Plan posted and in plain view?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Is the SAA Site approval letter from EAD posted at the SAA site?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Is the SAA Site limited to Authorized Personnel only?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Yes</td>
<td>No</td>
<td>Corrective Actions or N/A</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>10. Is the HW container below the proper ullage for a liquid to expand? (4 inches from the top)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Are SAA HW containers moved to the 90-Day Site within 72 hours when filled to the proper ullage or weight capacity of the container?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. (90-Day Site only) Are all palletized waste streams correctly marked with “Hazardous Waste” or “Universal Waste,” noun name of the waste, NSN and unit designator on the pallet or wall of the waste structure?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. (90-Day Site only) Are all HW containers turned in prior to the 90th day after the ASD?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Are adequate spill response supplies readily available for use in case of spill or leakage?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Is there a means of emergency communication between storage facilities and working spaces?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Is the SAA site or 90-Day Site in a good state of police?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NAVOSHENVTRACEN Compatibility Chart

HCC Group Name

<table>
<thead>
<tr>
<th>HCC Group</th>
<th>Example Materials</th>
<th>Incompatible Materials</th>
<th>Reaction if Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ACIDS</td>
<td>Nitric Acid, Sulfuric Acid, hydrochloric acid</td>
<td>FLAMMABLES: COMBUSTIBLES, ALKALOXIDIZING REAGENTS, EXPLOSIVES</td>
<td>HEAT, EXPLOSION</td>
</tr>
<tr>
<td>2 AGRICULTURAL MATERIALS</td>
<td>Inorganic Fertilizers, Herbicides, Pesticides</td>
<td>FLAMMABLES: COMBUSTIBLES, ALKALOXIDIZING REAGENTS, EXPLOSIVES</td>
<td>HEAT, EXPLOSION</td>
</tr>
<tr>
<td>3 ALKALOIDS</td>
<td>Monoamine Oxides, Tetrahydroquinolines</td>
<td>FLAMMABLES: COMBUSTIBLES, ALKALOXIDIZING REAGENTS, EXPLOSIVES</td>
<td>HEAT, EXPLOSION</td>
</tr>
<tr>
<td>4 CLEANING COMPOUNDS</td>
<td>Detergents, Soap, Antifungal Compounds</td>
<td>DETERGENTS; SOAP; ANTIFUNGAL COMPOUNDS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>5 COMPRESSED GASES</td>
<td>Ammonia, Propane, Nitrogen, Argon, Helium, Oxygen</td>
<td>HEAT SOURCES</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>6 CORROSIVE CHEMICALS</td>
<td>Corrosive Chemicals</td>
<td>CORROSIVE CHEMICALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>7 DETERGENTS/SOAPS</td>
<td>Sodium Lauryl Sulfate, Sodium Laureth Sulfate</td>
<td>CORROSIVE CHEMICALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>8 GREASES</td>
<td>Lithium Grease, Graphite Grease</td>
<td>CORROSIVE CHEMICALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>9 HYDRAULIC FLUIDS</td>
<td>Petroleum-Based Systemic Fluids</td>
<td>CORROSIVE CHEMICALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>10 INJECTION PENTRANTS</td>
<td>Ethylene Glycol, Propylene Glycol</td>
<td>OILS & LUBRICANTS</td>
<td>EXPLOSION HAZARD</td>
</tr>
<tr>
<td>11 OILS & LUBRICANTS</td>
<td>General Purpose Grease, Vegetable Oils, Petroleum Oils</td>
<td>OILS & LUBRICANTS</td>
<td>EXPLOSION HAZARD</td>
</tr>
<tr>
<td>12 PAINT MATERIALS</td>
<td>Primers, Paints, Ultraviolet Curing Material</td>
<td>OILS & LUBRICANTS</td>
<td>EXPLOSION HAZARD</td>
</tr>
<tr>
<td>13 PHOTOCHEMICALS</td>
<td>Resin Coatings, Starches, Nitrocellulose, Resins, Synthetic Rubbers</td>
<td>OILS & LUBRICANTS</td>
<td>EXPLOSION HAZARD</td>
</tr>
<tr>
<td>14 POLISHING COMPOUNDS</td>
<td>Dyeing Compounds, Metal Polishes, General Purpose Waxes</td>
<td>OILS & LUBRICANTS</td>
<td>EXPLOSION HAZARD</td>
</tr>
<tr>
<td>15 SOLVENTS</td>
<td>Methylene Chloride, Toluene, Xylenes</td>
<td>SOLVENTS</td>
<td>EXPLOSION HAZARD</td>
</tr>
<tr>
<td>16 THERMAL INSULATION</td>
<td>Ceramic Wool, Glass Wool</td>
<td>MATERIALS INTRINSICALLY EXPLOSIVE</td>
<td>EXPLOSION</td>
</tr>
<tr>
<td>17 WATER BASED TREATMENT CHEMICALS</td>
<td>Nitric Acid, Sulfuric Acid</td>
<td>CORROSIVE CHEMICALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>18 THERMAL TREATMENT CHEMICALS</td>
<td>Calcium Hypochlorite, Sodium Hypochlorite</td>
<td>CORROSIVE CHEMICALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>19 FUELS</td>
<td>Gasoline, Diesel Fuel, Jet Fuel</td>
<td>CORROSIVE CHEMICALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>20 HEAVY METALS</td>
<td>Mercury, Lead, Cadmium</td>
<td>DANGEROUS MATERIALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>21 BATTERY</td>
<td>Lead, Antimony, Sulfur, Silicon</td>
<td>DANGEROUS MATERIALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
<tr>
<td>22 PESTICIDES</td>
<td>Insecticides, Fungicides, Rodenticides</td>
<td>DANGEROUS MATERIALS</td>
<td>HEAT, EXPLOSION HAZARD</td>
</tr>
</tbody>
</table>

1. This chart is to be used as a GUIDE ONLY.
2. Compare the desired HMUG Group/HCC in the left column with the incompatible Material(s) of that Group in the center column on the same row. Mixing of the HMUG Group/HCC with the Incompatible Material(s) may result in the reaction(s) listed in the right column.
3. Not all applicable HCCs are listed; only the most frequently encountered HCCs (except NT) are listed.

www.safetycenter.navy.mil/training

REV 09-03

7-35
8.0 ASBESTOS

Asbestos was widely used in many products (especially building parts) prior to 1990 for its fire resistance, strength, and affordability. However, exposure to friable asbestos can lead to lung diseases including cancer. Contractors working aboard the installation must follow all Federal, State, and local regulations/specifications for the proper notification, removal, disposal, and management of all asbestos-containing materials (ACM) associated with demolition and renovation projects.

8.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with asbestos and its management. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate EMD program if additional clarification is necessary.

8.1.1. Key Definitions

- **Abatement.** Work performed to repair, maintain, remove, isolate, or encapsulate ACM.

- **Asbestos.** Asbestos is the generic term for a group of naturally occurring fibrous silicate minerals, including those that typically exhibit high tensile
strength, flexibility, and resistance to thermal, chemical, and electrical conditions. Asbestos was commonly used in installed products such as roofing shingles, floor tiles, cement pipe and sheeting, roofing felts, insulation, ceiling tiles, fire-resistant drywall, and acoustical products.

- **Asbestos-Containing Material.** Any material containing more than 1 percent asbestos, per 29 CFR 1926.1101.

- **Category I Non-friable ACM.** Asbestos-containing packings, gaskets, resilient floor covering, and asphalt roofing products containing more than 1 percent asbestos, per 40 CFR 61, Subpart M.

- **Category II Non-friable ACM.** Any material, excluding Category I non-friable ACM, containing more than 1 percent asbestos that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure, per 40 CFR 61, Subpart M.

- **Demolition.** The wrecking or removal of any load-bearing walls or structure with any related handling operations.

- **Friable.** Any ACM that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure (may include damaged ACM that was previously identified as non-friable), per 40 CFR 763.

- **Glove Bag.** A sealed compartment with attached inner gloves that is used for handling ACM. Glove bags provide a small work area enclosure typically used for small-scale asbestos stripping operations.
• **Presumed Asbestos-Containing Material (PACM).** Thermal system insulation (TSI) and surfacing material found in buildings constructed no later than 1980, per 29 CFR 1926.1101.

• **Regulated Asbestos-Containing Material (RACM).** Includes friable ACM, Category I non-friable ACM that has become friable, Category I non-friable ACM that has been sanded, ground, cut, etc., and Category II non-friable ACM that has a high probability of becoming crumbled, pulverized, or reduced to powder during demolition or renovation, per 40 CFR 61, Subpart M.

• **Removal.** Stripping, chipping, sanding, sawing, drilling, scraping, sucking, and other methods of separating material from its installed location in a building.

• **Renovation.** Altering a facility or its components in any way, including stripping or removal of RACM, per 40 CFR 61, Subpart M.

8.1.2. Key Concepts

• **Demolition Notification.** North Carolina law requires notification for all demolition, regardless of whether asbestos is present, 10 working days prior to starting demolition.

• **Disposal.** ACM waste can be accepted at the MCB Camp Lejeune Sanitary Landfill. Work with the ROICC or Contract Representative to coordinate the disposal through the MCB Camp Lejeune Sanitary
Landfill. Asbestos waste is only accepted on Mondays through Thursdays from 0700 to 1000.

- **Removal Requirements.** Permits for asbestos removal or demolition must be obtained when the ACM present exceeds 260 linear feet, 160 square feet, or 35 cubic feet. Additionally, proper work practice procedures must be followed during demolition or renovation operations.

- **Renovation Notification.** If ACM is present within a structure, North Carolina law requires notification of renovation 10 working days prior to starting renovation.

8.1.3. Environmental Management System

Contractor practices associated with asbestos management include the following:

- Building operation/maintenance/repair
- Construction/demolition/renovation
- Equipment operation/maintenance/disposal
- HW transportation
- Parts replacement

The potential impacts of these activities on the environment include soil contamination, degradation of water quality and air quality, and the potential exposure of installation occupants.
8.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard the installation must be aware of and adhere to all applicable regulations and requirements regarding ACM, which include but may not be limited to the following:

- **Asbestos General Standard, 29 CFR 1910.1001 – Asbestos.** Applies to all occupational exposures to asbestos in all industries covered by the Occupational Safety and Health Administration (OSHA).

- **Asbestos Hazard and Emergency Response Act (AHERA), 1986.** AHERA was written primarily to provide officials in schools, grades K-12, with rules and guidance for the management of ACM.

- **Asbestos School Hazard Abatement Reauthorization Act, 1992.** This act extended AHERA regulations to cover public and commercial buildings.

- **Naval Facilities Engineering Service Center, Facilities Management Guide for Asbestos and Lead.** Summarizes asbestos and lead requirements
that routinely affect facilities operations, to protect workers, building occupants, and the environment.

- **Naval Facilities Guide Specifications and Engineering Control of Asbestos Materials.** Covers the requirements for safety procedures and requirements for the demolition, removal, encapsulation, enclosure, repair, and disposal of ACM.

- **North Carolina Asbestos Hazard Management Program, NC General Statutes, Chapter 130A, Article 19; 10A NCAC 41C.0601–.0608 and .0611.** Incorporates 40 CFR 763 and 29 CFR 1926.1101 by reference and outlines criteria for asbestos exposures in public areas, accreditation of persons conducting asbestos management activities, and asbestos permitting and fee requirements.

- **Safety and Health Regulations for Construction, Asbestos, 29 CFR 1926.1101.** Regulates asbestos in the construction, demolition, alteration, repair, maintenance, or renovation of structures that contain asbestos.

8.3. RESPONSIBILITIES BEFORE A DEMOLITION OR RENOVATION PROJECT

Prior to starting a demolition or renovation project, contractors must:
Determine whether ACM, PACM, and/or RACM are present in the buildings involved in the project.

Complete the necessary notifications to the State of North Carolina and obtain any necessary permits for the removal of ACM, PACM, and/or RACM.

Understand what actions to take if ACM, PACM, and/or RACM are unexpectedly encountered during project execution.

Remove all non-friable and friable ACM in accordance with all Federal, State, and local regulations, prior to demolition activities.

Know how to properly dispose of ACM, and provide any waste disposal manifests generated for disposal.

8.3.1. Identification of ACM and PACM

Contract documents will identify the presence of known ACM, PACM, and RACM. Contact the ROICC or Contract Representative with questions regarding the presence of these materials as identified in the contract documents. An inspection conducted by a Health Hazards
Control Unit (HHCU)-licensed asbestos inspector may be necessary to confirm the location and quantities of any ACM, PACM, and/or RACM and determine if any previously unidentified materials are present.

8.3.2. Notification

To maintain accurate files and records, the ROICC or Contract Representative is required to notify the Asbestos Program Manager, who is part of the Installations and Environment Department, of all work involving asbestos removals, including glove bag projects.

The North Carolina Department of Health and Human Services (DHHS) Form 3768, *Asbestos Permit Application and Notification for Demolition and Renovation*, must be submitted to the North Carolina HHCU 10 working days in advance of demolition activities, regardless of whether asbestos is present. This form must be posted onsite during the entire duration of the project. Have the ROICC or Contract Representative contact the Asbestos Program Manager with questions or concerns about requirements for notification of demolition or renovation.

8.3.3. Removal

Any ACM, PACM, and/or RACM present must be removed before the area is disturbed during renovation or demolition.
activities (except in certain rare instances). Certification and handling requirements for asbestos removal are provided in 10A NCAC 41C and the Asbestos NESHAP. Refer to these regulations for detailed requirements.

8.3.4. Training

North Carolina regulations require that all persons who perform asbestos management activities in the State of North Carolina must be accredited by the North Carolina HHCU under the appropriate accreditation category (i.e., Building Inspector, Project Supervisor, and/or Abatement Worker). Training documentation should be available upon request.

8.4. RESPONSIBILITIES DURING A DEMOLITION OR RENOVATION PROJECT

North Carolina regulations require that DHHS Form 3768, Asbestos Permit Application and Notification for Demolition and Renovation, be acquired by the contractor and posted onsite during all permitted projects. Contractors must post this form when the project will remove the following: at least 260 linear feet, 160 square feet, or 35 cubic feet of RACM or asbestos that might become regulated as a result of handling. The form must also be posted for nonscheduled asbestos removal that will exceed these numbers in a calendar year.

During a renovation or demolition project, if the contractor suspects the presence of additional ACM (other than the materials identified in contract documents), the contractor
must immediately report the suspected area to the ROICC or Contract Representative. Before proceeding, the facility must be inspected by an asbestos inspector licensed by the North Carolina HHCU. The individual performing the asbestos survey will coordinate with the ROICC or Contract Representative throughout the process. A legible copy of the building inspection report must be provided to the North Carolina HHCU prior to each demolition and upon request for renovations; a building inspection report will be acceptable only if the inspection was performed during the 3 years prior to the demolition. A copy of the report should also be forwarded to the Asbestos Program Manager.

During a renovation or demolition project, a contractor who suspects additional ACM is present must immediately report the suspected area to the ROICC or Contract Representative.

For specific work procedures and requirements for glove bag projects, refer to 29 CFR 1926.1101.

8.5. DISPOSAL OF ACM WASTE

Contractors can dispose of ACM waste at the MCB Camp Lejeune Sanitary Landfill after first coordinating with the MCB Camp Lejeune Landfill office through the ROICC or Contract Representative. The contractor must provide the MCB Camp Lejeune Landfill with Form DHHS 3787, North Carolina Health Hazards Control Unit’s Asbestos
Waste Shipment Record. The contractor must submit this form to the North Carolina HHCU for all permitted asbestos removal projects.
9.0 LEAD-BASED PAINT

Lead was used in paint for its color and water-resistant properties until it was banned in 1978 for its highly toxic properties that may cause a range of health problems, especially in young children. Improper removal of lead-based paint (LBP) may result in paint chips and dust, which may contaminate a structure inside and out. The North Carolina DHHS regulations require any person who performs an inspection, risk assessment, or abatement to be certified. North Carolina DHHS also requires a person to obtain a permit for conducting an abatement of a child-occupied facility or target housing.

9.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with LBP activities. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate Environmental Department or Safety Representative if additional clarification is necessary.

9.1.1. Key Definitions

- **Abatement.** The permanent removal or elimination of all LBP hazards.

- **Demolition.** The removal of any load-bearing walls or structure.
• **Inspection.** A surface-by-surface investigation to determine the presence of LBP, and a report explaining the results of the investigation.

• **Lead-Based Paint.** Surface coatings that contain lead in amounts equal to or in excess of 1.0 milligram per square centimeter, as measured by X-ray fluorescence (XRF) or laboratory analysis, or more than 0.5 percent by weight, per 40 CFR 745.

• **Lead-Containing Paint.** Surface coatings that contain lead in any amount greater than the laboratory reporting limit but less than 1.0 milligram per square centimeter, or less than 0.5 percent by weight, per 29 CFR 1926.62 and 29 CFR 1910.1025 (also contained in 40 CFR 745 Subpart L, and adopted by the State of North Carolina under North Carolina General Statute Chapter 130A, Article 19A).

• **Renovation.** Alteration of a facility or its components in any way.

• **Target Housing.** Any housing constructed before 1978, with the exception of housing for the elderly and persons with disabilities (unless a child under the age of 6 lives there) and residential dwellings where the living areas are not separated from the sleeping areas (efficiencies, studio apartments, dormitories, etc.).
9.1.2. **Key Concepts**

- **Disposal.** Analysis is required to determine proper disposal of waste (non-hazardous or hazardous). A Toxic Characteristic Leaching Procedure (TCLP) analysis must be conducted to determine whether lead levels have exceeded 5 parts per million (ppm), which is the RCRA threshold for HW determination.

- **LBP Survey.** A LBP survey is required prior to disturbing painted surfaces, to determine whether the paint meets the criteria of lead containing over 1.0 milligram per square centimeter or over 0.5 percent by weight.

- **Training.** LBP training requirements set forth by the OSHA must be followed by all personnel involved in all LBP removal activities. MCB Camp Lejeune Base Safety tracks this training for contract staff, as the Safety Office houses the Lead Program Manager.

9.1.3. **Environmental Management System**

Contractor practices associated with LBP include the following:

- Construction/demolition/renovation
- HW transportation
- Paint removal

The potential impacts of these activities on the environment include the potential degradation of soil, water, and air
environments, and the potential exposure of installation occupants.

9.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard the installation must be aware of and adhere to all applicable Federal, State, and local regulations and requirements regarding LBP activities, which include but may not be limited to the following:

- **Naval Facilities Engineering Service Center, Facilities Management Guide for Asbestos and Lead.** Summarizes asbestos and lead requirements that routinely impact facilities operations, in order to protect workers, building occupants, and the environment.

- **Lead-Based Paint Hazard Management Program, NC General Statutes, Chapter 130A, Article 19A, Section 130A-453.01 through 453.11.** Requires a person who performs an inspection, risk assessment, abatement, or abatement design work in a child-occupied facility (daycare center, pre-school, etc.) or housing built before 1978 to be certified and establishes the requirements for certification, including the oversight of required training. It also requires a person who conducts an abatement of a child-occupied facility or target housing to obtain a permit for the abatement; establishes work practice standards for LBP abatement activities; and has adopted requirements included in 40 CFR Part 745, Subpart L and 40 CFR Part 745, Subpart D.
• **Lead-Based Paint Hazard Management Program for Renovation, Repair, and Painting (RRP), 10A NCAC 41C.0900.** Common renovation activities may create hazardous lead dust and chips by disturbing LBP, which may be harmful to adults and children. This article requires that dust sampling technicians, firms, and individuals performing renovation, repair, and painting projects for compensation that disturb LBP in housing and child-occupied facilities built before 1978 be certified and follow specific work practices to prevent lead contamination. Child-occupied facilities include, but are not limited to, child care facilities and schools (with children under the age of 6) that were built before 1978.

• **10A NCAC 41C.0800, Lead-Based Paint Hazard Management Program.** Requires (1) all individuals and firms involved in LBP activities to be certified and (2) all LBP activities to be carried out in accordance with 40 CFR 745.

• **29 CFR 1926, Safety and Health Regulations for Construction.** Contains the OSHA requirements for construction activities where workers may come into contact with lead.

• **40 CFR Part 745, Lead-Based Paint Poisoning Prevention in Certain Residential Structures.** Ensures that (1) LBP abatement professionals, including workers, supervisors, inspectors, risk assessors, and project designers, are well trained in conducting LBP activities; and (2) inspections for the
identification of LBP, risk assessments for the evaluation of LBP hazards, and abatements for the permanent elimination of LBP hazards are conducted safely, effectively, and reliably by requiring certification of professionals.

9.3. RESPONSIBILITIES BEFORE RENOVATION OR DEMOLITION

Ordinary renovation and maintenance activities may create dust that contains lead, but following lead-safe work practices may help mitigate or prevent lead hazards. The North Carolina RRP Program (10A NCAC 41C.0900) mandates that contractors, property managers, and others working for compensation in homes and child-occupied facilities built before 1978 be trained in and use lead-safe work practices. In addition, it mandates that contractors provide the owner and occupants with *The Lead-Safe Certified Guide to Renovate Right* information pamphlet, which is found at the following website: http://epi.publichealth.nc.gov/lead/pdf/RenovateRight.pdf

Individuals must be certified by the State of North Carolina to perform RRP activities for compensation in housing and child-occupied facilities built before 1978. A firm engaged in regulated renovation activities (such as RRP that disturbs more than 6 square feet of interior painted surfaces or 20 square feet of exterior painted surfaces, or dust sampling after renovation) must be a certified renovation firm.
To address the hazards associated with the improper abatement or removal of LBP, any person who performs an inspection, risk assessment, abatement, or abatement design work in a child-occupied facility (child development centers, preschools, etc.) or housing built before 1978 must be certified by the State of North Carolina. Any person who conducts an abatement of a child-occupied facility or target housing must also obtain a permit for the abatement. Individuals conducting LBP abatement activities in North Carolina, such as inspections, risk assessments, LBP hazards abatement, clearance testing, or abatement project design in housing and child-occupied facilities built before 1978, must be certified by the State of North Carolina. A firm engaged in abatement activities must be a certified lead abatement firm.

Prior to any renovation or demolition aboard the installation that involves the disturbance of painted surfaces, a LBP survey must be completed by an inspector certified in North Carolina, retained through the ROICC or Public Works Division (PWD). Certain projects will use PWD staff to conduct the sampling, and other projects will use contracted personnel. Buildings constructed prior to 1978 are assumed to contain LBP; therefore, no LBP survey is necessary. The LBP survey (through sampling and analysis) will determine whether painted surfaces meet the criteria of LBP (lead content equal to or greater than 1.0 milligram per square centimeter as measured by XRF or lab analysis, or 0.5 percent by weight). Naval Facilities Guide Specifications and contract documents must be implemented for contracts where LBP is to be abated/removed prior to demolition or renovation.
If the area is to be reoccupied, final clearance must be conducted, including a visual inspection and sample collection, prior to reoccupation. Clearance on all projects involving abatement must be provided by a certified risk assessor or a certified LBP inspector. Clearance for RRP projects may be conducted by a certified risk assessor, certified LBP inspector, or certified dust sampling technician.

9.4. PERMITS

Contractors must obtain a North Carolina LBP Abatement Permit from North Carolina DHHS when lead paint is removed from targeted structures (child-occupied facilities or housing built prior to 1978).

9.5. DISPOSAL

If the LBP survey determines that LBP will be abated as part of a renovation or demolition project, the contractor must take analytical samples to determine whether the waste material is hazardous. Usually, a TCLP sample is collected from a “representative” sample of the material removed. The laboratory conducting the sample analysis must be accredited by the Environmental Lead Laboratory Accreditation Program. A list of these accredited labs is available by contacting (703) 849-8888 or visiting...
If the LBP is removed from the underlying building material, then the paint is the waste stream. If the LBP is removed with the building material, then both materials are considered the waste stream.

If the lead content is below HW regulatory disposal levels, consult the ROICC or Contract Representative to determine whether if the contract allows for the disposal of the material in the MCB Camp Lejeune Sanitary Landfill. Lead waste is only accepted on Mondays through Thursdays from 0700 to 1000.

If the abated LBP is above HW regulatory levels, refer to Section 7.0 of this guide for information on HW management and disposal requirements.

9.6. TRAINING

Before the project begins, workers who are subject to lead exposure during abatement or removal activities must be trained according to the OSHA regulations in 29 CFR 1926.62 concerning lead exposure in construction, and they must receive all training and certification specified by 10A NCAC 41C.0800 and 10A NCAC 41C.0900. The contractor is responsible for providing this training before initiating any work aboard MCB Camp Lejeune.
10.0 NATURAL RESOURCES

The installation has stewardship and recovery responsibilities over the natural resources on the installation. These responsibilities are regulated under numerous laws described in this section. The installation ensures compliance with these laws through an interdisciplinary process of review and coordination of all activities occurring on the installation.

Contractors working on the installation are responsible for complying with conditions and measures imposed on their work as a result of this process; these responsibilities include preserving the natural resources within the project boundaries and outside the limits of permanent work, restoring work sites to an equivalent or improved condition after the work is complete, and confining construction activities to the limits of the work indicated or specified. The contractor is advised that the installation is subject to strict compliance with Federal, State, and local wildlife laws and regulations. The contractor must not disturb wildlife (birds, nesting birds, mammals, reptiles, amphibians, and fish) or the native habitat adjacent to the project area except when indicated or specified.

10.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with natural resources management. If you have any questions or concerns please consult the ROICC or Contract Representative with any questions or concerns about the information in this section.
about the information in this section or require assistance regarding any wildlife matters (snakes, nesting birds, nuisance wildlife, etc.) on the site or within the project area, please consult the ROICC or Contract Representative, who will contact the Environmental Conservation Branch.

10.1.1. Key Definitions

- **Conservation.** The planned management, use, and protection of natural resources to provide their sustained use and continued benefit to present and future generations.

- **Ecosystem.** A dynamic, natural complex of living organisms interacting with each other and with their associated nonliving environment.

- **Habitat.** An area where a plant or animal species lives, grows, and reproduces, and the environment that satisfies its life requirements.

- **Natural Resource.** Soil, water, air, plants, and animals, according to the Natural Resources Conservation Service.

- **Endangered or Threatened Species.** Federally listed taxon that is “in danger of extinction throughout all or a significant portion of its range” or “likely to become endangered within the foreseeable future throughout all or a significant portion of its range.”

- **Riparian Buffer.** Vegetated area bordering a body of water, such as a stream, lake, or pond.
- **Wetland.** Areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas, per the EPA.

10.1.2. Key Concepts

- **Coastal Zone Management Act (CZMA) of 1972.** Requires each installation to ensure that its operations, activities, projects, and programs affecting the coastal zone in or on coastal lands or waters are consistent with the federally approved Coastal Zone Management Plan of the State.

- **Ecosystem Management.** A goal-driven approach to managing natural and cultural resources that supports present and future mission requirements; preserves ecosystem integrity; is at a scale compatible with natural processes; is cognizant of natural processes’ time scales; recognizes social and economic viability within functioning ecosystems; is adaptable to complex, changing requirements; and is realized through effective partnerships among private, local, State, tribal, and Federal interests. Ecosystem management is a process that considers the environment as a complex system functioning as a whole, not as a collection of parts, and recognizes that people and their social and economic needs are a part of the whole.
• **Integrated Natural Resources Management Plan (INRMP).** A planning document using ecosystem management principles to direct the management and conservation of installation natural resources, which includes all elements of natural resources management applicable to the installation.

• **National Environmental Policy Act.** Requires Federal agencies, including the USMC, to consider the environmental impacts of projects prior to implementation. All projects that support military training, minor and major military construction, maintenance, and natural resources management actions are reviewed for potential environmental impacts. Contractors must obtain and review any NEPA documentation associated with their projects. All NEPA documentation can be obtained from the ROICC or Contract Representative.

• **Threatened and Endangered Species.** Specific requirements regarding protected areas on the installation apply to contractor activities. Eight federally threatened and endangered species are currently managed at MCB Camp Lejeune – red-cockaded woodpecker, green sea turtle, loggerhead sea turtle, rough-leaved loosestrife, seabeach amaranth, piping plover, red knot, and American alligator. In addition, as of March 25, 2015, the U.S. Fish and Wildlife Service lists six species as threatened and nine as endangered for Onslow County, NC. Consult the ROICC or Contract Representative to determine if there are any project
requirements regarding threatened or endangered species.

- **Timber.** Contractors must ensure that the ROICC or Contract Representative notify the EMD’s Forest Management Program prior to conducting site work. Timber will not be released to contractors without the approval of the Forest Management Program.

- **Waters of the United States.** All waters that are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce; interstate waters; the territorial seas; impoundments; tributaries; adjacent waters including wetlands, ponds, lakes, oxbows, and impoundments; waters determined to have a significant nexus; Carolina bays; Pocosins; and waters within the 100-year floodplain or within 4,000 feet of the high tide line or ordinary high water mark; per 33 U.S.C. 1251 *et seq.* Section 328.3.

- **Wetlands.** Any work in installation waters or wetlands requires a permit prior to the start of an activity.

10.1.3. Environmental Management System

Contractor practices associated with natural resources include the following:

- Erosion/runoff control
- Fish stocking
- Habitat management
The potential impacts of these activities on the environment include air emissions, sedimentation, eutrophication of surface waters (addition of nutrients that stimulate aquatic plant growth and depletes oxygen), degradation of habitat, impacts to marine mammals, damage to commercial and noncommercial timber, impacts to endangered species and natural resources, and degradation of soil quality.

10.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard the installation must be aware of and adhere to all applicable regulations and requirements regarding natural resources, which include but may not be limited to the following:

- **Bald and Golden Eagle Protection Act of 1940, as Amended (16 USC 688 et seq.).** Prohibits taking, possessing, and transporting bald eagles and golden eagles and importing and exporting their parts, nests, or eggs. The definition of “take” includes pursue, shoot, shoot at, poison, wound, capture, trap, collect, molest, or disturb.
• **BO 5090.11A, Protected Species Program.** Sets forth regulations and establishes responsibilities to ensure the conservation of threatened and endangered species and species at risk aboard MCB Camp Lejeune.

• **BO 5090.12, Environmental Impact Review Procedures.** Implements NEPA 1969 and NEPA policy and guidance in Chapter 12 of MCO P5090.2A.

• **Clean Water Act of 1972.** Establishes the basic structure for regulating wastewater discharges and placing fill materials into the waters of the United States.

• **CZMA of 1972 (16 USC 1451 et seq.).** Requires that Federal actions affecting any land/water use or coastal zone natural resource be implemented consistent with the enforceable policies of an approved State coastal management program. Requires concurrence from the State before taking an action affecting the use of land, water, or natural resources of the coastal zone.

• **Endangered Species Act of 1973 (16 USC 1531 et seq.).** Requires all Federal agencies to carry out programs to conserve federally listed endangered and threatened species of plants and wildlife.

• **EO 11990, Protection of Wetlands, 24 May 1977.** Addresses Federal agency actions required to identify and protect wetlands, minimize the risk of wetlands destruction or modification, and preserve
and enhance the natural and beneficial values of wetlands.

- **EO 13186, Responsibilities of Federal Agencies to Protect Migratory Birds, 10 January 2001.** Requires each Federal agency taking actions that have, or are likely to have, a measurable negative effect on migratory bird populations to develop and implement a plan to promote the conservation of migratory bird populations.

- **Marine Mammal Protection Act of 1972 (MMPA), as Amended (16 USC 1361 et seq.).** Mandates a moratorium on the killing, capturing, harming, and importing of marine mammals and marine mammal products. The MMPA also prohibits the taking of any marine mammal, including to harass, hunt, capture, collect, or kill any marine mammal, including any of the following: collection of dead animals or their parts, restraint or detention of a marine mammal, tagging a marine mammal, the negligent or intentional operation of an aircraft or vessel, or any other negligent or intentional act that results in disturbing or molesting a marine mammal.

- **Migratory Bird Treaty Act of 1918, as Amended (16 USC 703 et seq.).** Protects migratory birds (listed in 50 CFR 10.13) and their nests and eggs and establishes a permitting process for the taking of migratory birds by establishing a Federal prohibition to “pursue, hunt, take, capture, kill, attempt to take, capture or kill, possess, offer for sale, sell, offer to purchase, purchase, deliver for shipment, ship, cause
to be shipped, deliver for transportation, transport, cause to be transported, carry, or cause to be carried by any means whatever, receive for shipment, transportation or carriage, or export, at any time, or in any manner, any migratory bird or any part, nest, or egg of any such bird.”

- **MCO P5090.2A, Environmental Compliance and Protection Manual.** Provides guidance and instruction to installations to ensure the protection, conservation, and management of watersheds, wetlands, natural landscapes, soils, forests, fish and wildlife, and other natural resources as vital USMC assets.

- **NEPA 1969 (42 U.S.C. 4321 et seq.).** Requires Federal agencies, including the USMC, to consider the environmental impacts of projects before the decisionmaker proceeds with the implementation. All projects that support military training, major and minor military construction, maintenance, and natural resources management actions are reviewed for potential environmental impacts.

- **Rivers and Harbors Act of 1899.** Prohibits the excavation, filling, or alteration of the course, condition, or capacity of any port, harbor, or channel without prior approval from the Chief of Engineers.

- **Sikes Act of 1960, as Amended (16 USC 670 et seq.).** Requires military installations to manage natural resources for multipurpose uses and public access appropriate for those uses, as well as ensuring no net loss to training, testing or other defined
missions of the installation through the development and implementation of an INRMP.

- **Neuse River Basin Riparian Buffer Rules (15A NCAC 02B.0233).** Require a 50-foot riparian buffer that is divided into two zones. The 30 feet closest to the water (Zone 1) must remain undisturbed. The outer 20 feet (Zone 2) may include managed vegetation, such as lawns or shrubbery. The riparian buffer rules also require diffuse flow of stormwater runoff. The buffers apply to intermittent streams, perennial streams, lakes, ponds, estuaries, and modified natural streams that are depicted on the most recent printed version of the soil survey map prepared by the Natural Resources Conservation Service or the 1:24,000 scale quadrangle topographic map prepared by the U.S. Geologic Survey.

10.3. NATIONAL ENVIRONMENTAL POLICY ACT

Staff specialists from various installation departments participate in the NEPA process, which coordinates the review of projects and documents environmental impacts (or lack thereof) for projects before implementation.

The documentation of this review process occasionally includes mandatory conditions affecting the design and construction/ implementation of the project. The documentation, when completed, is provided to the action proponent, who is expected to provide it to the ROICC or Contract Representative.
Consult the ROICC or Contract Representative to obtain or review any NEPA documentation associated with the project. The documentation marks the end of the NEPA review process; it does not constitute approval for the proponent of the action to implement the action. Some contracts may include stipulations from the NEPA document that must be implemented prior to the onset of work to prevent environmental impacts and violations of Federal or State rules and regulations. Stipulations could include replacing monitoring wells if damages occur from contractor operations, stopping work if contamination is encountered, notification that a wetlands permit is required, seasonal restrictions, etc.

10.4. TIMBER

Potential timber resources are identified during the NEPA process. The contractor is responsible for advising the ROICC or Contract Representative to notify EMD’s Forest Management Program prior to beginning site work. Additionally, the ROICC or Contract Representative and/or contractor is required to notify the Forest Management Program if the contract has been amended with modifications to the site location.

MCB Camp Lejeune manages its forest in accordance with the installation INRMP. The Forest Management Program
maintains first right of refusal for all timber products on construction projects and will determine whether the Government will harvest the timber or release it to the contractor. The Government retains exclusive rights to all forest products on construction projects. If the Government elects to harvest the timber, only merchantable timber will be removed.

Contractors must adhere to the following requirements when performing site work that may impact timber resources:

- Do not remove, cut, deface, injure, or destroy trees or shrubs without authorization from the ROICC or Contract Representative.

- Do not fasten or attach ropes, cables, or guy wires to nearby trees for anchorages without authorization from the ROICC or Contract Representative. (If these actions are authorized, the contractor is responsible for any resultant damage.)

- Protect trees that are to remain in place and that may be injured, bruised, defaced, or otherwise damaged by construction operations.

- With the ROICC or Contract Representative’s approval, use approved methods of excavation to
remove trees with 30 percent or more of their root systems destroyed.

- With the ROICC or Contract Representative’s approval, remove trees and other landscape features scarred or damaged by equipment operations, and replace with equivalent, undamaged trees and landscape features.

Please refer to Section 12.0 for disposal information for land-clearing debris.

10.5. THREATENED AND ENDANGERED SPECIES

Entry into a threatened or endangered species site or shorebird nesting area marked with signs and/or white paint is prohibited without written permission from installation personnel.

With the exception of improved roadways, entry into a threatened or endangered species site or shorebird nesting area marked with signs and/or white paint is prohibited without written permission from installation personnel. BO 5090.11A lists threatened and endangered species that may be encountered at the installation. The following restrictions apply on the installation unless written permission is explicitly provided:

- Work on Onslow Beach or Brown’s Island is not permitted between April 1 and October 31. Traffic
on the beaches should be limited to below the high tide line.

- Vehicles and lighting are prohibited on the beaches overnight between May 1 and October 31.
- Construction activities are prohibited within 1,500 feet of a bald eagle’s nest (JD, MC, and IF Training area).
- Cutting or damaging pine trees is not permitted.
- Altering hydrology through excavation, ditching, etc., is prohibited.
- Fish and wildlife must not be disturbed.
- Water flows may not be altered; the native habitat adjacent to the project and critical to the survival of fish and wildlife may not be significantly disturbed, except as indicated or specified.

10.6. WETLANDS

10.6.1. Avoidance

In accordance with MCO P5090.2A, all facilities and operational actions must avoid, to the maximum degree feasible, wetlands destruction or degradation, regardless of the wetlands size or legal necessity for a permit. Prior to the onset of

Contractors must incorporate avoidance and minimization measures to comply with the national policy to permit no overall net loss of wetlands.
construction, coordination with the Environmental Conservation Branch of EMD should have taken place during project design to ensure CWA permitting issues are addressed by the contractor at the earliest opportunity. Contractors must incorporate avoidance and minimization measures to comply with the national policy to permit no overall net loss of wetlands, as well as meeting concept design criteria while incorporating avoidance and minimization measures to protect wetlands, streams, and waters of the United States. Any proposed action that would significantly affect wetlands must be coordinated with the CG of MCB Camp Lejeune.

The contractor must ensure that construction of all buildings, facilities, and related amenities, including earthwork, grading, landscaping, drainage, stormwater management, parking lot and paved roadway, sidewalks, site excavation, sanitary sewer system extensions, and domestic water extensions, avoids, to the maximum degree feasible, wetlands destruction or degradation.

Identified and mapped boundaries of the legally defined wetlands on all USMC lands within the project area will be distributed to the ROICC or Contract Representative for use (if available) and included in all design products, including drawings, plans, and figures.

10.6.2. Permits

All unavoidable potential impacts to wetlands or waters of the United States require prior coordination as described in this section. Failure to acquire written authorization for
If work in wetlands is required, know who is responsible for obtaining permits, and what the terms and conditions of the permits require.

Impacts to wetlands and/or waters of the United States may result in significant project delays or design modifications.

No discharge of fill material, mechanized land clearing, or any other activity is allowed in jurisdictional wetlands or waters of the United States without the proper approvals. The contractor may be responsible for obtaining the following permits (including pre-permit coordination, preparation, and submission of all permit applications after review and concurrence by the installation) and complying with all regulations and requirements stipulated by the State of North Carolina as conditions upon issuance of the permits:

- U. S. Army Corps of Engineers (USACE), Section 404 Permit (individual or applicable nationwide permit); CWA of 1977, as Amended (Public Law 95-217, 33 U. S. C. 1251 et seq.)
- North Carolina Division of Water Resources (NCDWR), Section 401 Water Quality Certification – (15A NCAC 02H) NCDEQ; CWA of 1977, as Amended (Public Law 95-217, 33 U. S. C. 1251 et seq.)
- North Carolina Division of Coastal Management (NCDCM), Federal Consistency Determination (15A NCAC 07) NCDEQ; CZMA of 1972 (16 USC 1451 et seq.)
Two types of activities generally require a permit from the USACE:

- **Activities within navigable waters.** Activities such as dredging, constructing docks and bulkheads, and placing navigation aids require review under Section 10 of the Rivers and Harbors Act of 1899 to ensure that they will not cause an obstruction to navigation.

- **Activities in wetlands and waters of the United States** (regulated by Section 404 of the CWA of 1972). A major aspect of the regulatory program under Section 404 of the CWA is determining which areas qualify for protection as wetlands. Contractors should contact the USACE, the NCDWR, or the NCDCM if there is any question about whether activities could impact wetlands, streams, or protected buffers.

Contractors working on the installation will not perform any work in waters of the United States or wetlands without an approved permit (even if the work is temporary). Examples of temporary discharges include dewatering of dredged material prior to final disposal and temporary fills for access roadways, cofferdams, storage, and work areas.
10.6.3. Impacts

Any disturbance to the soil or substrate (bottom material) of a wetland or water body, including a stream bed or protected buffer, is an impact and may adversely affect the hydrology of an area. Discharges of fill material generally include the following, without limitation:

- Placement of fill material that is necessary for the construction of any structure or impoundment requiring rock, sand, dirt, or other material for its construction; site-development fills for recreational, industrial, commercial, residential, and other uses; and causeways or road fills
- Dams and dikes
- Artificial islands
- Property protection or reclamation devices such as riprap, groins, seawalls, breakwaters, revetments, and beach nourishment
- Levees
- Fill for intake and outfall pipes and subaqueous utility lines
- Fill associated with the creation of ponds
- Any other work involving the discharge of fill or dredged material
10.6.4. Mitigation

Any facility requirement that cannot be sited to avoid wetlands must be designed to minimize wetlands degradation and must include compensatory mitigation as required by wetland regulatory agencies (USACE and NCDWR) in all phases of project planning, programming, and budgeting.

The contractor may be required to develop onsite mitigation, if appropriate, consisting of wetland/stream/buffer restoration or creation, for all unavoidable wetland, stream, and buffer impacts, whenever possible and feasible. Use of USMC lands and lands of other entities may be permissible for mitigation purposes for USMC projects when consistent with EPA and USACE guidelines or permit provisions. Land within the project area suitable for establishment of mitigation may be evaluated by the contractor and used for mitigation where compatible with mission requirements and approved by the CG. Proposals for permanent resource areas must be approved by the Assistant Secretary of the Navy (Installations and Environment) or his/her designee.
Offsite mitigation is preferred and should be coordinated through the North Carolina Division of Mitigation Services or an approved private mitigation bank.

10.7. TEMPORARY CONSTRUCTION

Traces of temporary construction facilities, such as haul roads, work areas, structures, foundations of temporary structures, stockpiles of excess or waste materials, and other signs of construction, should be removed upon completion of a contract or project. Temporary roads, parking areas, and similar temporarily used areas should be graded to conform to surrounding contours and the area restored, to the degree practical, to its state prior to any disturbing activities.
11.0 STORMWATER

MCB Camp Lejeune is responsible for stormwater permits associated with construction, industrial, or municipal activities that discharge to outfalls leading to receiving waters. The most applicable permit for contractors is the construction permit, since the majority of the contractor activities are affiliated with construction/renovation. However, the contractor is also responsible for adhering to the requirements of the industrial and municipal permits held by MCB Camp Lejeune for all of the contractor activities on the installation. In essence, all contractors for the installation need to know and implement the necessary measures to prevent stormwater runoff and pollution runoff from land-disturbing activities (LDAs) and associated construction permit requirements, as well as industrial and municipal activities. The general requirements for each area, as they apply to contractors, are discussed in the following subsections.

11.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with stormwater. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the
appropriate environmental office if additional clarification is necessary.

11.1.1. **Key Definitions**

- **Best Management Practices.** Schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the United States. BMPs include structural and nonstructural stormwater controls, operation and maintenance procedures, treatment requirements, and practices to control site runoff (e.g., sediment, spillage or leaks, sludge or waste disposal, or drainage from material storage). See the following website for more information: http://deq.nc.gov/about/divisions/energy-mineral-land-resources/stormwater

- **Certificate of Stormwater Compliance.** A document providing approval for development activities that meet the requirements for coverage under a stormwater general permit.

- **Discharge (Pollutant).** The addition of any pollutant or combination of pollutants to waters of the United States from any point source, including, but not limited to, any spilling, leaking, pumping, pouring, emitting, emptying, or dumping of any pollutant; this excludes discharges in compliance with a National Pollution Discharge Elimination System (NPDES) permit.
• **Erosion and Sedimentation Control Plan.** Any plan, amended plan, or revision to an approved plan submitted to the North Carolina Division of Land Resources or its delegated authority in accordance with North Carolina General Statute 113A-57. Erosion and Sedimentation Control Plans show the devices and practices that are required to retain sediment generated by the land-disturbing activity within the boundaries of the tract during construction and upon development of the tract. *Note that in North Carolina, the Erosion and Sedimentation Control Plan and the NCG010000 Construction General Permit are considered the Stormwater Pollution Prevention Plan (SWPPP, or SPPP) for a construction site.* See the following website for more information: http://deq.nc.gov/about/divisions/energy-mineral-land-resources/stormwater

• **Land Disturbance.** Areas that are subject to clearing, excavating, grading, stockpiling, and placement/removal of earth material.

• **Nonpoint Source Discharge.** All discharges from stormwater runoff that cannot be attributed to a discernible, confined, and discrete conveyance. (*See also point source discharge, below.*)

• **Point Source Discharge.** Any discernible, confined, and discrete conveyance, including but specifically not limited to, any pipe, ditch, channel, tunnel conduit, well, discrete fissure, container, rolling stock, or concentrated animal feeding operation from
which pollutants are or may be discharged to waters of the State. *(See also nonpoint source discharge, above.)*

- **Stormwater (Runoff).** The portion of precipitation (rain and/or snowmelt) that does not naturally infiltrate into the ground or evaporate but flows via overland flows, channels, or pipes into a defined surface-water channel or stormwater system during and immediately following a storm event. As the runoff flows over the land or impervious surfaces (such as streets, parking lots, and building rooftops), it accumulates sediment and/or other pollutants that could pollute receiving streams.

- **Stormwater Associated with Construction Activities.** The discharge of stormwater from construction activities, including clearing, grading, and excavating, that result in a land disturbance of equal to or greater than 1 acre, per 40 CFR 122.

- **Stormwater Associated with Industrial Activities.** The discharge from any conveyance that is used for collecting and conveying stormwater and which is directly related to manufacturing, processing, or raw materials storage areas from an applicable industrial plant or activity, per 40 CFR 122.

- **Stormwater Associated with Municipal Activities.** The discharge of stormwater from municipal activities, including public works shops, vehicle maintenance shops, and other municipal activities, with the potential to cause stormwater pollution.
11.1.2. Key Concepts

- **Energy Independence and Security Act (EISA).** In December 2007, Section 438 of EISA was issued. This section requires that Federal facility projects over 5,000 square feet must “maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to temperature, rate, volume, and duration of flow.” In January 2010, the DoD Policy of Implementing Section 438 of the EISA was issued; this document includes a flowchart with implementation steps.

- **Good Housekeeping.** Good housekeeping practices refer to the maintenance of a clean and orderly facility to prevent potential pollution sources from coming into contact with stormwater. The practices include procedures to reduce the possibility of mishandling materials or equipment. Good housekeeping practices benefit stormwater quality and also provide for a clean, safe place for employees and clients. *Note that good housekeeping is one of the six minimum control measures (MCMs) of the MS4 permit requirements.*

- **Low Impact Development (LID).** LID is a holistic approach that incorporates site-specific ecosystem and watershed-based considerations for planning and design. The goal of LID is to mimic a site’s predevelopment hydrology by using design techniques that infiltrate, filter, store, evaporate, and detain runoff close to the source. LID seeks to control
non-point source pollutants “nature’s way,” through the application of plant-soil-water mechanisms that maintain and protect the ecological and biological integrity of receiving waters and wetlands.

- **National Pollution Discharge Elimination System.** The national program for issuing, modifying, revoking, reissuing, terminating, monitoring, and enforcing permits. The NPDES stormwater program regulates stormwater discharges from three potential stormwater sources, as follows:

 o **Construction Activities.** LDAs that disturb 1 or more acres need an NPDES permit. At a minimum, these permits require the development of a site-specific Erosion and Sedimentation Control Plan to address sediment controls during construction and upon development of the tract. As previously noted, the Erosion and Sedimentation Control Plan and the NCG010000 Construction General Permit are considered the SWPPP for a construction site in North Carolina. In the applicable areas of the installation, a State Stormwater Management Permit and coverage under the Construction General Permit may be required. *Note that construction site runoff control is also one of the six MCMs of the Municipal Separate Storm Sewer Systems (MS4) permit requirements.*

 o **Industrial Activities.** Owners and operators of industrial facilities that fall into any of the 30 industrial sectors identified by EPA stormwater
regulations need an NPDES Phase I permit if stormwater is discharged directly into surface water (or MS4). The permit regulations specify steps that facility operators must take prior to becoming eligible for permit coverage and actions that must be taken to continue coverage under an existing permit. These steps and actions include, but are not limited to, effluent limits, monitoring, inspection, sampling, reporting, and corrective action requirements.

- **Municipal Separate Storm Sewer Systems.** Owners and operators of MS4s need an NPDES Phase II permit. An MS4 is a system of pipes and drainage ditches within an urbanized area used to collect storm runoff and convey it to receiving waters. Polluted runoff is commonly transported through MS4s, from which it is often discharged untreated into local waterbodies.

- **Operational Requirements.** Equipment, discharge, and material use requirements that apply to all construction and industrial activities.

- **Post-Construction Requirements.** The management of stormwater generated on a stable, established site after the construction process is complete. The State Stormwater Management Program sets forth requirements for post-construction stormwater runoff control. *Note that post construction is one of the six MCMs of the MS4 permit requirements.*
• **Stormwater Pollution Prevention Plan.** A plan required by permits provided under NPDES that provides guidance to prevent stormwater pollution from construction, industrial, or municipal activities. *Note that the terminology for this plan (and associated acronym) varies somewhat from State to State.*

11.1.3. **Environmental Management System**

Contractor practices associated with stormwater include the following:

- Boat, ramp, dock cleaning
- Channel dredging
- Composting
- Construction/demolition/renovation
- Erosion/runoff control
- Fueling and fuel management/storage
- HM storage
- Land clearing
- Laundry
- Landscaping
- Livestock operations
- Pesticide/herbicide management and application
- Range residue clearance
• Road construction and maintenance
• Sewers
• Sidewalk and road deicing
• Soil excavation/grading
• Stormwater collection/conveyance
• Surface washing
• Vehicle parking
• Wash rack

Other activities that contractors could be involved in that may cause stormwater pollution include:

• Grounds maintenance (herbicide, pesticides, fertilizer, etc.)
• Outdoor material storage
• Building/roof repairs
• Industrial activities

The potential impacts of these activities on the environment include degradation of water quality and damage to public and private property due to flooding.

11.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard the installation must be aware of and adhere to all applicable regulations and requirements regarding potential stormwater contamination, which include but may not be limited to:
• **Clean Water Act of 1972.** Establishes the basic structure for regulating discharges of pollutants into the waters of the United States. The CWA establishes that no oil or hazardous substances should be discharged into or upon the navigable waters of the United States or adjoining shorelines, which may affect natural resources under the management of the United States through the following goals: (1) eliminate the introduction of pollutants into waters of the United States, and (2) develop water quality, which protects and propagates fish, shellfish, and wildlife and provides for recreation in and on the water.

• **40 CFR 122, National Pollutant Discharge Elimination System.** Requires industrial, construction, and municipal stormwater permits for the discharge of pollutants from any point source into waters of the United States.

• **15A NCAC Chapter 4.** Requires all persons conducting a land-disturbing activity to take all reasonable measures to protect all public and private property from damage caused by the release of sediments from the activity. The primary tool used to accomplish the objective is the development of an Erosion and Sedimentation Control Plan.

 o Identify critical areas

 o Limit exposure areas

 o Limit time of exposure

 o Control surface water
o Control sedimentation
o Manage stormwater runoff

More information can be found at:

http://reports.oah.state.nc.us/ncac.asp?folderName=\Title%2015A%20-%20Environmental%20Quality\Chapter%2004 - 15A%20Sedimentation%20Control

• **15A NCAC 02H.1000 Stormwater Management.**

The State Stormwater Management Program requires all persons conducting LDAs that (1) require a Coastal Area Management Act (CAMA) Major Development Permit or an Erosion and Sedimentation Control Plan, and (2) are located within coastal counties or drain to specific classifications of water bodies, to protect surface waters and highly productive aquatic resources from the adverse impacts of uncontrolled high-density development or the potential failure of stormwater control measures. To receive permit approval, projects must limit the density of development, reduce the use of conventional collection systems in favor of vegetative systems, and incorporate post-construction, structural BMPs.

11.3. PRIOR TO SITE WORK

Contractors are required to address the following in the below section prior to beginning site work.
11.3.1. Construction Notifications

Any project involving LDAs aboard the installation must be reviewed by the installation’s NEPA Review Board prior to the onset of work so that potential impacts of the project and associated mitigation measures (if necessary) can be determined. Documentation of this review should have been provided to the ROICC or Contract Representative and may include mandatory conditions affecting the construction/implementation of the project. Consult the ROICC or Contract Representative to obtain or review any NEPA documentation associated with the project in the contract.

11.3.2. Familiarity with the Stormwater Phase I Industrial Permit

Discharges of industrial stormwater have the potential to contain contaminants from industrial activity. Because of this, MCB Camp Lejeune holds a Stormwater Phase I industrial permit. This type of discharge is defined and regulated in 40 CFR 122, the EPA final rule regarding NPDES stormwater permitting.

Contractors are responsible for preparing project-specific permit applications and related plans and for coordinating the permit review schedule with the ROICC or Contract Representative.
Daily industrial operations discharging stormwater aboard MCB Camp Lejeune and MCAS New River are covered under an individual NPDES permit. In accordance with the permit, the installation maintains an industrial SWPPP that identifies potential sources of pollution that may affect the water quality of stormwater discharges associated with an industrial activity. Refer to Section 11.4 for more information on contractor responsibilities associated with this permit.

11.3.3. Familiarity with the Stormwater Phase II Municipal Permit

Discharges of municipal stormwater have the potential to contain contaminants from municipal activity. Because of this, MCB Camp Lejeune holds a Stormwater Phase II municipal permit. This type of discharge is defined and regulated in 40 CFR 122, the EPA final rule regarding NPDES stormwater permitting.

Daily municipal operations discharging stormwater aboard MCB Camp Lejeune and MCAS New River are covered under an NPDES permit. In accordance with the permit, the installation maintains a municipal Stormwater Plan to address the six MCMs of the permit, as well as other requirements. Refer to Section 11.4 for more information on contractor responsibilities associated with this permit.

11.3.4. Project-Specific Construction Permits

Contractors are responsible for preparing all project-specific stormwater permit applications and related plans and for coordinating the permit review schedule with the ROICC or
Contract Representative. MCB Camp Lejeune is the responsible party for all project-specific stormwater permits located outside of Public-Private Venture (PPV) housing. All permit-required plans and applications must be submitted to the appropriate MCB Camp Lejeune organization to go through internal approval prior to submission to the appropriate State agency. The permit review schedule should allow adequate time for internal review prior to State submission deadlines.

Adequate review time fluctuates and is based on the type of permit application. Stormwater compliance should be coordinated with the appropriate PPV partner for housing-related projects outside the jurisdiction of MCB Camp Lejeune.

Permit coverage is required under the North Carolina General Permit No. NCG010000 (General Permit) for construction activities that disturb 1 acre or more of land. Three copies of a proposed Erosion and Sedimentation Control Plan must be prepared and submitted to the NCDEQ Sedimentation Control Commission (or to an approved local program) at least 30 days prior to beginning construction activity to obtain coverage under the General Permit. A copy of the plan will be kept on file at the job site at all times while the site is active. **Coverage under the permit becomes effective when a plan approval is issued. No LDAs may take place prior to receiving the plan approval.**
approved plan is considered a requirement or condition of the General Permit; deviation from the approved plan will constitute a violation of the terms and conditions of the permit unless prior approval for the deviations has been obtained.

A State Stormwater Management Permit, issued in accordance with 15A NCAC 02H.1000, is required for all development activities that require a CAMA Major Development Permit or an Erosion and Sedimentation Control Plan and that meet any of the following criteria:

- Development within the 20 coastal counties
- Development within 1 mile of and draining to any waters classified as High Quality Water (HQW) and rated “excellent” based on biological and physical/chemical characteristics through the NCDWR monitoring or special studies, primary nursery areas designated by the Marine Fisheries Commission, and other functional nursery areas designated by the Marine Fisheries Commission
- Development that drains to an Outstanding Resource Water, which is a subset of HQW that is intended to protect unique and special waters having excellent water quality and being of exceptional ecological or recreational significance to the State or Nation

A State Stormwater Management Permit is required for all activities that will disturb 1 acre or more of land.
Because the installation is in a coastal county, any project that disturbs greater than 1 acre of land (requiring coverage under the General Permit for construction activity) will also require a State Stormwater Management Permit. A State Stormwater Management Permit application must be submitted and filed with the NCDEQ, Division of Water Quality, after the construction plans and specifications are complete and before construction activities begin. Additional information is available on the NCDEQ website:

http://deq.nc.gov/about/divisions/energy-mineral-land-resources/stormwater

State Stormwater Management Permits typically specify design standards for conveyance systems and structural BMPs, a schedule of compliance, and general conditions to which the permittee must adhere.

11.4. RESPONSIBILITIES DURING SITE WORK

The contractor is responsible for maintaining the quality of the stormwater runoff and preventing pollution of stormwater at the construction/job site. The job site may be inspected by installation environmental personnel to ensure compliance with the contractor’s construction and/or the installation’s industrial SWPPP, municipal stormwater plan, and applicable permits. The following requirements apply to all projects at the installation that have the potential to impact water quality:
• Any changes to the project area that do not comply with the approved Erosion and Sedimentation Control Plan, alter the approved post-construction stormwater conveyance system, or could otherwise significantly change the nature or increase the quantity of pollutants discharged should be immediately communicated to the ROICC or Contract Representative.

• All permitted erosion and sedimentation control projects will be inspected by the contractor at least once every 7 calendar days (unless discharges to a 303(d)-listed water body are occurring) and within 24 hours after any storm event greater than 0.5 inch of rain per 24-hour period, as required by the North Carolina General Permit No. NCG010000. Inspection results shall be maintained by the designated contractor throughout the duration of an active construction project.

• Equipment used during the project activities must be operated and maintained in such a manner as to prevent the potential or actual pollution of the surface or ground waters of the State.

• No POL products (e.g. fuels, lubricants, hydraulic fluids), coolants (e.g., antifreeze), or any other substance shall be discharged onto the ground, into surface waters, or down storm drains (to include leaking vehicles, heavy equipment, pumps, and/or structurally deficient containers of hazardous materials).
Spent fluids shall be disposed of in a manner so as not to enter surface or ground waters of the State, or storm drains. Disposal of spent fluids is outlined in Section 7.0.

Implement spill prevention measures, clean up all spills immediately, and follow the spill reporting requirements presented in Section 5.0. Any spilled fluids shall be cleaned up to the extent practicable and disposed of in a manner so as not to allow their entry into the water (surface or ground) of the State. Refer to Section 5.0 for emergency and spill response procedures.

Herbicide, pesticide, and fertilizer use shall be consistent with the Federal Insecticide, Fungicide, and Rodenticide Act and shall be used in accordance with label restrictions. Refer to Section 7.0 for additional information on Hazardous Material/Hazardous Waste Management.

Particular care must be used when storing materials outside. Materials and equipment stored outside that could potentially affect the quality of stormwater runoff include, but are not limited to, garbage dumpsters, vehicles, miscellaneous metals, chemical storage, fuels storage, wood products, and empty storage drums. These materials should be stored under cover whenever practicable. Contact the ROICC or Contract Representative with any questions about whether an outdoor storage practice is acceptable.
• Use good housekeeping practices to maintain clean and orderly work areas, paying particular attention to those areas that may contribute pollutants to stormwater. For industrial activities, refer to the link below for more information on best management practices to prevent stormwater pollution. EPA Industrial Fact Sheet Series for Activities Covered by EPA’s multi-sector general stormwater permit: http://www.epa.gov/npdes
12.0 SOLID WASTE, RECYCLING, AND POLLUTION PREVENTION (P2)

Contractors should minimize the amount of solid waste requiring disposal in a landfill.

The installation has a proactive P2 and recycling program, and contractors should minimize the amount of solid waste requiring disposal in a landfill. This section addresses solid waste, including both municipal solid waste (MSW) and construction and demolition (C&D) waste. HM and HW are discussed in Section 7.0 of this guide. Contractors are required to comply with all Federal, State, and local laws and regulations for proper disposal and recycling of all solid wastes.

12.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with solid waste, recycling, and pollution prevention. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

Please consult the ROICC or Contract Representative with any questions or concerns about the information in this section.
12.1.1. Key Definitions

- **Construction and Demolition Debris.** Inert materials generated during the construction, renovation, and demolition of buildings, roads, and bridges. C&D waste often contains bulky, heavy materials such as concrete, lumber (from buildings), asphalt (from roads and roofing shingles), gypsum (the main component of drywall), and glass (from windows).

- **Green Procurement (GP).** The purchase of products and services that are environmentally preferable, when compared with competing products that serve the same purpose, in accordance with federally mandated “green” procurement preference programs. GP is intended to have a lesser or reduced negative effect on human health and the environment, and to permit fulfilling the social, economic, and other requirements of present and future generations.

- **Pollution Prevention.** Reducing the amount of pollution entering waste streams or otherwise released to the environment through source reduction and process efficiencies.

- **Recycling.** Activities that may include collection, separation, and processing, by which products or other materials are recovered from the solid waste stream for use as raw materials in the manufacturing of new products. Recycling also includes using, reusing, or reclaiming materials, as well as processes
that regenerate a material or recover a usable product from it.

- **Municipal Solid Waste.** Any solid materials discarded, including garbage, construction debris, commercial refuse, non-hazardous materials, non-recyclable wood, or other non-recyclable material per BO 11350.1, Refuse Disposal Procedures.

12.1.2. Key Concepts

- **Pollution Prevention/Green Procurement.** Installation contractors are strongly encouraged to use P2 and GP practices.

- **Qualified Recycling Program (QRP).** An organized operation that diverts or recovers scrap or waste streams and that identifies, segregates, and maintains the integrity of the recyclable materials in order to maintain or enhance the marketability of the materials.

- **Recycling.** Recycling is required on the installation. The MCB Camp Lejeune Landfill (Base Landfill) Recycling Center accepts specified recyclables according to the schedule in Table 12-1. Call (910) 451-4214 prior to a bulk turn-in.

- **Solid Waste.** Solid waste is disposed of in accordance with contract specifications (off the installation or at the Base Landfill). Data related to disposal off the installation (to include C&D waste) must be provided to the ROICC or Contract Representative on a monthly basis.
• **Source Reduction.** Any practice that reduces the amount of any HM, pollutant, or contaminant entering any waste stream or released into the environment prior to recycling, treatment, and disposal that could reduce the hazard to public health and the environment. Source reduction may include equipment or technology modification; process or procedure modification; reformulation or redesign of products; substitution of raw materials; and improvements in housekeeping, maintenance, training, or inventory control.

12.1.3. Environmental Management System

Contractor practices associated with solid waste, recycling, and P2 include the following:

- Battery management
- Building operation/maintenance/repair
- Composting
- Construction/demolition/renovation
- Equipment operation/maintenance/disposal
- Grease traps
- HW disposal offsite transport
- Land clearing
- Livestock operations
- Metal working
- Packaging/unpackaging
- Paint removal
- Painting
- Parts replacement
- Polishing
- Range residue clearance
- Recreational facilities operation
- Road construction maintenance
- Rock crushing operations
- Solid waste collection/transportation
- Storage tank management
- Urban wildlife management
- Vehicle maintenance

The potential impacts of these activities on the environment include soil degradation, surface water quality degradation, depletion of landfill space, and depletion of nonrenewable resources.

12.2. OVERVIEW OF REQUIREMENTS

Contractors operating aboard the installation must be aware of and adhere to all applicable regulations and requirements regarding solid waste disposal, recycling, and P2, which include but may not be limited to the following:

- **BO 5090.17, Solid Waste Reduction – Qualified Recycling Program.** Provides guidance for solid
waste reduction, P2, and management of recyclable materials.

- **BO 11350.2D, Refuse Disposal Procedures.** Establishes procedures for the separation, collection, and disposal of refuse and the disposal of waste wood products.

- **DoD Instruction 4715.4, Pollution Prevention.** Establishes the DoD requirement for installation QRPs and calls for GP.

- **EO 13423, Strengthening Federal Environmental, Energy and Transportation Management.** Integrates prior practices, strategies, and requirements to further enhance the environmental and energy performance and compliance requirements. The EO sets goals in several environmental areas, including recycling.

- **EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance.** Expands on the environmental performance requirements for Federal agencies, to include setting goals for solid waste diversion.

- **Pollution Prevention Act of 1990 (42 USC 13101 et seq.).** Establishes the national policy that “pollution should be prevented or reduced at the source whenever feasible,” and establishes the following hierarchy: source reduction, recycling, treatment, and disposal.

- **Resource Conservation and Recovery Act of 1976.** Governs the disposal of solid waste and establishes
Federal waste disposal standards and requirements for State and regional authorities. The objectives of Subtitle D are to assist in developing and encouraging methods for the disposal of solid waste that are environmentally sound and that maximize the utilization of valuable resources recoverable from solid waste.

- **Solid Waste Disposal Act (SWDA) of 1965.** Requires Federal facilities to comply with all Federal, State, interstate, and local requirements concerning the disposal and management of solid wastes, including permitting, licensing, and reporting requirements. The SWDA encourages the reuse of waste through recycling and requires the procurement of products that contain recycled materials.

12.3. SOLID WASTE REQUIREMENTS

Contractors must follow all Federal, State, and local requirements regarding the collection, storage, and disposal of solid waste. Contact the ROICC or Contract Representative for additional information regarding solid waste requirements.

At a minimum, the following actions are required for all contractors:

1. Prior to performing work that will or may generate solid waste at the installation, all contractors must provide their ROICC or Contract Representative with a copy of their Solid Waste Disposal Permit
unless the use of the Base Landfill is authorized for disposal. If the Base Landfill is authorized, the contractor must contact the Base Landfill Operations Clerk to ensure the contract is registered in the Landfill Tracking System. Recycling should be coordinated with the ROICC or Contract Representative and the Landfill Manager.

2. Provide the weight of **ALL** waste, both MSW and C&D, that is either disposed of or recycled, to the ROICC or Contract Representative, with a copy to the Landfill Manager. This requirement does not apply if the landfill/recycling facility picks up or accepts materials directly from the contractor. If contractors transport waste offsite for disposal, it is mandatory that they track the material weight and provide that information to their ROICC or Contract Representative for input into the annual Pollution Prevention Annual Data Summary.

In addition, contractors producing solid waste on the installation are required to take these steps:

- Pick up solid waste, separate it according to material type, and place it in covered containers of the correct type that are regularly emptied for recycling or landfilling.

- Verify that the solid waste contains no HM or HW.

- Prevent contamination of the site and the surrounding areas when handling and disposing of waste.
• Leave the project site clean upon completion of a project.

12.3.1. MCB Camp Lejeune Landfill Acceptable Waste Streams

To dispose of waste at the Base Landfill, contractors must be authorized with a valid construction pass and placard representing the related contract. Contractors must also contact the Landfill Operator prior to unloading refuse. Contact the ROICC or Contract Representative with any questions regarding use of the landfill or to coordinate disposal.

The Base Landfill accepts certain types of solid waste under the conditions specified in Table 12-1. Base Landfill hours of operation are 0730 to 1530, Monday through Friday, but ACM waste must be delivered between 0700 and 1000, Monday through Thursday. Each material must be separated into different loads.
Table 12-1. Base Landfill Requirements

No Personal Property/ Off-Base Trash Accepted

<table>
<thead>
<tr>
<th>Landfill Operating Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0700-1500 Monday – Thursday</td>
</tr>
<tr>
<td>0700-1400 Friday</td>
</tr>
</tbody>
</table>

Wood Products

The following products may be mixed together and delivered to the landfill:
- Scrap lumber (unpainted)
- Embark boxes (broken down)
- Pallets (broken/untreated)

The following products must be separated and delivered to the landfill:
- Trees (cut to 10 feet or less and free of soil)
- Leaves and scrubs
- Serviceable pallets

Lead Based Painted Wood Products

- Delivered before 1400 Monday – Thursday
- Not accepted on Friday
- Cut in less than 8-foot lengths
- Wrapped in 6-millimeter plastic bags/sealed

Asbestos (all types)

- Appointment needed (910-451-5011 / 2946)
- Delivered by 1000 (Mon – Thurs.)
- Not accepted on Friday
- Double wrapped in 6-millimeter plastic bags
- Sealed with duct tape
 Labeled and manifested prior to delivery

Organic Products
- Leaves, pine straw, grass, and shrub clippings
- No bags or containers allowed
- No twigs or limbs over 2 inches in diameter
- Less than 6-foot lengths

Concrete
- Delivered separately from other items
- Wire and rebar must be cut off flush with exposed surfaces
- Concrete and culverts
- Bricks and blocks
- Mortar products

Soil
Non-contaminated soil accepted

Recyclable Products
(Must be separated and dropped off at a designated recycling drop-off point or at a Recycling Center)
- Wood pallets (delivered separately)
- White paper (mixed flat or shredded)
- Newspaper
- Magazines
- Military publications (binders removed)
- Phone books
- Plastic and glass (containers or bottles)
- Toner cartridges
- Cardboard (delivered separately if in bulk)
- Vinyl siding (delivered separately, in less than 6-foot lengths)
- Asphalt shingles (delivered separately)

Scrap metals

Other Related Information

Asphalt may be accepted in small quantities, as needed, at the discretion of the Landfill Manager (large quantities of asphalt must be taken off the installation).

All furniture must be accompanied by a DD Form 1348, with a classification of rejected by the Base Property Office AND downgraded to scrap by Defense Logistics Agency Disposition Services (DLADS).

All other Base or USMC property must be accompanied by a DD Form 1348 and downgraded to scrap by DLADS.

Scrap materials related to **ordinance, ammunition or dangerous items**, including containers, tubes, and packing, must also be accompanied by Ammunition, Explosives, and Other Dangerous Articles (AEDA) certifications and copies of the certifier and verifier’s appointment letters.

Phone Numbers: (area code 910)
- Landfill Manager 451-4998
- Recycling Manager 451-4214
- Landfill Fax 451-9935

- Landfill Clerk 451-2946
- EMD 451-5837
- EOD 451-0558
Unacceptable Items

Hazardous Waste
Liquid Waste
Useable Appliances
Paint and Paint Cans
Appliances
Electronics
Computer Equipment
Batteries
Wire (Communication/Barbed/ Concertina)
Oyster Shells
Contaminated Soil
Tires
55-Gallon Drums
Oil Filters
Petroleum Containers
Regulated Medical Waste
PCBs or PCB containers
Demilitarized Waste
Construction and Demolition Debris (unless specified in the contract)

12.4. RECYCLING REQUIREMENTS

The installation’s QRP is managed by the EMD in collaboration with the Public Works Division. Reducing solid waste saves money and helps protect the environment by conserving natural resources. Additionally, USMC facilities are mandated to recycle, and the installation must meet solid waste diversion goals specified in EO 13514, the
DoD Strategic Sustainability Performance Plan, and the EMS.

12.4.1. Recycling Center

The MCB Camp Lejeune Recycling Center, Building 982, is co-located with the Base Landfill on Piney Green Road. Normal working hours are Monday through Thursday, 0700–1500, and Friday, 0700-1400. All materials should be brought to the Recycling Center. Have the ROICC or Contract Representative contact the Recycling Center at (910) 451-4214 for additional details. Call Recycling Coordinator at (910) 451-4214 for specific types and categories of materials accepted.

The following types and categories of materials are accepted for recycling but must be delivered to the Recycling Center on Piney Green Road:

- Scrap metal
- Steel (high temperature, corrosion resistant)
- Brass (includes spent/fired munitions, but excludes brass casings above .50 caliber; please call the Recycling Coordinator at (901) 451-4214 for details and documentation requirements)
- Copper and copper wire
- Aluminum (plate, sheet, scrap) and aluminum cans
- Paper (white, news, magazine)
- Cardboard
- Glass bottles (no window, windshields, or drinking glass)
- Plastic bottles
- Toner cartridges

Special arrangements may be made for other materials (C&D waste) or larger volumes of commonly recycled materials from events such as C&D. Regulations set forth in BO 11350.1 must be followed.

12.4.2. Other Recyclables

- **Asphalt Pavement.** Asphalt must be removed and delivered to an asphalt recycling facility. Contractors must provide a record of the total tons of asphalt recycled and the corporate name and location of the recycling facility to their ROICC or Contract Representative, with a copy to the Landfill Manager.

- **Empty Metal Paint Cans.** Take empty metal paint cans to Building S-962 for recycling. Turn in all HM cans or HM containers that are generated from MCB Camp Lejeune or MEF contracts to Building S-962 on Michael Road on the scheduled contractor turn-in day. Have the ROICC or Contract Representative contact EMD for more information. Any waste generated from this process must be managed appropriately.

- **Other Metals.** Take other metals to the DLADS disposal area in Lot 201, following the guidelines of BO 5090.17.
Red Rag Recycling. Contractors should seek a red rag program to supply and launder shop rags. This service supplies clean rags and picks them up after use. The rags are laundered offsite and returned.

Universal Waste. See Section 7.0 of this guide for management procedures.

Unused Hazardous Materials. Turn in these materials to the HM Free Issue Point, Building 977 on Michael Road. Have the ROICC or Contract Representative contact the Free Issue Point at (910) 451-1482.

White Rag Recycling. White rags are used in painting (these have no dye and thus do not interfere with these types of operations) and may be laundered offsite in a program analogous to the red rag recycling service.

12.5. POLLUTION PREVENTION AND GREEN PROCURMENT

MCB Camp Lejeune is subject to GP requirements. GP implements environmentally protective principles in the procurement arena and includes preferential use of the following:

- Products made from recovered materials
- Biobased products
- Water- and energy-efficient products
- Alternatives to ozone-depleting substances
• Non-toxic and less-toxic products
• Electronics that meet Electronic Product Environmental Assessment Tool standards
• Products that do not contain toxic chemicals, hazardous substances, or other pollutants targeted for reduction and elimination by the DoD
• Products with alternative fuel use/increased fuel efficiency
• Environmentally preferable purchasing practices

Contractors are encouraged to employ GP practices whenever feasible.
13.0 POTENTIAL DISCOVERY OF UNDOCUMENTED CONTAMINATED SITES

MCB Camp Lejeune was placed on the EPA National Priorities List, effective November 4, 1989. To ensure the protection of human health and the environment, a proactive Installation Restoration Program has been established to assess and remediate various sites on the installation. Numerous investigations have been performed to ensure that all of the installation’s contaminated sites have been found, but additional contaminated areas may still exist. It is the contractor’s responsibility to notify the ROICC or Contract Representative of any unforeseen site conditions while on the installation. It is recommended that any contractors performing intrusive activities on the installation be properly trained in accordance with the OSHA standards in 29 CFR 1910.120(e). If intrusive activities are planned for known contaminated areas, all required environmental training should be completed *prior* to working at MCB Camp Lejeune. Copies of training records should be available upon request by Federal or State regulators.

Contact the ROICC or Contract Representative with questions or concerns about the information in this section.
13.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with unforeseen site conditions. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

13.1.1. Key Definitions

- **Free Product.** A discharged HM/HW, POL, or environmental pollutant that is present in the environment as a floating or sinking non-aqueous phase liquid that exists in its free state (i.e., exceeds the solubility limit of liquids or saturation limit of soil/solids).

- **National Priorities List.** List of sites of national priority among the known releases or threatened releases of hazardous substances, pollutants, or contaminants.

- **Petroleum, Oil, and Lubricants.** A broad term that includes all petroleum and associated products or oil of any kind or in any form, including, but not limited to, petroleum, fuel oil, vegetable oil, animal oil, sludge, oil refuse, and oil mixed with wastes.

- **Unforeseen Site Condition.** A potentially hazardous or unanticipated site condition encountered on a job site.
• **Munitions and Explosives of Concern.** Military munitions that may pose explosives safety risks, including MEC, UXO, DMM, and munitions constituents present in a high enough concentration to present an explosives hazard.

13.1.2. **Key Concepts**

• **Notification.** Contractors must notify the ROICC or Contract Representative, in writing, of any unforeseen site conditions prior to disturbing them.

• **Response.** Contractors must stop working and evacuate work areas if unforeseen site contaminants, HM, or MEC/DMM/UXO are suspected to be present.

13.1.3. **Environmental Management System**

Unforeseen site conditions are potentially applicable to all EMS practices conducted aboard MCB Camp Lejeune.

13.2. **OVERVIEW OF REQUIREMENTS**

Contractors operating aboard the installation must be aware of and adhere to all applicable regulations and requirements regarding unforeseen site conditions, which include but may not be limited to the following:

• **CERCLA of 1980 and Superfund Amendments & Reauthorization Act (SARA) of 1986.** Establishes the Nation’s HW site cleanup program.
• **Occupational Safety and Health Standards, 29 CFR 1910.** Federal standards that govern occupational health and safety to ensure the protection of employees from recognized hazards, such as exposure to toxic chemicals, excessive noise levels, mechanical dangers, heat or cold stress, or unsanitary conditions. The standards include provisions for many facets of employee safety and health, including, but not limited to, employee training, personal protective equipment, HM communication, medical surveillance, and emergency planning.

13.3. **UNFORESEEN SITE CONDITION PROCEDURES**

Contractors must promptly, before the conditions are disturbed, give a written notice to the ROICC or Contract Representative of (1) any subsurface or latent physical conditions at the site that differ materially from those indicated in the contract, or (2) any unknown physical conditions at the site, of an unusual nature, that differ materially from those ordinarily encountered.

The ROICC or Contract Representative will investigate the site conditions promptly after receiving the notice.

The most common unforeseen conditions at MCB Camp Lejeune typically relate to POL contamination and MEC/DMM/UXO. Procedures for these scenarios are provided in the following sections.
13.3.1. Petroleum, Oil, and Lubricants

The most frequently encountered condition that requires EMD assistance is the presence of a POL odor while excavating. If an odor or any free product is encountered during construction or excavation activities, take the following actions:

- Stop work.
- Immediately clear the area of all personnel to a safe distance upwind of the suspected area.
- Call the Fire and Emergency Services Division (911) immediately if personnel are affected or injured by the suspected contaminant.
- Call the Fire and Emergency Services Division to properly secure the area.
- Notify the ROICC or Contract Representative so that the EMD Spill Response Team will be contacted to determine the appropriate course of action.

Please note that if contaminated soil is removed during excavation activities, the soil will have to be characterized prior to disposition. While it is staged and awaiting characterization sampling results, contaminated soil is to be placed within a bermed area on an impervious surface or barrier and securely covered with plastic or appropriate...
material. Sample results and characterization will determine the ultimate disposition of the soil. In accordance with installation policy, contaminated soil is not permitted to be reintroduced into excavations.

13.3.2. Munitions and Ordnance

MCB Camp Lejeune has been in operation as a military training installation since the early 1940s. As such, munitions or an ordnance item may be encountered during site excavation or construction activities. MEC, DMM, or UXO at MCB Camp Lejeune and its outlying areas typically include flares, mines, grenades, rockets, artillery projectiles, bulk explosives, fuses, or blasting caps. These items may vary in condition from very good/easily recognizable to unrecognizable, fragmented, or corroded scrap metal. MEC, DMM, or UXO may be encountered on the ground surface, partially buried, or completely buried.

Contractors operating aboard the installation should follow the “3R” concept if a possible munitions or ordnance item is discovered: “Recognize, Retreat, and Report.”

- **Recognize.** Contractors with the potential to encounter any possible MEC, DMM, or UXO should have a basic knowledge of these items. The item does not have to
be specifically recognized or identified, but it is important for personnel to recognize the potential hazard.

- **Retreat.** If a suspected MEC, DMM, or UXO item is encountered, leave the immediate area and DO NOT DISTURB the item. If possible, note the general size and shape of the item, any markings, and the location.

- **Report.** Report all occurrences to the appropriate authority, including any observations (e.g., size, shape, markings, and location).

Stop work immediately if a project unearths a hazardous material, such as MEC/DMM/UXO, and report the situation to the ROICC or Contract Representative. If a project unearths any potential MEC/DMM/UXO, recognize the potential hazard. Stop work immediately, and have all personnel clear the immediate area. Report the situation and any observations to the ROICC or Contract Representative, who will then report the item to Range Control and Explosive Ordnance Disposal (EOD). The following link is to a 6-minute “UXO Safety” awareness training video that provides additional guidance.

For other emergency response procedures, please refer to Section 5.0 of this guide.
14.0 PERMITTING

Contractors operating aboard the installation must ensure that all relevant environmental permits are obtained before work commences onsite. Contractors must work with their ROICC or Contract Representative to determine permitting responsibilities prior to beginning work. Contractors must adhere to all permit conditions. Examples of permits related to the environment are provided in Section 14.3.

14.1. KEY DEFINITIONS AND CONCEPTS

The following key definitions and concepts are associated with contractor permitting requirements. If you have any questions or concerns about the information in this section, please consult the ROICC or Contract Representative, who will contact the appropriate environmental office if additional clarification is necessary.

14.1.1. Key Definitions

- **Major Source.** Any source that emits or has the potential to emit 100 tons per year or more of any criteria air pollutant in accordance with Title V of the CAA.
• **Permit.** A legally enforceable document required by statutory regulation for potential sources of pollution that is required for operations that may have an environmental impact. Permits may be administered at the Federal, State, or local level.

• **Target Housing.** Any housing constructed before 1978, with the exception of housing for the elderly and persons with disabilities (unless a child under the age of 6 lives or is expected to live there) and residential dwellings where the living areas are not separated from the sleeping areas (efficiencies, studio apartments, dormitories, etc.).

14.1.2. Key Concepts

• **Permits.** Prior to beginning work aboard the installation, consult applicable permit requirements and ensure that they are met before work begins. Copies of all applicable permits/authorizations should be retained onsite for the life of the project. Additional information on North Carolina permits is found on the following webpage: http://deq.nc.gov/about/divisions/environmental-assistance-customer-service/deacs-permit-guidance/environmental-permit-assistance

Consult the ROICC or Contract Representative for additional information concerning the contract’s permit requirements. The contractor is responsible for ensuring that all required permits are acquired prior to any work aboard MCB Camp Lejeune.
14.1.3. Environmental Management System

Currently, no practices are associated with permitting under the EMS.

14.2. OVERVIEW OF REQUIREMENTS

Please refer to the individual sections of this Guide for applicable permitting regulations and requirements for each environmental media. Many permits have specific timetables for submittal prior to project initiation. Contractors must consult the permit requirements and ensure that all pertaining permits are obtained in the required timeframe.

14.3. PROJECT PERMITS AND APPROVALS

Prior to work being awarded, EMD’s NEPA Section should have performed an environmental review of the installation-associated action proponent to comply with NEPA 1969. The outcome of this review would be either a Decision Memorandum or an Environmental Assessment. Contractors must refer to their contract and the requirements outlined in the NEPA documentation for specific permitting requirements. EMD Program Managers are available for

The NCDEQ website (http://deq.nc.gov/) is a useful reference for determining required permits and obtaining necessary forms.
guidance; however, if the contractor is tasked with preparing permit applications, the contractor is expected to have the capability and expertise required to complete the submittals in accordance with the guidance provided by the regulatory agency that issues the permit. In addition, EMD must be provided with copies of all permits submitted to the NCDEQ. In some cases, EMD must submit the permit application. Please direct questions to the ROICC or Contract Representative.

Some permits that may be required are discussed in applicable sections of this Guide. The following list of permits is not meant to be all-inclusive; please be aware that other permits may also be required. The NCDEQ website (http://deq.nc.gov/) is a useful reference for determining required permits and obtaining necessary forms. In addition, any inspection and/or data collection required by the permits must be retained onsite for review upon request.

14.3.1. **Stormwater (Section 11.0)**

- **NPDES Stormwater Discharge Permit for Construction Activities (also referred to as General Permit No. NCG010000).** Required for all LDAs that exceed 1 acre; also requires an accompanying Erosion and Sedimentation Control Plan.

- **General Permit SWG050000.** Required for residential development activities within the 20 coastal counties (including Onslow County) located within 1/2 mile and draining to class SA waters (waters classified as SA are tidal salt waters that are
used for commercial shellfishing or marketing purposes) that disturb less than 1 acre if adding more than 10,000 square feet of built-upon area that will result in a built-upon area greater than 12 percent of the total project area.

- **High-Density Stormwater Permit.** Required when (1) the LDA exceeds 1 acre and impervious surfaces are greater than or equal to 25 percent of the total project area adjacent to non-SA waters or greater than or equal to 12 percent of the total project area adjacent to SA water; or (2) total development exceeds 10,000 square feet of impervious surface.

- **Low-Density Stormwater Permit.** Required when the LDA exceeds 1 acre and impervious surfaces are less than 25 percent of the total project area when adjacent to non-SA waters or less than 12 percent of the total project area when adjacent to SA waters.

14.3.2. Asbestos (Section 8.0)

- **Asbestos Permit Application and Notification for Demolition/Renovation.** DHHS Form 3768, available at the following website (under Forms & Applications):

 http://epi.publichealth.nc.gov/asbestos/ahmp.html

14.3.3. Lead-Based Paint (Section 9.0)

- **North Carolina Lead-Based Paint Abatement Permit Application.** Any person or firm conducting an abatement of a child-occupied facility or target
housing is required to obtain a Lead Hazard Management Plan Permit. The application is available at the following website: http://epi.publichealth.nc.gov/lead/pdf/LeadAbatePermit08-07.pdf

14.3.4. **Air Quality (Section 4.0)**

- **Construction Permits.** Construction permits are required for all new stationary sources and all existing stationary sources that are added to or are modified with new equipment that may emit air pollutants. Permits may be required for the construction or modification of the following types of emission sources:

 - Boilers
 - Generators
 - Engine test stands
 - Surface coating/painting operations
 - Refrigerant recovery and recycling operations for other ozone-depleting substances, such as industrial chillers, refrigerators, air conditioning compressors, or cleaning agents.
 - Chemical or mechanical paint removal, abrasive blasting, grinding, or other surface preparation activities
 - Fuel storage and fuel dispensing
 - Woodworking shops
o Welding shops
o Bulk chemical or flammables storage
o Open burning
o Fire training
o Rock crushing or other dust-causing activities

- **New Source Review Permit.** A New Source Review permit is a pre-construction permit that authorizes the construction of new major sources of air pollution or major modifications of existing sources.

14.3.5. **Wetlands (Section 10.6)**

- **Section 404 Clean Water Act Permit.** Contractors working aboard the installation will not perform any work in waters of the United States or wetlands (see definition below) without an approved permit (even if the work is temporary). Unavoidable impacts to wetlands or waters of the United States will require coordination and written approval from the USACE for a Section 404 CWA permit (individual or applicable nationwide permit), the NCDWR for a Section 401c Water Quality certification, and the NCDCM for a Federal Consistency Determination. Failure to acquire written authorization for making impacts to wetlands and/or waters of the United States may result in significant project delays or design modifications. See the following website for more information:

http://www.epa.gov/laws-regulations
14.3.6. Drinking Water/Wastewater

- **Approval of Engineering Plans and Specifications for Water Supply Systems.** Applicants must submit engineering plans and specifications at least 30 days prior to the date upon which the Authorization to Construct is desired. Authorization to Construct must be obtained prior to onset of work.

- **Wastewater Extension Permit.** NCDEQ Form FTA 02/03 – Rev. 3 04/05. Applicants submitting Form FTA 02/03 should plan to allow the State approximately 90 days to issue the permit. The Wastewater Extension Permit must be obtained prior to onset of work.